Supporting Information

Adsorption of Uranyl on Hydroxylated α-SiO₂(001): A First-Principle Study

Hui Wang,^a Zhifang Chai,^{a,b} Dongqi Wang^{*,a}

^aCAS Key Laboratory of Nuclear Radiation and Nuclear Energy Techniques, and Multidisciplinary Initiative Center, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.

^bSchool of Radiation Medicine and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China

E-mail address: dwang@ihep.ac.cn

1. Computational Details

The hydroxylated α -SiO₂(001) surface was modeled by a periodic slab including three O-Si-O layers separated by a vacuum region of 15 Å. A (2 × 2) supercell with a dimension of (10.02 Å × 10.02 Å × 21.36 Å) was used to study the uranyl adsorption and a (2 × 2 × 1) k-point grid was used. The initial configuration of the complete hydroxylated surface was obtained by saturating the terminal O atoms on the top and bottom surfaces with hydrogen atoms. The two upper layers were allowed to fully relax while the bottom layer was fixed during optimization.

The gas species H₂O, H₃O⁺ and $[UO_2(H_2O)_5]^{2+}$ were optimized in the cubic unit cell of 15 × 15 × 15 Å³, the solvation effects of which were obtained from the work of Kremleva et al.¹ as -29, -382, -811 kJ mol⁻¹, respectively. The formation energy ΔE_{form} of the adsorption complex was estimated and details of its derivation is as follows: ¹

$$Si(OH)_{2} + [UO_{2}(H_{2}O)_{5}]^{2+} \rightarrow [Si(OH)_{2-n}(O)_{n} - UO_{2}(H_{2}O)_{m}]^{(2-n)+} + n H_{2}O^{+} + (5-n-m)H_{2}O$$
(1)

 $Si(OH)_2$ denotes the surface adsorption site, with two hydroxyl group described explicitly, *n* is the number of deprotonated surface OH group, and *m* counts the aqua ligands of the adsorbed uranyl. To calculate with neutral unite cells only, eq 1 may be decomposed formally into two sequential reactions:

$$Si(OH)_{2} + [UO_{2}(H_{2}O)_{5}]^{2+} \rightarrow Si(O)_{2} - UO_{2}(H_{2}O)_{m} + 2 H_{2}O^{+} + (3-m)H_{2}O$$
(2)

 $Si(O)_{2} - UO_{2}(H_{2}O)_{m} + (2-n) H_{2}O^{+} \rightarrow [Si(OH)_{2-n}(O)_{n} - UO_{2}(H_{2}O)_{m}]^{(2-n)+} + (2-n)H_{2}O (3)$

$$\Delta E_1 = \Delta E_2 + \Delta E_3$$

The corresponding reaction energy of eq3 is obtained as the energy of reprotonation of a SiO⁻ moiety,

$$[Si(OH)_{3}O]^{-} + H_{3}O^{+} \rightarrow Si(OH)_{4} + H_{2}O$$

$$\tag{4}$$

Thus, neglecting the solvation effects, the overall adsorption energy of uranyl is

$$\Delta E_1 = \Delta E_2 + \Delta E_3 \approx \Delta E_2 + (2 - n)\Delta E_4$$

The solvation correction to eq2 is estimated by assuming that the solvation energy of the clean surface is equal to that of a surface with adsorbate. The solvation corrections for the molecular species H₂O, H₃O⁺ and $[UO_2(H_2O)_5]^{2+}$, in eq 2 were $\Delta E_{[H_3O^+]}$,

 $\Delta E_{[UO_2(H_2O)_5]^+}$ and $\Delta E_{[H_2O]}$ respectively.

$$\Delta E_1 = \Delta E_2 + \Delta E_3 \approx \Delta E_2 + (2 - n)\Delta E_4 + 2\Delta E_{[H_3O^+]} - \Delta E_{[UO_2(H_2O)_5]^+} + (3 - m)\Delta E_{[H_2O]} + (3 - m)\Delta E_{[H_2O]$$

This approximate value is reported as ΔE_{form} in the paper.

The binding energy (ΔE_{bind}) was calculated according to the method 2, which was considered more reliable, in Pan's work: ²

$$\Delta E_{\text{bind}} = E_{\text{sc}} - E_{\text{sc}}$$

where E_{sc} refers to the energy of the optimized surface complex and E'_{sc} corresponds to the energy of the system in which the actinyl and the surface are kept apart at about 6 Å. At a span of 6 Å, the interaction between the actinyl group and the surface is weak enough to mimic two non-interacting species to obtain a semi-quantitative value of ΔE_{bind} . Because the vacuum thickness is 15 Å, the interaction with the next periodic surface slab is also small.

Corresponding to a vacuum thickness of 15 Å between slabs, the liquid phase was represented with 44 water molecules with water density close to 1 g ml⁻¹. In order to allow long time AIMD simulations, the energy cutoff was reduced to 300 eV. The AIMD simulations with a time step of 1 fs were run with the NVT canonical ensemble, and the temperature was kept constant at 298.15 K using the Nose–Hoover thermostat.^{3,4} The Brillouin zone was integrated with one k point which corresponds to the Γ point. The whole simulation is 22 ps long, including an equilibration run of 2 ps and the following 20 ps of production run which started from the final configuration of the equilibration run.

According to Pan's work,² the interaction between $[UO_2(H_2O)(CO_3)]^0$ and the $TiO_2(110)$ surface is stronger than that for $[UO_2(H_2O)_2(CO_3)]^0$ and $[UO_2(CO_3)_2]^{2-}$. Our calculations also show that the complexes $[UO_2(H_2O)_n(CO_3)]^0$ with one H_2O ligand is more preferential.

2. The models with the surface covered by a water layer:

In the bare surface model, the hydroxylated surface was covered by 8 H_2O molecules and a flat monolayer structure with two types of water molecules was

formed after optimization, as described in Yang's work.⁵ Then the water monolayer was added to the optimized adsorption systems of uranyl above with four to six water molecules of the monolayer shifted upward to construct a cavity to accommodate uranyl, as described as Martorell's work.⁶

Table S1. Structure parameters (in Å) and formation energies (in eV) of the innersphere and outer-sphere uranyl complexes adsorbed on the hydroxylated α -SiO₂(001) surface with an isolated water monolayer. Q (in |e|) is the charge of the adsorption site.

Model	Q	U-O _{surf}	U-O _{yl}	U-O _{wat}	O_{yl} - H_{surf}	H-O _{surf}	$\Delta E_{\rm form}$
SiOO	-2	2.18,2.34	1.84,1.86	2.46,2.49,2.75	1.92	1.72,1.78	3.95
		2.19,2.35	1.84,1.86	2.41,2.46,2.72	1.82	1.71,1.71	
SiOOH	-1	2.26,2.59	1.83,1.84	2.38,2.52, 2.62	2.04	1.73,1.96	-0.54
SiOHOH	0	2.57,2.77	1.85,1.86	2.35,2.49, 2.63	1.97	1.79,1.88	-4.05
SiO-SiO	-2	2.13,2.20	1.82,1.86	2.44,2.50,3.77	1.92	1.72,1.78	3.10
SiO-SiOH	-1	2.17,2.43	1.81,1.85	2.39,2.50, 3.75	2.82	1.71,1.86	-1.33
SiOH-	0	2.46,2.60	1.81,1.88	2.37,2.44, 3.93	2.12	1.68,2.09	-4.57
SiOH							
SiO	-1	2.81	1.81,1.84	2.40,2.49,2.50, 2.58		1.59,1.68,1.81	0.57
SiOH	0	2.63	1.83,1.86	2.41,2.49,2.51,2.52		1.72,1.75, 2.03	-2.67
SiOHOH	0		1.83,1.85	2.39,2.49,2.52,2.57, 2.57		1.66,1.89, 2.02	-6.64

The values in italic are obtained with the DFT-D3(BJ) method.

Figure S1 Optimized structures of $[UO_2(H_2O)_5]^{2+}$ and the hydroxylated α -SiO₂(001) surface. Color scheme: U(blue), O(red), Si(orange), H (white).

Figure S2 Configurations of uranyl adsorption on the hydroxylated α -SiO₂(001) surface with a water monolayer. Color scheme: U(blue), O(red), Si(orange), H (white).

References

1. A. Kremleva, S. Krüger, N. Rösch, Langmuir 2008, 24, 9515-9524.

2. Q. J. Pan, S. O. Odoh, A. M. Asaduzzaman, G. Schreckenbach, *Chem. Eur. J.* 2012, **18** (5), 1458-1466.

3. S. Nosé, J. Chem. Phys. 1984, 81, 511-519.

4. S. Nosé, Prog. Theor. Phys. Suppl. 1991, 103, 1-46.

5. J. Yang, E. Wang, Phys. Rev. B 2006, 73 (3), 035406.

6. B. Martorell, A. Kremleva, S. Krüger, N. Rösch, J. Phys. Chem. C 2010, 114, 13287–13294..