Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2014

For submission to Dalton Transactions

Redox-active and DNA-binding coordination complexes of clotrimazole

Soledad Betanzos-Lara^{a,+}, Nikola P. Chmel^{b,+}, Matthew T. Zimmerman^c, Lidia R. Barrón-

Sosa^a, Claudio Garino^d, Luca Salassa^{e,f}, Alison Rodger^b, Julia Brumaghim^e, Isabel Gracia-

Mora^a, and Noráh Barba-Behrens^{a, \boxtimes}

^aDepartamento de Química Inorgánica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, México, D.F. 04510, Mexico
^bDepartment of Chemistry, University of Warwick CV4 7AL Coventry, England, United Kingdom
^cChemistry Department, Clemson University, Clemson, SC 29634-0973 USA
^dDepartment of Chemistry and NIS Centre of Excellence, University of Turin, Via P. Giuria 7, 10125 Turin, Italy
^e CIC biomaGUNE, Paseo de Miramón 182, 20009 Donostia, Euskadi, Spain
^fKimika Fakultatea, Euskal Herriko Unibertsitatea and Donostia International Physics Center (DIPC), P.K. 1072, 20080 Donostia, Euskadi, Spain
⁺ These two authors are equal first authors

 \square Corresponding author

SUPPORTING INFORMATION

Table S1

Page S2

Figure S1–S19

Page S3–S22

Because both $[Cu(clotri)_2Cl_2] \cdot 5H_2O$ (1) and $[Cu(clotri)_2Br_2] \cdot 5H_2O$ (5) precipitated from acetonitrile over the course of the electrochemical studies, additional experiments were conducted on both complexes in CH₂Cl₂, a solvent in which no precipitation occurred. In CH₂Cl₂, the cyclic voltammogram of 1 shows strong reduction and oxidation waves in the positive region (Figure S20A), consistent with the clotri ligand redox couple ($E_{1/2} = 1.002$ V; Table S1). Additional waves for the Cu^{+/0} and Cu^{2+/+} couples are also observed with $E_{1/2}$ potentials of -0.937 and 0.051V, respectively. In comparison, the cyclic voltammogram of **5** shows clotri, Cu^{2+/+}, and Cu^{+/0} redox couples (Figure S20B; $E_{1/2}$ values of 1.057, 0.768, and -0.397 V, respectively).

Table S1. Electrochemical potentials (versus NHE) of the Cu^{2+} complexes 1 and 5 determined in dichloromethane.

Compound	Ep _a (V)	Epc (V)	$\Delta E(\mathbf{V})$	$E_{1/2}$ (V)
$[Cu(clotri)_2Cl_2] \cdot 5H_2O(1)$	-0.863ª, -0.508 ^b ,	-1.010ª, 0.407 ^b ,	0.147ª, 0.915 ^b ,	-0.937 ^a , -0.051 ^b ,
	1.034 ^c	0.970 ^c	0.064 ^c	1.002 ^c
$[Cu(clotri)_2Br_2] \cdot 5H_2O(5)$	-0.375 ^a ,0.703 ^b ,	-0.419 ^a , 0.834 ^b ,	0.044 ^a , 0.131 ^b ,	-0.397ª, 0.768 ^b ,
	1.070 ^c	1.044 ^c	0.026 ^c	1.057 ^c

 $^{a}Cu^{+\!/\!0}$ potentials. $^{b}Cu^{2+\!/\!+}$ potentials. $^{c}Clotri$ ligand potentials.

Figure S1. Electrostatic Potential Surfaces (EPS) for complexes **5** - **7** shown in both space and mapped on the electron density (isovalue 0.001) of molecules. The electrostatic potential is represented with a color scale going from red (-0.1 au) to blue (0.1 au).

Figure S2. LD spectra of 100 μ M DNA with increasing concentration of [Co(clotri)₂Cl₂] (2).

Figure S3. LD spectra of 100 μ M DNA with increasing concentration of [Zn(clotri)₂Cl₂] (**3**).

Figure S4. LD spectra of 100 μ M DNA with increasing concentration of [Cu(clotri)₃NO₃]NO₃·2H₂O (9).

Figure S5. LD spectra of 100 μ M DNA with increasing concentration of [Co(clotri)₃(NO₃)₂] (10).

Figure S6. The calculated LD spectrum of $[Co(clotri)_2Cl_2]$ (2) bound to DNA (black) and an overlaid UV spectrum of $[Co(clotri)_2Cl_2]$ (2) (red and blue, not to scale).

Figure S7. The calculated LD spectrum of $[Zn(clotri)_2Cl_2]$ (**3**) bound to DNA (black) and an overlaid UV spectrum of $[Zn(clotri)_2Cl_2]$ (**3**) (red and blue, not to scale).

Figure S8. The calculated LD spectrum of [Cu(clotri)₃NO₃]NO₃ (9) bound to DNA (black) and an overlaid UV spectrum of [Cu(clotri)₃NO₃]NO₃ (9) (red and blue, not to scale).

Figure S9. The calculated LD spectrum of $[Co(clotri)_3(NO_3)_2]$ (10) bound to DNA (black) and an overlaid UV spectrum of $[Co(clotri)_3(NO_3)_2]$ (10) (red and blue, not to scale).

Figure S10. CD spectra of 50 μ M DNA with increasing concentrations of [Cu(clotri)₂Cl₂] (1).

Figure S11. CD spectra of 50 μ M DNA with increasing concentrations of [Co(clotri)₂Cl₂] (2).

Figure S12. CD spectra of 50 μ M DNA with increasing concentrations of [Cu(clotri)₃NO₃]NO₃ (9).

Figure S13. CD spectra of 50 μ M DNA with increasing concentrations of [Co(clotri)₃(NO₃)₂]

(10).

Figure S14. Cyclic voltammograms vs. NHE for A) clotrimazole, B) $[Zn(clotri)_2Cl_2]$ (1 mM), C) $[Zn(clotri)_2Br_2]$ (1 mM), and D) $[Zn(clotri)_3NO_3]NO_3 \cdot 5H_2O$ (1 mM) in acetonitrile with 0.1 M TBAPF₆ as the supporting electrolyte.

Figure S15. Calculated frontier molecular orbitals for complexes **5**–**7**. HOMO = highest occupied molecular orbital, SOMO = singly occupied molecular orbital, LUMO = lowest unoccupied molecular orbital.

Figure S16. Cyclic voltammograms vs. NHE for A) $[Co(clotri)_2Cl_2]$ (2) (1 mM), B) $[Co(clotri)_2Br_2]$ (6) (1 mM), and C) $[Co(clotri)_3(NO_3)_2]$ (10) (1 mM) in acetonitrile with 0.1 M TBAPF₆ as the supporting electrolyte.

Figure S17. Differential pulse voltammograms vs NHE (A) $[Co(clotri)_2Cl_2]$ (2) positive scan, (B) $[Co(clotri)_2Cl_2]$ (2) negative scan, (C) $[Co(clotri)_2Br_2]$ (6) positive scan, and (D) $[Co(clotri)_2Br_2]$ (6) negative scan at 1 mM in CH₃CN with 0.1 M TBAPF₆ as the supporting electrolyte.

Figure S18. Differential pulse voltammograms vs NHE (A) $[Co(clotri)_3(NO_3)_2]$ (10) positive scan and (B) $[Co(clotri)_3(NO_3)_2]$ (10) negative scan at 1 mM in CH₃CN with 0.1 M TBAPF₆ as the supporting electrolyte.

Figure S19. Cyclic voltammograms of A) $[Cu(clotri)_2Cl_2] \cdot 5H_2O$ (1 mM) and B) $[Cu(clotri)_2Br_2] \cdot 5H_2O$ (1 mM) in dichloromethane with 0.1 M TBAPF₆ as the supporting electrolyte.