Chemical reduction of the elastic properties of zeolites: a comparison of the formation of carbonate species *versus* dealumination

Bryukhanov I.A.^a, Rybakov A.A.^b, Kovalev V.L.^a, Larin A.V.^{b*}, G.M. Zhidomirov^{b, c}

^aDepartment of Mechanics and Mathematics, Moscow State University, Leninskie Gory, Moscow, GSP-2, 119992 Russia, ^b Chemistry Department, Moscow State University, Leninskie Gory, Moscow, GSP-2, 119992 Russia, ^c Boreskov Institute of Catalysis, SO RAN, Novosibirsk, 630090, Russia

*) corresponding author: Nasgo@yandex.ru

TOTAL PAGES 19 TABLES 10 FIGURES 3

S1. The BS evaluation from the calculated BS(δ) dependencies for the NaCsRHO models [32, 33].

According to the parameters of linear $BS(\delta)$ function for the carbonates

 $BS(\delta) = 5.58 + 2571.4 \times \delta$ (S1)

taken from the bottom line of Table 2 from ref. [32] the $\delta = 0.020$ Å value for the carbonate should result in BS values of 57.0 cm⁻¹ which is close to the experimental value of 60 cm⁻¹ [27, 28]. In ref. [33] the curve

$$BS(\delta) = 201.9 + 933.02 \times \delta$$
 (S2)

had been fitted over 8 points for HCO₃⁻ species in the NaCsRHO zeolites optimized at the same PBE/PAW level as (S1). It had been obtained in a reasonable agreement with two HCO₃⁻ species with BS of 297.7 cm⁻¹ (LDA/NaX(2CO₃⁻²)) and 318.3 cm⁻¹ (B3LYP/6-31G* for the Na₂CO₃(6R+4R) cluster) and the asymmetry parameters of 0.134 and 0.155 Å, respectively, optimized earlier [32]. The curve (S2) results in the BS of 388.5 and 385.7 cm⁻¹ for $\delta = 0.200$ and 0.197 Å, respectively, for the (153, 149) and (155, 151) models at the PBE/PAW level. The predicted BS values can be compared to the calculated 332.7 and 385.9 cm⁻¹ (Table 1). The first predicted BS value of 388.5 cm⁻¹ for $\delta = 0.200$ Å seems to be overestimated relative to the calculated 332.7 cm⁻¹ but the reason of the deviation is very simple. Both the LDA and PBE (153, 149) models involve the strong HBs (Fig. 2b). The short HB length for the PBE (153, 149) model is 1.799 Å that explains the low calculated BS value. In the absence of strong HBs like in the (155, 151) models (Table 1), *i.e.*, HB length in the PBE model is 2.349 Å, the predicted value of 385.7 cm⁻¹ is in a nice agreement with calculated BS of 385.9 cm⁻¹ (Table 1).

S2. The ΔU extrapolation from the calculated dependencies for the NaCsRHO models [25].

The parameters of the linear ΔU (eV) functions [33] *versus* R = Si/Al have been estimated as $\Delta U = -0.861 + 0.223 \times R$ for carbonates and as $\Delta U = -1.532 + 0.098 \times R$ for hydrocarbonates over the studied interval 2.43 < R < 7.0 for Na_XCsRHO models, where X depends on R (Fig. 2 in ref. [33]). Hence, the ΔU extrapolation to R = 1 leads to $\Delta U = -0.638$ and -1.434 eV, respectively. Their difference gives the value 0.796 eV for NaX (Si/Al = 1) which is discussed in the main text.

S3. The estimation of the Coulomb energy between two carbonate species

We can confirm that the variation of the repulsive Coulomb energy between two carbonate species cannot be the reason of different stabilities of the zeolite models with two carbonate/(hydro)carbonate species. First, the inter-carbonate distances R_{cc} (if one uses the distances between the C atoms of the anions) do not correlate with the relative stability within the ordered series of the models (Table S4). Second, two first lines with (155, 151) and (156, 152) in the Table 2 at the LDA level are the most illustrative because of the distance variation and hydrocarbonate formation in the first case with the largest $R_{cc} = 11.104$ Å and the carbonate-carbonate pair with the shortest $R_{cc} = 8.902$ Å. If one assumes that they have the formal charge - 2e for carbonate and -1e for hydrocarbonate then it leads to respective variation of Coulomb energy only 0.161 eV between them that is much smaller than $\Delta U = 1.005$ eV calculated for this pair of the models (Table S9). The estimate 0.161 eV also demonstrates as an upper boundary for the repulsion energy between (153, 149) and (155, 151) models that this term cannot invert their relative stabilities (Fig. 3b) as a consequence of the closer R_{cc} distances and smaller Coulomb repulsion than in the selected example.

S4. The carbonate shielding in the NaX and NaKX zeolites

The series of the neutral and charged cluster models (Fig. S2 and Table S6) shows more effective shielding by two K cation than by two Na ones using the Mulliken charges. It is confirmed by the smaller (in absolute value) charge of the K₂CO₃ species which are embedded to the neutral all siliceous (Fig. S2a, b) or charged as -2 *e* (with 2 Al atoms in Fig. S2c) cluster. The total charge of Na₂CO₃ (Fig. S2a, c) is far from neutral (-0.696 and -0.622 *e* in Table S6) as compared to that of the K₂CO₃ one (only -0.137 *e* in Table S6). The comparison of the M...O_c distances with the sum of covalent radii of O_c (1.35 Å [39]) and M atoms (0.99 and 1.37 Å for Na and K, respectively [39]) shows the different number of the tight M...O_c contacts, *i.e.*, shorter than 2.33 and 2.72 Å for Na...O_c and K...O_c, respectively, is obtained in the NaX and NaKX (Table S7). We have observed one such a bond for HCO₃⁻² and three for CO₃⁻² in NaX, while three and four short bonds are for CO₃⁻² in NaKX (Table S7). This picture is in agreement with the higher number of the K cations around the CO₃⁻² species in Fig. 2c, d) than in NaX (three and four Na cations around HCO₃⁻ and CO₃⁻² species in Fig. 2a, b).

Table S1. MeII...O_z distances (Å), where O_z belongs to 6R window, and their difference ΔR (Å) with and without one carbonate species per UC of the NaX or NaKX models optimized at the PBE and LDA levels. ΔR corresponds to Me = Na in NaX and to Me = K in NaKX (negative sign of ΔR corresponds to decrease of the MeII...O_z distance).

					L					
Me	N	aX (LDA))	Na	X (PBE))	Nal	KX (PBI	E)	
	no CO ₃	$+CO_3$	ΔR	no CO ₃	$+CO_3$	ΔR	no CO ₃	$+CO_3$	ΔR	
149	2.191	2.263	0.072	2.247	2.263	0.016	2.553	2.721	0.168	
	2.205	2.295	0.090	2.255	2.295	0.040	2.539	2.672	0.133	
	2.190	2.304	0.114	2.243	2.304	0.061	2.566	2.736	0.170	
150	2.195	2.300	0.105	2.263	2.415	0.152	2.534	2.702	0.168	
	2.205	2.415	0.210	2.247	2.463	0.216	2.553	2.709	0.156	
	2.193	2.420	0.227	2.242	2.456	0.214	2.560	2.712	0.152	
151	2.206	2.297	0.091	2.258	2.383	0.125	2.555	2.687	0.132	
	2.218	2.284	0.066	2.278	2.357	0.079	2.565	2.656	0.091	
	2.212	2.209	-0.003	2.265	2.269	0.004	2.553	2.676	0.123	
152	2.200	2.278	0.078	2.255	2.452	0.197	2.553	2.708	0.155	
	2.200	2.275	0.075	2.254	2.407	0.153	2.554	2.693	0.139	
	2.187	2.220	0.033	2.239	2.568	0.329	2.546	2.740	0.194	

Table S2. MeII...O_z distances (Å), where O_z belongs to 6R window, and their difference ΔR (Å) with and without two carbonate species per UC of the NaX or NaKX models optimized at the PBE and LDA levels. ΔR corresponds to Me = Na in NaX and to Me = K in NaKX (negative sign of ΔR corresponds to decrease of the MeII...O_z distance).

Me	Na	aX (LDA)		N	aX (PBE	E)	Nal	KX (PBI	E)
	no CO ₃	$+CO_3$	ΔR	no CO ₃	$+CO_3$	ΔR	no CO ₃	$+CO_3$	ΔR
153-149	2.191	2.257	0.066	2.247	2.291	0.044	2.553	2.706	0.153
	2.205	2.209	0.004	2.255	2.276	0.021	2.539	2.695	0.156
	2.190	2.202	0.012	2.243	2.300	0.057	2.566	2.700	0.134
	2.209	2.202	-0.007	2.275	2.355	0.080	2.553	2.686	0.133
	2.193	2.217	0.024	2.251	2.396	0.145	2.551	2.719	0.168
	2.189	2.229	0.040	2.257	2.370	0.113	2.571	2.712	0.141
154-150	2.195	2.283	0.088	2.263	2.350	0.087	2.534	2.705	0.171
	2.205	2.407	0.202	2.247	2.376	0.129	2.553	2.700	0.147
	2.193	2.325	0.232	2.242	2.343	0.101	2.560	2.705	0.145
	2.211	2.234	0.023	2.271	2.365	0.094	2.556	2.634	0.078
	2.227	2.274	0.047	2.284	2.357	0.073	2.547	2.584	0.037
	2.188	2.295	0.107	2.239	2.395	0.156	2.570	2.636	0.066
155-151	2.206	2.346	0.140	2.258	2.333	0.075	2.555	2.627	0.072
	2.218	2.275	0.057	2.278	2.332	0.054	2.565	2.666	0.101
	2.212	2.236	0.024	2.265	2.246	-0.019	2.553	2.676	0.123
	2.148	2.220	0.072	2.205	2.311	0.106	2.562	2.695	0.133
	2.146	2.217	0.071	2.210	2.373	0.163	2.558	2.649	0.091
	2.196	2.247	0.051	2.253	2.313	0.060	2.549	2.763	0.214
156-152	2.200	2.278	0.078	2.255	2.373	0.118	2.553	2.626	0.073
	2.200	2.308	0.108	2.254	2.366	0.112	2.554	2.643	0.089
	2.187	2.212	0.025	2.239	2.391	0.152	2.546	2.587	0.041
	2.205	2.417	0.212	2.253	2.362	0.109	2.548	2.564	0.016
	2.206	2.383	0.177	2.252	2.436	0.184	2.558	2.581	0.023
	2.202	2.440	0.238	2.243	2.504	0.261	2.554	2.689	0.135

Table S3. The energy variation ΔU (in eV) relative to the most stable energy U_N (in eV) for each series with *N* carbonate species per UC, $\Delta U = U - U_N$, bulk (B), shear (S) modulus in the Voight (B_V), Reuss (B_R), and Hill (B) forms (in GPa), their variations ΔB_V , ΔB_R , ΔB , ΔS (in %, in brackets), in the NaX and NaKX models (the numbers of the Na or K cations being closest to the carbonates, are shown in brackets, first column) optimized at the PBE and LDA levels (negative sign in the brackets corresponds to decrease of the modulus). The * signifies the hydrocarbonate formation.

N	$\Delta U^{c)}$	$B_V(\Delta B_V)$	$B_R (\Delta B_R)$	B (AB)	$S(\Delta S)$
N	aX, LDA (U	$_0 = -1285.675, U$	$J_1 = -1325.703,$	$U_2 = -1366.649$	eV)
0	-	26.50 (0.0)	26.29 (0.0)	26.39 (0.0)	14.00 (0.0)
1(151)	0.0	26.08 (-1.6)	25.52 (-2.9)	25.80 (-2.2)	12.29 (-12.2)
1(152)	0.145	26.88 (+1.4)	26.04 (-1)	26.46 (+0.3)	12.63 (-9.8)
1(149)	0.163	24.70 (-6.8)	23.74 (-9.7)	24.22 (-8.2)	11.42 (-18.4)
1(150)	1.679	24.98 (-5.7)	24.13 (-8.2)	24.55 (-7.0)	11.38 (-18.7)
2(155,151)*	0.0	24.00 (-9.4)	22.98 (-12.6)	23.49 (-11.0)	10.99 (-21.5)
2(153,149)*	0.305	-	-	-	-
2(156,152)	1.005	24.75 (-6.6)	24.37 (-7.3)	24.56 (-6.9)	11.19 (-20.1)
2(154,150)	1.133	-	-	-	-
]	NaX, PBE (U	$J_0 = -1177.86, U$	$f_1 = -1215.161, U_1$	$J_2 = -1253.441$ e	eV)
0	-	38.41 (0.0)	38.39 (0.0)	38.40 (0.0)	19.86 (0.0)
1(151)	0.0	37.52 (-2.3)	37.49 (-2.4)	37.50 (-2.3)	19.29 (-2.9)
1(149)	0.115	37.67 (-1.9)	37.53 (-2.2)	37.60 (-2.1)	19.27 (-3.0)
1(152)	0.735	36.46 (-5.1)	36.38 (-5.2)	36.42 (-5.2)	19.35 (-2.6)
1(150)	1.042	35.29 (-8.1)	35.04 (-8.7)	35.17 (-8.4)	18.93 (-4.7)
2(153,149)*	0.0	36.72 (-4.4)	36.66 (-4.5)	36.69 (-4.5)	18.68 (-5.9)
2(155,151)*	0.347	36.46 (-5.1)	36.33 (-5.4)	36.39 (-5.2)	18.91 (-4.8)
2(154,150)	0.810	36.89 (-4.0)	36.50 (-4.9)	36.69 (-4.5)	18.68 (-6.0)
2(156,152)	1.072	37.79 (-1.6)	37.65 (-1.9)	37.72 (-1.8)	18.94 (-4.7)
N	aKX, PBE (I	$U_0 = -1177.283,$	U ₁ = -1214.421,	$U_2 = -1252.200$) eV)
0	-	34.24 (0.0)	34.20 (0.0)	34.22 (0.0)	17.33 (0.0)
1(151)	0.0	34.29 (+0.2)	34.20 (0.0)	34.25 (+0.1)	17.80 (+2.7)
1(149)	0.016	35.90 (+4.8)	35.83 (+4.8)	35.86 (+4.8)	17.48 (+0.8)
1(150)	0.111	33.98 (-0.8)	33.83 (-1.0)	33.91 (-0.9)	18.06 (+4.2)
1(152)	0.331	32.52 (-5.1)	33.34 (-5.5)	32.43 (-5.2)	17.82 (+2.8)
2(156,152)	0.0	28.84 (-15.8)	28.49 (-16.7)	28.66 (-16.3)	17.57 (+1.4)
2(154,150)	0.409	33.83 (-1.2)	33.70 (-1.5)	33.76 (-1.3)	17.79 (+2.6)
2(155,151)	0.448	32.75 (-4.4)	32.60 (-4.7)	32.68 (-4.5)	18.17 (+4.8)
2(153,149)	0.540	33.08 (-3.4)	32.86 (-3.9)	32.97 (-3.7)	17.17 (-0.9)

Table S4. The carbonate - carbonate distances (R_{cc}), energies calculated using LDA and GGA PBE functionals with two carbonate species per UC in the NaX or NaKX zeolites, the N_1 and N_2 numbers of the Me = Na or K cations, being closest to the carbonates, are shown in the third column.

Form	Method	N_1, N_2^{a}	ΔU	R _{cc}
NaX	LDA	155,151*	0.000	11.104
		153,149*	0.305	9.954
		156,152	1.005	8.902
		154,150	1.133	9.418
	PBE	153,149*	0.000	10.963
		155,151*	0.347	11.302
		154,150	0.810	9.698
		156,152	1.072	10.604
NaKX	PBE	156,152	0.000	9.331
		154,150	0.409	9.686
		155,151	0.448	9.774
		153,149	0.540	9.463

^{a)} * signifies the hydrocarbonate formation

Table S5. The Bader type charges q(X) and $|C/H...O_c|$ distances of carbonate and hydrogen carbonates in NaX and NaKX zeolites calculated using GGA PBE functionals with two carbonate species per UC (hydrogen carbonates are given in the columns 4 and 5 for two first models) in the NaX or NaKX zeolites, the N₁ and N₂ numbers of the Me = Na or K cations, being closest to the carbonates, are shown in the third column. The * signifies the hydrocarbonate formation.

Form	N ₁ , N ₂	X	q(X)	C/H-O _c	q(X)	C-O _c
1	2	3	4	5	6	7
NaX	153,149*	C	1.890	-	1.939	-
		0	-1.261	1.274	-1.275	1.304
		0	-1.254	1.252	-1.279	1.319
		0	-1.187	1.413	-1.268	1.302
		Н	0.346	1.001	-	-
		CO ₃	-1.466*	-	-1.883	-
	155,151*	C	1.898	-	1.920	-
		0	-1.262	1.273	-1.281	1.305
		0	-1.231	1.251	-1.270	1.300
		0	-1.159	1.410	-1.287	1.320
		Н	0.369	0.982	-	-
		CO ₃	-1.385*	-	-1.918	-
NaKX	156,152	C	1.922	-	1.925	-
		0	-1.273	1.318	-1.276	1.323
		0	-1.275	1.311	-1.284	1.301
		0	-1.282	1.299	-1.269	1.307
		CO ₃	-1.908	-	-1.904	-

Table S6. The Mulliken type charges q (e) of the X groups containing one Na- or K-carbonate in the clusters with n atoms of Al per the cluster and total charge Q (e) optimized at the B3LYP/6-31G* level. Respective figure numbers are shown.

Cluster/n	Q	Х	q(X)
6R+4R/0	0	CO ₃	-1.272
Fig. S2a		Na1	0.459
		Na2	0.117
		Na ₂ CO ₃	-0.696
6R+4R/0	0	CO ₃	-1.258
Fig. S2b		K1	0.728
		K2	0.393
		K ₂ CO ₃	-0.137
8R/2	-2	CO ₃	-1.394
Fig. S2c		Na1	0.335
		Na2	0.364
		Na ₂ CO ₃	-0.622

Table S7. The Bader type charges q(M) and $M...O_c$ distances between the M cation and O_c atoms of carbonate and hydrocarbonates in NaX and NaKX zeolites calculated using GGA PBE functionals with two carbonate species per UC in the NaX or NaKX zeolites, the N₁ and N₂ numbers of the Me = Na or K cations, being closest to the carbonates, are shown in the third column. The * signifies the hydrocarbonate formation. The $M...O_c$ distances which are smaller than sum of ionic radii (2.34 and 2.73 Å for Na...O_c and K...O_c, respectively) are shown in bold.

Form	N_1, N_2	Туре	M	q(M)	M-O _c
NaX	153,149*	CO ₃	Na117	0.872	2.472, 2.988
			Na122	0.890	2.338 , 2.360
			Na125	0.892	2.312 , 2.352
			Na126	0.894	2.315 , 2.366
		HCO ₃	Na113	0.887	2.407
			Na128	0.908	2.234
			Na131	0.901	2.372, 2.372
NaKX	156,152	CO ₃	K164	0.847	2.905
			K171	0.886	2.577
			K175	0.883	2.648 , 2.832
			K178	0.889	2.574
			K179	0.901	2.754
		CO ₃	K168	0.847	2.763, 2.768
			K169	0.889	2.645 , 2.988
			K172	0.902	2.684
			K173	0.904	2.650
			K177	0.890	2.607

Table S8. The variations of the cell parameters, volume (ΔV , Å³) for each series with N carbonate species per UC in the NaX and NaKX models (the numbers of the Me = Na or K cations, being closest to the carbonates, are shown in brackets, second column) optimized at the DFT/PAW levels (negative sign in the brackets corresponds to decrease of the parameters/volumes). The * signifies the hydrocarbonate formation.

Me	N	$a(\Delta a)$	$b(\Delta b)$	$c(\Delta c)$	α	β	γ	$V(\Delta V)$
(DFT)								
Na	0	17.500	17.470	17.453	50.04	60.06	60.17	3783.24
(LDA)		(0.00)	(0.00)	(0.00)	39.94	00.00	00.17	(0.00)
	1(151)	17.541	17.406	17.553	50 71	50.76	60.42	3805.39
		(0.23)	(-0.37)	(0.57)	39.71	39.70	00.45	(0.58)
	1(152)	17.461	17.532	17.505	50.97	60.02	60.57	3805.61
		(-0.22)	(0.35)	(0.30)	39.07	00.05	00.37	(0.59)
	1(149)	17.575	17.538	17.584	50 55	50 74	60.15	3819.53
		(0.43)	(0.39)	(0.75)	39.33	39.74	00.15	(0.96)
	1(150)	17.450	17.372	17.501	50 51	60.21	61.02	3790.52
		(-0.29)	(-0.56)	(0.28)	39.31	00.51	01.05	(0.19)
	2(155,151)*	17.541	17.406	17.553	50.00	50 76	60.42	3805.39
		(0.23)	(-0.37)	(0.57)	39.99	39.70	00.45	(0.58)
	2(153,149)*	17.763	17.836	17.763	50 23	50.65	50.65	3911.51
		(1.50)	(2.10)	(1.78)	39.23	39.03	39.05	(3.39)
	2(156,152)	17.412	17.544	17.472	50 00	60.05	60.72	3799.2
		(-0.50)	(0.42)	(0.11)	57.77	00.05	00.72	(0.42)
	2(154,150)	17.428	17.383	17.453	59 51	60 75	61.26	3781.53
		(-0.64)	(-0.50)	(0.0)	57.51	00.75	01.20	(-0.04)
Na	0	17.811	17.783	17.742	59 78	59.9	60.41	3983.76
(PBE)		(0.0)	(0.0)	(0.0)	57.70	57.7	00.41	(0.0)
	1(151)	17.815	17.788	17.734	59 68	59 74	60 56	3983.21
		(0.02)	(0.03)	(-0.05)	57.00	57.71	00.50	(-0.01)
	1(149)	17.847	17.805	17.828	59 53	59 70	60.28	3995.84
		(0.20)	(0.12)	(0.48)	57.55	57.70	00.20	(0.30)
	1(152)	17.776	17.766	17.745	59 75	59 92	60.69	3982.81
		(-0.20)	(-0.10)	(0.02)		07.72	00.09	(-0.02)
	1(150)	17.778	17.668	17.846	59 66	60 32	60 51	3987.15
		(-0.19)	(-0.65)	(0.59)		00.02		(0.08)
	2(153,149)*	17.847	17.805	17.828	59.45	59.70	60.28	3995.84
	A (1 F F A F A A A A A A A A A A	(0.20)	(0.12)	(0.48)				(0.30)
	2(155,151)*	17.838		17.773	59.80	59.85	60.48	3993.95
	0(154.150)	(0.15)	(-0.37)	(0.17)				(0.25)
	2(154,150)	17.750	17.660	17.904	59.65	60.36	60.64	3989.85
		(-0.34)	(-0.69)	(0.91)				(0.15)
	2(156,152)	17.794	17.773	17.732	50 71	50 07	60.88	3992.58
		(-0.10)	(-0.06)	(-0.06)	57.74	57.71	00.00	(0.22)
K	0	17.852	17.859	17.878	(0.05	(0.00	(0.00	4048.63
(PBE)		(0.00)	(0.00)	(0.00)	60.25	60.22	60.23	(0.00)
	1(151)	17.852	17.859	17.878	(0.21	(0.22	(0.22	4048.63
	× /	(0.00)	(0.0)	(0.00)	60.31	60.22	60.22	(0.0)
	1(149)	17.946	17.836	17.890	50.00	(0.01	(0.11	4050.16
	×	(0.53)	(-0.13)	(0.07)	39.90	60.01	00.11	(0.04)
	1(150)	17.836	17.871	17.899	60.27	60.28	60.27	4054.72

	(-0.09)	(0.07)	(0.12)				(0.15)
1(152)	17.822	17.947	17.876	60.20	60.10	60.21	4059.12
	(-0.17)	(0.49)	(-0.01)	00.38	00.18	00.21	(0.25)
2(156,152)	17.774	17.967	17.699	60.22	50.90	60.02	4031.02
	(-0.44)	(0.60)	(-1.0)	00.52	39.89	00.92	(-0.43)
2(154,150)	17.820	17.824	17.917	60.21	60.21	60.27	4048.74
	(-0.18)	(-0.20)	(0.22)	00.21	00.51	60.37	(0.00)
2(155,151)	17.955	17.727	17.776	60.40	60.41	50.90	4025.42
	(0.58)	(-0.74)	(-0.57)	00.40	00.41	39.80	(-0.57)
2(153,149)	17.873	17.869	17.821	60.07	60.06	50.02	4015.69
	(0.12)	(0.06)	(-0.32)	00.07	00.00	59.92	(-0.81)

^{a)} * Signifies the hydrocarbonate formation

Table S9. The energy variation ΔU (in kcal/mol) relative to the most stable energy U_N (in eV) for each series with *N* carbonate (and hydrocarbonate if any) species, $\Delta U = U - U_N$, Young's modulus (YM) components E_x , E_y , E_z (in GPa), their variations ΔE_i (in %, in brackets), YM in Hill's form *E* (in GPa), and its variations ΔE (in %, in brackets) in the NaX and NaKX models (the numbers of the Na or K cations, being closest to the carbonates, are shown in brackets, first column) per UC optimized at the PBE/PAW level (negative sign in the brackets corresponds to decrease of the modulus). The * signifies the hydrocarbonate formation.

N	$\Delta U^{c)}$	$E_x (\Delta E_x)$	$E_{\nu} (\Delta E_{\nu})$	$E_z (\Delta E_z)$	Ε (ΔΕ)
]	NaX, LDA (U	$J_0 = -1285.675, U_0$	$U_1 = -1325.703,$	$U_2 = -1366.649$	eV)
0	-	39.31 (0.0)	38.28 (0.0)	34.22 (0.0)	35.68 (0.0)
1(151)	0.000	32.97 (-16.1)	35.86 (-6.3)	29.87 (-12.7)	31.82 (-10.8)
1(152)	0.145	36.31 (-7.6)	31.84 (-16.8)	32.57 (-4.8)	32.68 (-8.4)
1(149)	0.163	32.65 (-16.9)	26.41 (-31.0)	26.32 (-23.1)	29.62 (-17.0)
1(150)	1.679	25.69 (-34.7)	29.41 (-23.2)	30.64 (-10.4)	29.57 (-17.1)
2(155,151)*	0.000	33.88 (-13.8)	27.26 (-28.7)	27.52 (-19.6)	28.51 (-20.1)
2(153,149)*	0.305	-	-	-	-
2(156,152)	1.005	28.07 (-28.6)	31.65 (-17.3)	28.13 (-17.8)	29.13 (-18.3)
2(154,150)	1.133	-	-	-	-
NaX, PBE (I	$U_0 = -1177.86$	$U_1 = -1215.16$	1, -1237.263 °), U	$J_2 = -1253.441, -$	-1275.869 ^{c)} eV)
0	-	52.47 (0.0)	58.08 (0.0)	52.12 (0.0)	50.82 (0.0)
1(151)	0.000	51.21 (-2.4)	56.47 (-2.8)	49.72 (-4.6)	49.39 (-2.8)
	0.000 ^{c)}				
1(149)	0.115	51.00 (-2.8)	54.57 (-6.1)	51.74 (-0.7)	49.38 (-2.8)
	0.112 ^{c)}				
1(152)	0.735	50.51(-3.7)	57.53 (-0.9)	51.05 (-2.1)	49.31 (-3.0)
1(150)	1.042	50.77 (-3.2)	52.08 (-10.3)	51.04 (-2.1)	48.16 (-5.2)
2(153,149)*	0.000	50.03 (-4.7)	52.54 (-9.5)	50.96 (-2.2)	48.13 (-5.3)
	0.000 ^{c)}				
2(155,151)*	0.347	51.06 (-2.7)	53.99 (-7.0)	49.82 (-4.4)	48.35 (-4.9)
	0.249 ^{c)}				
2(154,150)	0.810	49.83 (-5.0)	49.58 (-14.6)	51.98 (-0.3)	47.91 (-5.7)
2(156,152)	1.072	50.10 (-4.5)	55.89 (-3.8)	50.28 (-3.6)	48.66 (-4.3)
NaKX, PBE ($(U_0 = -1177.2)$	83, $U_1 = -1214.4$	21, -1235.422 ^{c)} ,	$U_2 = -1252.200$, -1273.665 ^{c)} , -
1253.770 ^b), -1	$1274.972^{b,c}e^{-1}$	V)	1	1	1
0	-	47.91 (0.0)	51.40 (0.0)	45.18 (0.0)	44.49, (0.0)
					45.96 ^c)
1(151)	0.000	48.37 (1.0)	-50.16 (-2.4)	-44.68 (-1.1)	45.52 (2.3)
	0.280 ^c)				
1(149)	0.016	47.65 (-0.5)	49.6 (-3.5)	45.81 (1.4)	45.10 (1.4)
	0.000 ^c)				
1(150)	0.111	47.18 (-1.5)	51.89 (1.0)	45.59 (+0.9)	46.01 (3.4)
1(152)	0.331	46.07 (-3.8)	51.40 (2.0)	44.13 (-2.3)	45.18 (1.6)
2(156,152)	0.000	46.01 (-3.9)	54.67 (6.4)	43.20 (-4.4)	43.77 (-1.6)
	0.000 ^c)				
2(154,150)	0.409,	47.51 (-0.8)	48.89 (-4.9)	46.79 (3.6)	45.39 (2.0)
	0.616°				
0(155.151)		40.02 (4.0)			
2(155,151)	0.448,	49.82 (4.0)	48.72 (-5.2)	46.43 (2.7)	46.00 (3.4)

	1.176 ^{b)} , 1.133 ^{b,c)}				
2(153,149)	0.540	47.11 (-1.6)	49.85 (-3.0)	44.15 (-2.3)	43.90 (-1.3)
	0.852 ^{b)} ,				
	1.118 ^{b,c)}				

a) * Signifies the hydrocarbonate formation; ^{b)} Initial introduction of the HCO₃^{-/}CO₃⁻² pair instead of two CO₃⁻² moieties; ^{c)} DFT-D2

Table S10. Minimal and maximal values of Young's modulus (E), shear modulus (S), the Cartesian components of linear compressibility, Poisson's ratio (v), and respective asymmetries $A_X = X_{max}/X_{min}$, X = E, S, in the NaX and NaKX models with *N* carbonate (and hydrogen carbonate, if any) species (the numbers of the Na or K cations, being closest to the carbonates, are shown in third column, the same notation as in the Tables S8, S9) and in the HY(D) form after Al extraction from 4R fragment as AlOH⁺² of with different number of water molecules (the same notation as in the Table 2) optimized at the DFT/(LDA or PBE) levels. The * signifies the hydrocarbonate formation.

Туре	DFT	N	E _{max}	E _{min}	A_E	Smax	Smin	A_S	β_x	β_y	β_z	v_{max}	v_{min}
NaX	LDA	0	38.93	31.11	1.25	16.40	12.15	1.35	13.0	11.5	13.5	0.40	0.14
		1(151)	34.22	29.01	1.18	14.75	10.73	1.38	12.9	12.7	13.5	0.42	0.13
		1(152)	38.65	29.28	1.32	14.91	10.50	1.42	11.4	15.4	11.6	-	-
		1(149)	33.31	25.45	1.31	14.05	8.88	1.58	10.9	16.3	14.9	0.48	0.06
		1(150)	34.88	26.75	1.3	13.59	8.69	1.56	13.6	16	11.9	0.52	0.16
		2(155,151)*	35.60	25.76	1.38	12.63	7.79	1.62	9.7	18.7	15.2	0.52	0.11
		2(153,149)*	-	-	-	-	-	-	-	-	-	-	-
		2(156,152)	35.30	22.94	1.54	14.08	8.41	1.67	15.0	13.0	13.0	0.50	0.16
		2(154,150)	-	-	-	-	-	-	-	-	-	-	-
NaX	PBE	0	58.63	40.14	1.46	25.04	15.23	1.64	8.8	8.6	8.7	0.44	0.09
		1(151)	54.96	39.04	1.41	23.59	15.13	1.56	8.5	9.1	9.0	0.43	0.12
		1(149)	57.62	39.12	1.47	23.90	14.73	1.62	9.1	9.2	8.3	0.42	0.12
		1(152)	57.65	39.75	1.45	23.22	14.95	1.55	9.7	8.7	9.1	0.42	0.12
		1(150)	56.43	38.51	1.47	23.50	14.45	1.63	8.8	10.5	9.2	0.41	0.12
		2(153,149)*	55.50	40.55	1.37	22.64	14.84	1.53	9.3	9.3	8.7	0.42	0.12
		2(155,151)*	54.11	39.35	1.37	22.53	15.20	1.48	9.3	10.1	8.1	0.44	0.14
		2(154,150)	57.38	38.41	1.49	23.18	14.72	1.57	8.7	9.8	9.1	0.39	0.15
		2(156,152)	56.06	41.18	1.36	22.55	14.55	1.55	9.0	8.7	8.9	0.45	0.15
NaKX	PBE	0	51.43	34.66	1.48	20.95	13.39	1.56	9.5	9.6	10.2	0.43	0.14
		1(151)	50.50	36.53	1.38	21.25	14.24	1.49	8.8	9.9	10.5	0.42	0.16
		1(149)	49.92	36.25	1.38	21.27	13.73	1.55	8.9	9.4	9.6	0.43	0.14
		1(150)	52.02	36.07	1.44	21.94	14.47	1.52	9.6	9.4	10.6	0.43	0.14
		1(152)	52.83	35.46	1.49	21.32	14.20	1.50	10.1	9.6	11.2	0.42	0.13
		2(156,152)	46.78	37.95	1.23	21.12	14.66	14.66	12.0	10.3	12.8	0.34	0.13
		2(154,150)	49.47	36.54	1.35	21.62	14.36	14.36	9.5	10.2	10	0.40	0.14
		2(155,151)	49.53	39.18	1.26	21.57	15.06	15.06	9.4	10.9	10.4	0.43	0.13
		2(153,149)	50.21	34.39	1.46	20.48	13.20	13.20	9.7	9.3	11.3	0.41	0.16
HY(D)	PBE	HY	58.91	47.28	1.25	22.72	17.69	1.28	6.9	6.9	6.9	0.40	0.22
		$+2H_2O$	38.53	30.33	1.27	16.79	12.47	1.35	9.2	16.1	13.4	0.40	0.09
		$+3H_2O$	40.57	32.63	1.24	17.14	12.69	1.35	8.9	13.6	12.6	0.41	0.12
		$+4H_2O$	39.30	32.17	1.22	17.23	12.51	1.38	8.6	12.3	13.4	0.42	0.15

Figure S1. Energy variation ΔU per UC (eV) calculated using Catlow (circles) and Sauer-Sierka (triangles, diamonds) FFs *versus* $\Sigma_{i=1, 3}\Delta R_{Me-Oi}$, (Å) displacements of Me cations upon the influence of one carbonate species per UC relative to their sites in the NaX, Me = Na (circles, triangles), or NaKX, Me = K (diamonds), zeolites without carbonates.

Figure S2. The geometries of the Na- (a, c) or K-carbonates (b) in the neutral (a, b) or charged (c, -2*e*) clusters with (c) or without (a, b) atoms of Al optimized at the B3LYP/6-31G* level. The Mulliken charges are given in Table S6. The atomic colors are given in cyan, blue, red, yellow, magenta, and grey for K, Na, O, Si, Al, and H, respectively.

Figure S3. Asymmetry of Young *modulus* (according to Hill's form) in Cartesian coordinates (GPa) calculated at the DFT/LDA level in (a) empty NaX zeolite (the color version is on-line) upon carbonate (b-d, f, g) and hydrocarbonate (e) formation. The * signifies the hydrocarbonate formation. The cases correspond to the Table S9. The color agreement is the same as in the Figure S2, only Al is given in ochre. **a) no carbonates**

b) 149

c) 150

e) 151+155*

f) 152

