SUPPORTING INFORMATION

Yanfei Gao,[†] Xueqiong Zhang,[†] Wei Sun,[†] Zhiliang Liu,^{†,‡}*

[†] College of Chemistry and Chemical Engineering, Inner Mongolia University; [‡] Inner Mongolia Key Lab of

Nanoscience and Nanotechnology, Inner Mongolia University Hohhot, P. R. China

SUPPORTING INFORMATION
Meterials and General Characterization2
S1. Detail experiment procedure for 2,6-Bis(4'-carboxyphenyl)pyrazine ^[1] 2
S2. Schematic synthetic ligand2
S3. Preparation of Mg-MOF2
S4. Crystallography:2
Table S1 Crystal Data and Structure Refinement for Mg-MOF
Table S2 Selected Distances and Bond Angles for Mg-MOF3
S5. Preparation of Eu ³⁺ @Act-MOF, Dy ³⁺ @Act-MOF and Tb ³⁺ @Act-MOF4
S6. Detail experiments for investigating the sensoring feature under different concentrations of
Eu ³⁺ ions, various pH condition and mixture cations system4
S7. Elemental analysis (ICP):4
Scheme S1. Coordination mode of H_2L 4
Figure S1 Morphology of crystal activation process5
Figure S2 In aqueous solutions, samples were illuminated with 254 nm laboratory UV light5
Figure S3 Photoluminescences of H_2L (left) ligand and Act-MOF (right) (Emission spectra (black)
and Excitation spectrum (red))5
Figure S4 The emission spectra of $EuCl_3$ (black), a thoroughly ground mixture of $EuCl_3$ and Act-
MOF (blue), Act-MOF (red) and Eu ³⁺ @Act-MOF (pink) excited at 393 nm in the solid state at
room temperature6
Figure S5 The emission spectra for Act-MOF (left) and Eu ³⁺ @Act-MOF (right) excited at different
wavelengths in the solid state at room temperature6
Figure S6 The test data of absolute quantum yield7
Figure S7 The test data of fluorescence lifetime7
Figure S8 The relationship between the fluorescence intensity (monitored the emission spectra
at 618 nm) and EuCl $_3$ concentration in the water solution8
Figure S9 The TGA data of Active MOF8

Fax: 86 471 4992147; Tel: 86 471 4995414; E-mail: cezlliu@imu.edu.cn

Meterials and General Characterization.

All of chemicals were purchased and used without purification. Elemental analyses for C, H, and N were measured with Perkin-Elmer 2400 elemental analyzer. The TF-IR spectra were measured with a Vertex 70 FTIR on KBr disks on a spectrophotometer (4000–400 cm⁻¹). TGA were measured with NETZSCH TG 209 under heating rate of 10° C min⁻¹. Powder X-ray diffraction measurements were recorded on a PANalytical Empyrean X-ray diffractometer using Mo K α radiation. The fluorescent spectra were measured on an Edingburage FLS920 spectrophotometer.

S1. Detail experiment procedure for 2,6-Bis(4'-carboxyphenyl)pyrazine^[1]

2,6-Dichloropyrazine (0.19 g, 1.269 mmol), 4-carboxyphenylboronic acid (0.45 g, 2.680 mmol), Na₂CO₃ (0.28 g, 2.7 mmol) and Pd(PPh₃)₂Cl₂ (0.025 g, 0.035 mmol, 1.3 mol %) were added to a Around bottom flask. H₂O (8 mL) and MeCN (7 mL) were added and N₂ bubbled through the mixture for 20 min. The reaction was heated at 60 °C under a N₂ atmosphere for 48 h later and let cool to room temperature. The MeCN was removed with a rotary evaporator. The precipitate was filtered and the aqueous solution acidified with 4 mL of 1.0 M HCl and a white precipitate formed. The precipitates were combined and dissolved in 1.0 M K₂CO₃. The solution was washed with dichloromethane (2 x 20 mL) and the organic layer discarded. The aqueous phase was reacidified with 1.0 M HCl (5 mL) to precipitate the product that was recrystallized from DMSO as a fine white powder.

S2. Schematic synthetic ligand

S3. Preparation of Mg-MOF

A mixture of H₂pdda (0.064g, 0.2mmol), Mg(NO₃)₂·6H₂O (0.0513 g, 0.2 mmol), and 8 mL of distilled water and 8ml DMF were sealed in a Teflon-lined stainless vessel (25 mL) heated at 140 °C for 72 h under autogenous pressure. The vessel was then cooled slowly down to room temperature at 2°C/h. Block crystals were obtained.

S4. Crystallography:

Crystallographic data of Mg-MOF were collected on a SuperNova single crystal diffractometer equipped with graphite-monochromatic Mo K α radiation ($\lambda = 0.71073$ Å). The data integration and empirical absorption correction were carried out by SAINT program. The crystal was kept at 153(2) K during data collection. Using Olex2,^[2] the structure was solved with the XS ^[3] structure solution program using Direct Methods and refined with the XL ^[4] refinement package using Least Squares minimization. All hydrogen atoms in these coordination Fax: 86 471 4992147; Tel: 86 471 4995414; E-mail: cezlliu@imu.edu.cn

polymers were generated geometrically and refine isotropically using the riding model. Crystallographic data and structure refinement parameters for Mg-MOF are listed in Table S1. Selected Distances and Bond Angles for Mg-MOF are listed in Table S2. Copies of the data can be obtained free of charge on quoting the depository numbers CCDC-1000768 (Fax: +44-1223-336-033; E-Mail: deposit@ccdc.cam.ac.uk, http://www.ccdc.cam.ac.uk).

	Mg-MOF
Formula	$C_{20}H_{14}MgN_3O_5$
Fw	400.65
Cryst syst	monoclinic
Space group	C2/c
a, Å	16.0685(17)
b, Å	14.6258(12)
c, Å	9.3457(9)
β, deg	117.798(8)
V, Å ³	1942.9(3)
Ζ	4
$D_{\upsilon} g/cm^3$	1.370
F(000)	828.0
Reflections collected/unique	5284/1716
μ, mm ⁻¹	0.129
GOF on F^2	1.073
Rint	0.0240
R_1/wR_2	0.0654/
(I>2(I))	0.1958

Table S1 Crystal Data and Structure Refinement for Mg-MOF

Table S2 Selected Distances and Bond Angles for Mg-MOF

 Distance/Å				
Mg1–O1	2.044(2)	N3-Mg1 ⁵	2.318(4)	
Mg1–O1 ¹	2.044(2)	O2–Mg1 ²	2.065(2)	
Mg1-O2 ²	2.065(2)	Mg1-N3 ⁴	2.318(4)	
Mg1-O2 ³	2.065(2)	Mg1–O5	2.052(5)	
Angles/°				
O11-Mg1-O1	171.41(2)	O11-Mg1-O5	85.71(8)	
O1-Mg1-O26	88.16(1)	O1-Mg1-O5	85.71(8)	
O1 ¹ -Mg1-O2 ²	88.16(1)	O2 ⁶ -Mg1-O2 ²	171.95(2)	
O1-Mg1-O2 ²	92.45(1)	O26-Mg1-N34	85.97(8)	
O11-Mg1-O26	92.45(1)	O2 ² -Mg1-N3 ⁴	85.97(8)	
O11-Mg1-N34	94.29(8)	O5-Mg1-O26	94.03(8)	
O1-Mg1-N3 ⁴	94.29(8)	O5-Mg1-O2 ²	94.03(8)	

Symmetry code: ¹1–*X*, +*Y*, -1/2–*Z*; ²1–*X*, 2–*Y*, –*Z*; ³+*X*, 2-*Y*, -1/2+*Z*; ⁴–1/2+*X*, 1/2+*Y*, -1+*Z*; ⁵1/2+*X*, -1/2+*Y*, 1+*Z*; ⁶+*X*, 2–*Y*, -1/2+*Z*

Fax: 86 471 4992147; Tel: 86 471 4995414; E-mail: cezlliu@imu.edu.cn

S5. Preparation of Eu³⁺@Act-MOF, Dy³⁺@Act-MOF and Tb³⁺@Act-MOF

Mg-MOF was first treated by a process of the activation 300° C 0.5 h under N₂ atmosphere. Then the Act-MOF (0.02 g) soaked in LnCl₃ aqueous solution (Ln = Eu, Dy, Tb) (10 mL, 100 ppm) and treated by ultrasonic wave (30 s) and the solution was removed by centrifuge.

S6. Detail experiments for investigating the sensoring feature under different concentrations of Eu³⁺ ions, various pH condition and mixture cations system

1. Detail experiments for the sensing feature under different concentrations of Eu³⁺ ion.

The activated sample (Act-MOF) (10 mg) and distalled water (3 mL) were added to a cuvette. Then, 3 μ l EuCl₃ solution (200 ppm) was introduced to the above solution and luminescence measurement followed after being treated by ultrasonic wave (30 s). For increasing the concentrations of Eu³⁺ ion in the measurement system, 3 μ L EuCl₃ solution was added each time.

2. Detail experiments for the sensing feature under various pH values.

A mixture of Act-MOF (0.01 mg), distilled water (3 mL) and $EuCl_3$ solution (1 ml, 50 ppm) were sealed in a cuvette and luminescence measurement was carried on the mixture. The pH values of the mixtures were adjusted from 3 to 9 by HCl (0.1 M) and KOH solution (0.1 M).

3. Detail experiments for the sensoring feature under mixture cations system.

4 mL Eu³⁺@Act-MOF solution (consists of Act-MOF (0.01 mg), distilled water (3 mL) and EuCl₃ solution (1 mL, 50 ppm)) was added 1 mL aqueous solution (50ppm) of MCl_n (M = Cd, Ni, Mn, Cu, Fe, Tb, Dy). Then the luminescence density was measured.

S7. Elemental analysis (ICP):

According to the ICP result for Eu^{3+} @Act-MOF, the content of Eu^{3+} presenting in the pore of the Act-MOF is 0.53, therefore, the sample should be expressed as $Eu^{3+}_{0.53}$ @Act-MOF($C_{20}H_{14}N_3O_5MgEu_{0.53}$).

Scheme S1. Coordination mode of H₂L

Figure S1 Morphology of crystal activation process

Figure S2 In aqueous solutions, samples were illuminated with 254 nm laboratory UV light.

The Act-MOF (0.02g) soaked in the solution of $LnCl_3$ (Ln=Eu, Dy, Tb) (100ppm) and treated by ultrasonic wave (30s) and their photographs under a standard UV lamp.

Figure S3 Photoluminescences of H_2L (left) ligand and Act-MOF (right) (Emission spectra (black) and Excitation spectrum (red)).

Fax: 86 471 4992147; Tel: 86 471 4995414; E-mail: cezlliu@imu.edu.cn

Figure S4 The emission spectra of EuCl₃ (black), a thoroughly ground mixture of EuCl₃ and Act-MOF (blue), Act-MOF (red) and Eu³⁺@Act-MOF (pink) excited at 393 nm in the solid state at room temperature.

Figure S5 The emission spectra for Act-MOF (left) and Eu^{3+} @Act-MOF (right) excited at different wavelengths in the solid state at room temperature.

Figure S6 The test data of absolute quantum yield

Figure S7 The test data of fluorescence lifetime

 $(k_f$ is the rate constant of a radiative process and k_{nr} is the rate constant of a nonradiative process.^[2]

Fax: 86 471 4992147; Tel: 86 471 4995414; E-mail: cezlliu@imu.edu.cn

Figure S8 The relationship between the fluorescence intensity (monitored the emission spectra at 618 nm) and EuCl₃ concentration in the water solution.

Figure S9 The TGA data of Active MOF.

References:

- [1] N. Schultheiss and E. Bosch, Heterocycles, 2003, 60, 1891-1897.
- [2] S O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009. 42, 339-341.
- [3] SHELXS-97. (Sheldrick, 1990)
- [4] XL, G.M. Sheldrick, Acta Cryst. (2008). A64, 112-122
- [5] Y. Cui, Y. Yue, G. Qian and B. Chen, Chem. Rev, 2011, 112, 1126-1162.