Supporting Information for

Effects of Auxiliary Ligands of Pd(II) Dimers on Induction of Chiral Nematic Phases: Chirality Inversion and Photo-responsive Structural Change

Kenji Tamura, ${ }^{\text {a }}$ Jun Yoshida, ${ }^{\text {b }}$ Masahiro Taniguchi, ${ }^{\text {c }}$ Takafumi Kitazawa, ${ }^{\text {d }}$ Akihiko Yamagishi ${ }^{\text {d }}$ and Hisako Sato ${ }^{\mathrm{e} *}$

${ }^{a}$ National Institute of Materials Science, Tsukuba 305-0044, Japan,
${ }^{b}$ Department of Chemistry, Kitasato University, Kanagawa 112-8610, Japan.
${ }^{c}$ Kanazawa Institute of Technology, Kanazawa 921-8501, Japan
${ }^{d}$ School of Science, Toho University, Funabashi Chiba 274-851, Japan
${ }^{e}$ Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan, Fax: +81-89-927-9599; Tel: +81-89-927-9599; E-mail: sato.hisako.my@ehime-u.ac.jp

Contents

1. The ${ }^{1} \mathrm{H}$ NMR spectra $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and mass analyses of Pd complexes
2. An example for the chromatographic resolution of $\mathrm{Pd}(\mathrm{II})$ complexes
3. The CD spectra of resolved $\operatorname{Pd}(\mathrm{II})$ complexes
4. The DFT calculation of $\mathbf{U V}$-vis and CD spectra of $[\{P d($ acac $)\} 2$ (baet) $]$
5. The microscope image of the texture of a liquid crystal sample
6. The microscope image of a liquid crystal sample mounted in Cano wedge
7. The comparison of molecular size between MBBA and [\{Pd(II)(phac) $\} 2$ (taet)]
8. The crystal data and the table of selected bond lengths and angles

$\underline{\text { S1. The }{ }^{1} \mathrm{H} \text { NMR spectra (} 400 \mathrm{MHz}, \mathrm{CDCl}_{3} \text {) and mass analyses of Pd complexes }}$

The data of chemical shift and molecular mass are given for the $\operatorname{Pd}(I I)$ complexes prepared in the present work:
[\{Pd(II)(acac) $\left.\mathbf{z}_{\mathbf{2}}(\mathbf{b a e t})\right] . \delta=5.44(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 2.20(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 2,10\left(12 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $1.96\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.04\left(4 \mathrm{H}, \mathrm{d}, \mathrm{CH}_{2}\right), 0.89\left(12 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right) ; m / 2 z=346$ (calc. 346.7 for $\left.\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{O}_{8}{ }^{106} \mathrm{Pd}^{107} \mathrm{Pd}\right)$.
[\{Pd(II)(dbm) $\} \mathbf{2}($ baet $)] . \delta=7.94(8 \mathrm{H}, \mathrm{d}$, aromatic), $7.53(4 \mathrm{H}, \mathrm{t}$, aromatic), $7.46(8 \mathrm{H}, \mathrm{t}$, aromatic), $6.76(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 2.28(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 2.19\left(4 \mathrm{H}, \mathrm{d}, \mathrm{CH}_{2}\right), 2.05\left(6 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right)$, $0.96\left(12 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right) ; m / z=939\left(\right.$ calc. 939.8 for $\left.\mathrm{C}_{46} \mathrm{H}_{46} \mathrm{O}_{8}{ }^{106} \mathrm{Pd}^{107} \mathrm{Pd}\right)$.
$\left[\{\mathbf{P d}(\mathbf{I I})(\mathbf{C} 9-\mathbf{d b m})\}_{2}(\mathbf{b a e t})\right] . \delta=7.92(8 \mathrm{H}, \mathrm{d}$, aromatic), $6.92(8 \mathrm{H}, \mathrm{d}$, aromatic), $6.66(2 \mathrm{H}$, $\mathrm{s}, \mathrm{CH}), 4.04\left(8 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2}\right), 2.28(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 2.19\left(4 \mathrm{H}, \mathrm{d}, \mathrm{CH}_{2}\right), 2.05\left(6 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right)$, $1.34\left(80 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 0.96\left(12 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right), 0.90\left(12 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}=1508($ calc. 1508.8 for $\left.\mathrm{C}_{82} \mathrm{H}_{118} \mathrm{O}_{12}{ }^{106} \mathrm{Pd}^{107} \mathrm{Pd}\right)$.
[\{Pd(II)(C8-azoacac) $\} \mathbf{2 (b a e t)} \mathbf{)} . \delta=7.95(8 \mathrm{H}, \mathrm{d}$, aromatic), $7.90(8 \mathrm{H}, \mathrm{d}$, aromatic), 7.30 $\left(8 \mathrm{H}, \mathrm{d}\right.$, aromatic), $7.03\left(8 \mathrm{H}, \mathrm{d}\right.$, aromatic), $4.05\left(8 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2}\right), 2.22(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 1.90$ $\left(12 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.19\left(4 \mathrm{H}, \mathrm{d}, \mathrm{CH}_{2}\right), 2.01\left(6 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 1.34\left(48 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 0.92(24$, $\mathrm{m}, \mathrm{CH}_{3}$) ; $m / z=1309$ (calc. 1309.4 for $\mathrm{C}_{66} \mathrm{H}_{87} \mathrm{~N}_{4} \mathrm{O}_{10}{ }^{106} \mathrm{Pd}^{107} \mathrm{Pd}$).

S2. An example of the chromatographic resolution of Pd(II) complexes

The following is an example of chromatographic resolution in case of a mixture of cis- and trans-[$\left\{\mathrm{Pd}\left(\mathrm{C}_{8} \text {-azoacac }\right)\right\}_{2}($ baet $\left.)\right]$.

The chromatogram when a dichloromethane solution of $\left[\left\{\operatorname{Pd}\left(\mathrm{C}_{8} \text {-azoacac }\right)\right\}_{2}(\right.$ baet $\left.)\right]$ was eluted on a chiral column (Chiral Pack CI (Daicel, Japan: 0.4 cm (i.d.) $\times 25 \mathrm{~cm}$)). Dichloromethane was flowed at a rate of $1.0 \mathrm{ml} / \mathrm{min}$. The elution was monitored at 430 nm . The sample solution was irradiated at 460 nm before elution to give a mixture of cis- and trans-isomers. The doublet peaks at B1, B2 and B3 corresponded to the enantiomeric pairs of trans-, trans-/cis- and cis-isomers, respectively.

S3. The CD spectra of the resolved Pd(II) complexes

The CD spectra of the first (black) and second (red) fractions when a racemic mixture of trans $-\left[\left\{\operatorname{Pd}\left(\mathrm{C}_{8} \text {-azoacac }\right)\right\}_{2}\right.$ (baet) $]$ was resolved on a chiral column. $\left[\left\{\mathrm{Pd}\left(\mathrm{C}_{9}-\mathrm{dbm}\right)\right\}_{2}(\right.$ baet $\left.)\right]$ and cis- $\left[\left\{\mathrm{Pd}\left(\mathrm{C}_{8} \text {-azoacac }\right)\right\}_{2}\right.$ (baet) $)$ gave nearly the same spectra.

S4. DFT calculation of UV-vis and CD spectra of $\left[\{\operatorname{Pd}(\text { acac })\}_{2}(\right.$ baet $\left.)\right]$

A molecular model of $\left[\{\mathrm{Pd}(\mathrm{II})(\mathrm{acac})\}_{2}(\right.$ baet $\left.)\right]$

Figure S4. Calculated UV-vis (left) and CD (right) spectra of [\{Pd(II)(acac) $\}_{2}$ (baet)]

S5. The microscope image of the texture of a liquid crystal sample

Figure S5. The cross-nicoled microscopic image of a liquid crystal sample. The sample (MBBA doped with $\left[\{\operatorname{Pd}(\mathrm{II})(\mathrm{dbm})\}_{2}(\right.$ baet $\left.)\right]$ at the molar ratio of $\left.0.3 \%\right)$ was sandwitched between two glass plates. Temperature was $25^{\circ} \mathrm{C}$. The sample transformed into an isotropic media (dark image) at $39.6 \pm 0.2^{\circ} \mathrm{C}$

S6. The microscope image of a liquid crystal sample mounted in Cano wedge

Figure S6. The microscopic image of a liquid crystal sample injected into a Cano wedge. The sample (MBBA doped with $\left[\{\operatorname{Pd}(\mathrm{II})(\mathrm{dbm})\}_{2}(\right.$ baet $\left.)\right]$ at the molar ratio of 0.3%) was into a Cano wedge at $50{ }^{\circ} \mathrm{C}$ and cooled to room temperature. The lines locating with the regular spacing were defect lines, indicating the formation of a chiral nematic phase (N^{*}).

Figure S6 (b). The dependence of the inverse of helical pitch length (p) on the molar ratio of a dopant (x). The samples were following: $R-\left[\{\operatorname{Pd}(a c a c)\}_{2}(\right.$ baet $\left.)\right]$ (open circule), $R-\left[\{\mathrm{Pd}(\mathrm{dbm})\}_{2}(\right.$ baet $\left.)\right] \quad$ (open \quad square),$\quad R-\left[\left\{\operatorname{Pd}\left(\mathrm{C}_{9}-\mathrm{dbm}\right)\right\}_{2}(\right.$ baet $\left.)\right] \quad$ (open triangle), trans- $R-\left[\left\{\operatorname{Pd}\left(\mathrm{C}_{8}-\mathrm{dbm}\right)\right\}_{2}(\right.$ baet $\left.)\right]$ (solid circle) and cis- $R-\left[\left\{\operatorname{Pd}\left(\mathrm{C}_{8}-\mathrm{dbm}\right)\right\}_{2}(\right.$ baet $\left.)\right]$ (solid triangle).

S7. The comparison of the molecular sizes of MBBA and $\left[\{\operatorname{Pd}(\text { II })(\text { phac })\}_{2}(\right.$ taet $\left.)\right]$

The molecular size is compared between MBBA and $\left[\{\operatorname{Pd}(\mathrm{II})(\mathrm{phac})\}_{2}(\right.$ taet $\left.)\right]$, showing that their molecular length is nearly equal $(\sim 1.5 \mathrm{~nm})$.

S8. The crystal data and the table of bond lengths and angles

Table S8 (a). Crystallographic data for $\left[\left\{\operatorname{Pd}(\mathrm{II})(\text { acac })_{2}\right\}\right.$ (baet) $]$.

Compound	$\left[\left\{\mathrm{Pd}(\mathrm{II})(\mathrm{acac})_{2}\right\}(\right.$ baet $\left.)\right]$
Formula	$\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{O}_{8} \mathrm{Pd}_{2}$
Formula weight	691.36
Crystal system	Monoclinic
Space group	$P 2_{1} / c$
a / \AA	$11.1943(10)$
b / \AA	$21.6804(19)$
c / \AA	$11.8179(10)$
β / \circ	$98.940(1)$
V / \AA^{3}	$2833.3(4)$
Z	4
T / K	120
$D \mathrm{x} / \mathrm{Mg} \mathrm{m}^{-3}$	1.621
Dimensions / mm	$0.52,0.44,0.26$
$\mu($ Mo-K $\alpha) / \mathrm{mm}{ }^{-1}$	1.31
$\mathrm{~F}(000)$	1400
Reflections collected	31569
Unique reflections	6506
Reflections with I $>2 \sigma(\mathrm{I})$	6075
Parameters	335
GOF on F^{2}	1.16
${ }^{2} R_{1}\left[F^{2}>2 \sigma\left(F^{2}\right)\right]$	0.028
${ }^{\mathrm{b}} w R_{2}($ all data $)$	0.065

$$
{ }^{\mathrm{a}} R_{1}=\Sigma\left(\left|F_{0}\right|-\left|F_{c}\right|\right) / \Sigma\left|F_{0}\right|,{ }^{\mathrm{b}} w R_{2}=\left\{\Sigma\left[w\left(F_{0}^{2}-F_{c}^{2}\right)^{2}\right] / \Sigma\left[w\left(F_{0}^{2}\right)^{2}\right]\right\}^{1 / 2}
$$

Table S8 (b). Selected bond lengths and angles (numbering is shown in the figure below)

$\mathrm{Pd}-\mathrm{O}(\AA)$	$\mathrm{C}-\mathrm{C}(\AA)$	$\mathrm{O}-\mathrm{Pd}-\mathrm{O}\left({ }^{\circ}\right)$	$\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}\left(^{\circ}\right.$)
Pd1-O1 1.980 (2)	C10-C11 1.413 (3)	O1—Pd1-O2 94.63 (8)	C10-C11-C16-C15 92.4 (3)
Pd1-O2 1.987 (2)	C11-C12 1.419 (3)	O3-Pd1-O4 93.01 (7)	
Pd1-O3 1.964 (2)	C11-C16 1.509 (3)	O5—Pd2-O6 92.90 (7)	
Pd1-O4 1.966 (2)	C15-C16 1.415 (3)	O7—Pd2-O8 94.78 (8)	
Pd2-O5 1.985 (2)	C16-C17 1.408 (4)		
Pd2-O6 1.973 (2)			
Pd2-O7 1.990 (2)			
Pd2-O8 1.986 (2)			

