Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2014

Supporting Information

A heterotrimetallic Ir (III), Au (III) and Pt (II) complex incorporating cyclometallating bi- and tridentate ligands: simultaneous emission from different luminescent metal centres leads to broad-band light emission

Rebeca Muñoz-Rodríguez,^[a] Elena Buñuel, ^[a] Noelia Fuentes, ^[a] J. A. Gareth Williams,^{*[b]} and Diego J. Cárdenas^{*[a]}

^a Department of Organic Chemistry, Universidad Autónoma de Madrid, Cantoblanco,

28049-Madrid, Spain.

^b Department of Chemistry, University of Durham, Durham DH1 3LE, UK.

Contents

General details	S2
¹ H NMR and ¹³ C NMR of new compounds	S3-S11
Additional absorption and emission spectra	S12

General details

The following palladium catalyst, *trans*-dichlorobis(triphenylphosphine)palladium(II) (Pd(PPh₃)₂Cl₂) was prepared from palladium(II) chloride (PdCl₂) according to previously described procedures.¹ Palladium(II) chloride (PdCl₂), copper(I) iodide (CuI), trimethylsilyl acetylene (TMSA), triethylamine (Et₃N) and all other reagents were used as purchased from standard chemical suppliers and used without further purification. TLC was performed on aluminium-backed plates coated with silica gel 60 (230-240 mesh) with F_{254} indicator. The spots were visualized with UV light (254 nm). All column chromatography were performed with silica gel 60 (35-70 µm) from Aldrich. The following known compounds were isolated as pure samples and showed identical NMR spectra to the reported compounds: **8**,² **9**,³ **10**,³ **11**,³ **11**,⁴ **12**,⁵

¹ N. Miyaura, A. Suzuki, J. Chem. Soc., Chem. Commun. **1979**, 866-867.

² K. L. Chandra, S. Zhang, C. B. Gorman, *Tetrahedron* **2007**, *63*, 7120-7132.

³ R. Muñoz-Rodriguez, E. Buñuel, J. A. G. Williams, D. J. Cárdenas, *Chem. Comm.* **2012**, *48*, 5980-5982.

⁴ F. Spaenig, J. H. Olivier, V. Prusakova, P. Retailleau, R. Ziessel, F. N. Castellano, *Inorg. Chem.* **2011**, *50*, 10859-10871.

⁵M. Juríček, M. Felici, P. Contreras-Carballada, J. Lauko, S. R. Bou, P. H. J. Kouwer, A. M. Brouwer, A. E. Rowan, *J. Mat. Chem.* **2011**, *21*, 2104-2111.

¹H NMR and ¹³C NMR of new compounds

Additional absorption and emission spectra.

Fig. 1. Absorption spectra of the homonuclear complexes Au (blue line) and Pt, and of the heterodimer AuPt, in CH_2CI_2 at 298 K. The dotted line shows the sum of Au+Pt, highlighting the similarity to the spectrum of AuPt.

Fig. 2. Absorption spectra of the homonuclear complexes **Au** (blue line) and **Ir**, and of the heterodimer **AuIr**, in CH_2Cl_2 at 298 K. The dotted line shows the sum of **Au+Ir**, highlighting the similarity to the spectrum of **AuIr**.

Fig. 3. Absorption spectra of the homonuclear complexes Pt (red line) and Ir, and of the heterodimer PtIr, in CH_2CI_2 at 298 K. The dotted line shows the sum of Pt+Ir, highlighting the similarity to the spectrum of Pt+Ir.

Fig. 4. Absorption spectra of the homonuclear complexes **Au**, **Pt** and **Ir**, and of the trinuclear **AuPtIr**, in CH_2CI_2 at 298 K. The dotted line shows the sum of **Au+Pt+Ir**.

Fig. 5. Comparison of the emission spectra of **AuPt** complex in CH_2CI_2 at 298 K (red line) and at 77 K (in diethyl ether / isopentane / ethanol, 2:2:1 by volume; blue line). The dotted line shows the emission of **Pt** mononuclear complex at 77 k.

Fig. 6. Comparison of the emission spectra of **Aulr** complex in CH_2Cl_2 at 298 K (red line) and at 77 K (in diethyl ether / isopentane / ethanol, 2:2:1 by volume; blue line). The dotted line shows the emission of **Ir** mononuclear complex at 77 k.

Fig. 7. Comparison of the emission spectra of **IrPt** complex in CH_2CI_2 at 298 K (red line) and at 77 K (in diethyl ether / isopentane / ethanol, 2:2:1 by volume; blue line). The dotted line shows the emission of **Pt** mononuclear complex at 77 k.