Supplementary Information for:

Structural complexity in indium selenides prepared using bicyclic amines as structure-directing agents

Sarah J. Ewing^a and Paz Vaqueiro^{a,b*}

^aInstitute of Chemical Sciences, Heriot Watt University, Edinburgh, EH14 4AS, UK.

^bPresent Address: Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD.

Figure S1. Experimental powder X-ray diffraction pattern (red) for the bulk product of the reaction producing (a) **1**, (b) **2**, (c) **3** and (d) **4**. The pattern calculated using the structure determined by single crystal X-ray diffraction is shown in black.

Figure S2. Experimental powder X-ray diffraction pattern (red) for the bulk product of the reaction producing **5**. The pattern calculated using the structure determined by single crystal X-ray diffraction is shown in black.

Table S1: Lattice parameters determined using powder X-ray diffraction data for compounds 1 to 5.

Compound	1	2	3	4	5
<i>a</i> (Å)	11.115(8)	10.99(1)	34.60(8)	15.257(6)	10.279(3)
<i>b</i> (Å)	23.26(2)	12.98(2)	21.571(6)	20.352(6)	13.425(4)
<i>c</i> (Å)	18.23(1)	18.18(2)	10.70(8)	12.280(3)	10.590
α (°)	-	105.63(9)	-	-	
β (°)	101.60(3)	99.81(8)	91.45(2)	98.63(2)	96.08(2)
γ (°)	-	109.77(6)	-	-	

Figure S3. Local coordination diagram of non-hydrogen atoms for $[C_9H_{17}N_2]_3[In_5Se_{8.07}(Se_2)_{0.93}]$ (1) showing the atom labelling scheme and ellipsoids at 50% probability.

Figure S5. Local coordination diagram of non-hydrogen atoms for $[C_6H_{12}N_2]_4[C_6H_{14}N_2]_3[In_{10}Se_{15}(Se_2)_3]$ (3) showing the atom labelling scheme and ellipsoids at 50% probability.

Figure S6. Local coordination diagram of non-hydrogen atoms for $[C_6H_{14}N_2][(C_6H_{12}N_2)_2NaIn_5Se_9]$ (4) showing the atom labelling scheme and ellipsoids at 50% probability

Figure S7. Local coordination diagram of non-hydrogen atoms for [enH₂][NH₄][In₇Se₁₂] (**5**) showing the atom labelling scheme and ellipsoids at 50% probability

Figure S8. Thermogravimetric data, collected under a flowing O₂ atmosphere, for compounds **1-5**.

Figure S9. FT-IR data for compounds 1-5.

Synthesis of previously reported $[In_{10}Se_{18}]^{6-}$ and $[In_{33}Se_{56}]^{13-}$: Crystals of $[In_{10}Se_{18}]^{6-}$ were obtained from a mixture of In:Se:DABCO on a 1.46:3:6 molar ratio, using 3 mL of deionised water as solvent. The reaction mixture was heated at 185°C for 10 days in a 23 mL autoclave. $[In_{33}Se_{56}]^{13-}$ was obtained from a mixture of In:Se:DABCO with a molar ratio of 0.365:0.75:2, using 1mL of deionised water as solvent. This mixture was heated at 170°C for 10 days in a 23 mL autoclave. Lattice parameters determined by single-crystal X-ray diffraction, which are given in Table S2, are in good agreement with the previously reported values.¹

Compound	$[In_{10}Se_{18}]^{6}$	$[In_{33}Se_{56}]^{13}$	
Space group	$I 4_1/acd$	R32	
Crystal system	Tetragonal	Trigonal	
<i>a</i> (Å)	20.8153(16)	22.3302(13)	
<i>c</i> (Å)	33.130(3)	34.6223(19)	

Table S2: Lattice parameters determined for the $[In_{10}Se_{18}]^{6-}$ and $[In_{33}Se_{56}]^{13-}$ frameworks.

¹ (a) Wang, C.; Bu, X.; Zheng, N.; Feng, P. *Chem. Commun.*, **2002**, 1344-1345; (b) Wang, C.; Bu, X.; Zheng, N.; Feng, P.; *Angew. Chem. Int. Ed*, **2002**, 41, 1959-1961.