Facilely synthesized benzotriazole phenolate zirconium complexes as versatile catalysts for copolymerization of carbon dioxide with cyclohexene oxide and lactide polymerization

Hui-Ju Chuang and Bao-Tsan Ko*

Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan

Fig. S1 ORTEP drawing of complex **2** with probability ellipsoids drawn at the 50% level. Hydrogen atoms are omitted for clarity.

Fig. S2 Polymerization of L-LA initiated by Zr complex 1 in toluene at 80 °C. The relationship between the Mn (\Box) or the PDI value (•) of the polymer and the initial molar ratio [L-LA]₀/[1]₀ is shown.

Fig. S3 ¹H NMR spectrum of poly(L-lactide) (Table 3, entry 3) in CDCl₃.

Fig. S4 ¹H NMR spectrum of poly(L-lactide) (Table 3, entry 10) in CDCl₃.

Table S1 Copolymerization of CHO and CO_2 catalysed by Zr complex 1^a

Table S2 Crystallographic data of complexes 1, 2, 3 and 6

Fig. S1 ORTEP drawing of complex **2** with probability ellipsoids drawn at the 50% level. Hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (deg): Zr(1)-O(1) 2.062(4), Zr(1)-O(2) 2.042(4), Zr(1)-O(3) 1.932(4), Zr(1)-O(4) 1.910(4), Zr(1)-N(1) 2.437(5), Zr(1)-N(4) 2.419(5), O(1)-Zr(1)-O(2) 152.24(18), O(1)-Zr(1)-O(4) 96.73(18), O(1)-Zr(1)-O(3) 99.39(18), O(1)-Zr(1)-O(2) 152.24(18), O(1)-Zr(1)-N(4) 86.64(17), O(4)-Zr(1)-O(2) 99.71(18), O(3)-Zr(1)-N(1) 74.07(17), O(1)-Zr(1)-N(4) 86.64(17), O(2)-Zr(1)-N(4) 73.73(17), O(3)-Zr(1)-O(4) 102.82(19), O(4)-Zr(1)-N(1) 86.18(18), O(4)-Zr(1)-N(4) 169.96(18), O(3)-Zr(1)-N(1) 169.59(17), O(3)-Zr(1)-N(4) 85.87(18), N(4)-Zr(1)-N(1) 85.67(17).

Fig. S2 Polymerization of L-LA initiated by Zr complex 1 in toluene at 80 °C. The relationship between the Mn (\Box) or the PDI value (•) of the polymer and the initial molar ratio [L-LA]₀/[1]₀ is shown.

Fig. S3 ¹H NMR spectrum of poly(L-lactide) (Table 3, entry 3) in CDCl₃.

Fig. S4 ¹H NMR spectrum of poly(L-lactide) (Table 3, entry 10) in CDCl₃.

Entry	Cat. (mol%)	pCO ₂ ⁰ (psi)	Temp (°C)	Time (h)	% CHO Conv. ^b	TON ^c	TOF /h ^{-1d}	% carbonate ^b	$M_{ m n} \ [M_{ m w}/M_{ m n}]^e$
S1	1(0.50)	300	60	16	12	24	1.5	<2	-
S2	1(0.50)	300	80	16	64	128	8.0	69	5500[1.22]
S3	1(0.50)	300	120	16	68	136	8.5	38	6300[1.31]
S4	1(0.25)	500	100	16	41	164	10.3	49	4000[1.39]
S5	1(0.75)	600	100	4	49	65.3	16.3	90	2500[1.28]
S6	1(0.75)	600	100	6	69	92	15.3	90	4000[1.28]
S7	1(0.75)	600	100	8	83	110.7	13.8	90	4700[1.26]

Table S1 Copolymerization of CHO and CO₂ catalysed by Zr complex 1^a

^{*a*} 50 mmol CHO. ^{*b*} Determined by comparison of the integrals of signals arising from the methylene protons in the ¹H NMR spectra. ^{*c*}TON = number of moles of CHO consumed per mole of catalyst. ^{*d*} TOF = TON per hour. ^{*e*} Obtained from GPC analysis.

	1	2	3	6 ·C ₆ H ₁₄
Formula	$C_{46}H_{62}N_6O_4Zr$	$C_{92}H_{124}N_{12}O_8Zr_2$	$C_{44}H_{60}N_8O_2Zr$	$C_{68}H_{92}N_{10}O_3Zr$
Formula weight	854.24	1708.48	824.22	1188.74
Temp (K)	100(2) K	100(2) K	120(2) K	120(2) K
Crystal system	Monoclinic	Triclinic	Triclinic	Triclinic
Space group	P2(1)/n	<i>P</i> -1	<i>P</i> -1	<i>P</i> -1
a (Å)	9.5189(4)	10.6166(7)	10.7550(3)	15.3623(6)
b (Å)	31.1912(12)	21.7128(13)	13.5703(5)	16.4184(7)
c (Å)	15.2281(7)	22.4253(14)	15.8579(6)	16.5697(7)
α (deg)	90	105.216(4)	105.254(3)	102.383(4)
$\beta(\text{deg})$	106.939(2)	98.526(4)	93.273(3)	113.997(4)
$\gamma(\text{deg})$	90	95.426(4)	99.663(3)	109.584(4)
$V(Å^3)$	4325.2(3)	4884.6(5)	2188.71(13)	3284.9(2)
Z	4	2	2	2
$D_{calc}(Mg/m^3)$	1.312	1.211	1.251	1.202
μ (Mo K α)(mm ⁻¹)	0.304	0.272	0.296	0.219
<i>F</i> (000)	1808	1880	872	1268
Reflections collected	40616	81995	24509	29369
No. of parameters	528	1083	512	804
Indep. reflns (R_{int})	10715 (0.0665)	24142 (0.0925)	10241 (0.0343)	15090 (0.0287)
$R1[I > 2\sigma(I)]$	0.0776	0.0992	0.0393	0.0539
wR2 $[I > 2\sigma(I)]$	0.2122	0.2525	0.0836	0.1257
Goodness-of-fit on F^2	1.023	1.010	1.021	1.002

 Table S2 Crystallographic data of complexes 1, 2, 3 and 6