Five 8-Hydroxyquinolinate-Based Coordination Polymers with Tunable

Structures and Photoluminescent Properties for Sensing Nitroaromatics

Liyan Zhang, Liying Sun, Xinyuan Li, Yulan Tian, and Guozan Yuan*

School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan,

243002, China.

* E-mail: yuanguozan@163.com

Table of Content

- 1. Table S1-6 Crystal data, structure refinement, selected Bond lengths [Å] and angles [°] for 1-5.
- 2. Fig. S1-3 Views of supramolecular structures of 1.
- 3. Fig. S4-6 View of supramolecular structures of 2.
- 4. Fig. S7-8 View of supramolecular structures of 3.
- 5. Fig. S9 The 2D polymeric network of 4.
- 6. Fig. S10 The space-filling mode of 3D network in 5.
- 7. Fig. S11 ¹H and ¹³C NMR spectra of the ligand L₂-MOM.
- 8. Fig. S12 Fluorescence decay and fit curves of coordination polymers 1-5 in the solid state.
- 9. Fig. S13 Fluorescence quench response of 1 upon exposure to nitroaromatic vapour.
- 10. Fig. S14 Fluorescence quench response of 2 upon exposure to nitroaromatic vapour.
- 11. Fig. S15 Fluorescence quench response of **3** upon exposure to nitroaromatic vapour.
- 12. Fig. S16 Fluorescence quench response of 4 upon exposure to nitroaromatic vapour.
- 13. Fig. S17 Fluorescence quench response of 5 upon exposure to nitroaromatic vapour.

Complex	1	2	3	4	5
formula	C ₁₂₀ H ₈₄ N ₁₈ O ₆ Zn ₃	C ₄₂ H ₃₆ N ₆ O ₄ Zn	C40H28N6O2Zn	C40H28N6O2Cd	C ₆₀ H ₄₂ Cd ₂ N ₉ O ₃
fw	2070.224	754.16	690.05	737.08	1161.82
Temperature (K)	173(2)	173(2)	141(2)	296(2) K	296(2) K
cryst syst	monoclinic	monoclinic	orthorhombic	orthorhombic	rhombohedral
space group	$P2_1/n$	$P2_{1}/c$	Pbca	Pbca	<i>R</i> -3
a (Å)	14.440(3)	12.9164(17)	9.168(3)	9.0309(8)	30.7574(16)
b (Å)	23.641(4)	10.2951(14)	17.701(7)	17.7660(15)	30.7574(16)
<i>c</i> (Å)	15.858(3)	14.240(2)	19.845(8)	20.1395(18)	12.1006(12)
$\alpha(\text{deg})$	90	90	90	90	90
$\beta(\text{deg})$	109.184(5)	113.820(3)	90	90	90
y(deg)	90	90	90	90	120
$V(Å^3)$	5113.2	1732.3(4)	3220(2)	3231.0(5)	9913.7(12)
Ζ	2	2	4	4	6
$D_c (g \cdot cm^{-3})$	1.345	1.344	1.423	1.515	1.168
F(000)	2136	725	1424	1496	3822
μ (mm ⁻¹)	0.765	0.755	0.810	0.723	0.700
reflns/unique	20936/8952	9981/3948	13398/3639	15611/2837	20753/5015
R _{int}	0.0753	0.0290	0.0382	0.0459	0.0284
data/restraints/	8952/18/689	3948/0/244	3639/0/224	2837/0/224	5015/0/262
params					
GOF on F^2	0.947	1.095	1.033	1.073	1.051
$R_{I}, wR_{2} (I > 2\sigma(I))$	0.0680,	0.0407,	0.0363,	0.0821,	0.0278,
	0.1643	0.0948	0.1052	0.2069	0.0815
R_1 , wR_2 (all data)	0.1340,	0.0521,	0.0619,	0.1045,	0.0354,
	0.1942	0.1001	0.1215	0.2338	0.0854
largest diff. peak	0.738,	0.502,	0.307,	0.608,	0.872,
and hole (e [.] Å ⁻³)	-0.369	-0.424	-0.274	-3.882	-0.312

1.1. Table S1. Crystal data and structure refinement for complexes 1-5.

Zn(1)-O(1)#1	2.033(3)	
Zn(1)-O(1)	2.033(3)	
Zn(1)-N(1)	2.221(4)	
Zn(1)-N(1)#1	2.221(4)	
Zn(1)-N(9)#2	2.246(4)	
Zn(1)-N(9)#3	2.246(4)	
Zn(2)-O(2)	1.931(3)	
Zn(2)-O(3)	1.961(4)	
Zn(2)-N(2)	2.087(5)	
Zn(2)-N(7)	2.167(4)	
Zn(2)-N(4)	2.261(5)	
O(1)#1-Zn(1)-O(1)	180.00(8)	
O(1)#1-Zn(1)-N(1)	101.99(15)	
O(1)-Zn(1)-N(1)	78.01(15)	
O(1)#1-Zn(1)-N(1)#1	78.00(15)	
O(1)-Zn(1)-N(1)#1	102.00(15)	
N(1)-Zn(1)-N(1)#1	180.0	
O(1)#1-Zn(1)-N(9)#2	91.65(14)	
O(1)-Zn(1)-N(9)#2	88.35(14)	
N(1)-Zn(1)-N(9)#2	86.57(15)	
N(1)#1-Zn(1)-N(9)#2	93.43(15)	
O(1)#1-Zn(1)-N(9)#3	88.35(14)	
O(1)-Zn(1)-N(9)#3	91.65(14)	
N(1)-Zn(1)-N(9)#3	93.43(15)	
N(1)#1-Zn(1)-N(9)#3	86.57(15)	
N(9)#2-Zn(1)-N(9)#3	179.999(1)	
O(2)-Zn(2)-O(3)	137.21(17)	
O(2)-Zn(2)-N(2)	116.16(19)	
O(3)-Zn(2)-N(2)	106.61(18)	
O(2)-Zn(2)-N(7)	97.81(15)	
O(3)-Zn(2)-N(7)	80.03(16)	
N(2)-Zn(2)-N(7)	93.83(19)	
O(2)-Zn(2)-N(4)	78.66(16)	
O(3)-Zn(2)-N(4)	98.76(16)	
N(2)-Zn(2)-N(4)	92.7(2)	
N(7)-Zn(2)-N(4)	173.47(19)	
C(8)-O(1)-Zn(1)	115.2(3)	
C(28)-O(2)-Zn(2)	119.1(3)	
C(48)-O(3)-Zn(2)	116.5(3)	
C(1)-N(1)-Zn(1)	132.3(4)	
	× /	

1.2. Table S2 Selected Bond lengths [Å] and angles [°] for 1.

C(9)-N(1)-Zn(1)	108.7(3)
C(15)-N(2)-Zn(2)	127.3(4)
C(11)-N(2)-Zn(2)	115.8(4)
C(21)-N(4)-Zn(2)	134.4(5)
C(29)-N(4)-Zn(2)	107.5(3)
C(41)-N(7)-Zn(2)	130.9(4)
C(49)-N(7)-Zn(2)	109.1(3)
C(56)-N(9)-Zn(1)#4	122.7(3)
C(60)-N(9)-Zn(1)#4	121.4(3)

Symmetry transformations used to generate equivalent atoms: #1 -x, -y+1, -z+1 #2 x-1, y, z #3 -x+1, -y+1, -z+1 #4 x+1, y, z #5 -x+2, -y, -z+2

1.3. Table S3 Selected Bond lengths [Å] and angles [°] for $\boldsymbol{2}.$

_			
	Zn(1)-O(1)	2.0199(18)	
	Zn(1)-O(1)#1	2.0200(18)	
	Zn(1)-N(3)#2	2.222(2)	
	Zn(1)-N(3)#3	2.222(2)	
	Zn(1)-N(1)#1	2.243(2)	
	Zn(1)-N(1)	2.243(2)	
	O(1)-Zn(1)-O(1)#1	180.00(9)	
	O(1)-Zn(1)-N(3)#2	89.86(8)	
	O(1)#1-Zn(1)-N(3)#2	90.14(8)	
	O(1)-Zn(1)-N(3)#3	90.14(8)	
	O(1)#1-Zn(1)-N(3)#3	89.86(8)	
	N(3)#2-Zn(1)-N(3)#3	180.0	
	O(1)-Zn(1)-N(1)#1	101.73(8)	
	O(1)#1-Zn(1)-N(1)#1	78.27(8)	
	N(3)#2-Zn(1)-N(1)#1	92.92(9)	
	N(3)#3-Zn(1)-N(1)#1	87.08(9)	
	O(1)-Zn(1)-N(1)	78.27(8)	
	O(1)#1-Zn(1)-N(1)	101.73(8)	
	N(3)#2-Zn(1)-N(1)	87.08(9)	
	N(3)#3-Zn(1)-N(1)	92.92(9)	
	N(1)#1-Zn(1)-N(1)	180.00(8)	
	C(7)-O(1)-Zn(1)	116.17(16)	
	C(2)-N(1)-Zn(1)	131.8(2)	
	C(6)-N(1)-Zn(1)	108.08(16)	
	C(19)-N(3)-Zn(1)#4	118.69(19)	
	C(18)-N(3)-Zn(1)#4	124.59(18)	

Symmetry transformations used to generate equivalent atoms:

#1 -x+1, -y+1, -z	#2 -x+1, y-1/2, -z-1/2
#3 x, -y+3/2, z+1/2	#4 -x+1, y+1/2, -z-1/2

1.4. Table S4 Selected Bond lengths [Å] and angles [°] for 3.

Zn(1)-O(1)#1	2.0001(14)
Zn(1)-O(1)	2.0002(14)
Zn(1)-N(1)	2.2438(18)
Zn(1)-N(1)#1	2.2438(18)
Zn(1)-N(3)#2	2.297(2)
Zn(1)-N(3)#3	2.297(2)
N(3)-Zn(1)#4	2.297(2)
O(1)#1-Zn(1)-O(1)	180.0
O(1)#1-Zn(1)-N(1)	101.31(6)
O(1)-Zn(1)-N(1)	78.69(6)
O(1)#1-Zn(1)-N(1)#1	78.69(6)
O(1)-Zn(1)-N(1)#1	101.31(6)
N(1)-Zn(1)-N(1)#1	180.0
O(1)#1-Zn(1)-N(3)#2	89.47(7)
O(1)-Zn(1)-N(3)#2	90.53(7)
N(1)-Zn(1)-N(3)#2	87.00(7)
N(1)#1-Zn(1)-N(3)#2	93.00(7)
O(1)#1-Zn(1)-N(3)#3	90.53(7)
O(1)-Zn(1)-N(3)#3	89.47(7)
N(1)-Zn(1)-N(3)#3	93.00(7)
N(1)#1-Zn(1)-N(3)#3	87.00(7)
N(3)#2-Zn(1)-N(3)#3	180.00(6)
C(7)-O(1)-Zn(1)	117.16(13)
C(2)-N(1)-Zn(1)	132.13(15)
C(6)-N(1)-Zn(1)	108.38(13)
C(19)-N(3)-Zn(1)#4	122.85(15)
C(20)-N(3)-Zn(1)#4	120.05(15)

Symmetry transformations used to generate equivalent atoms: #1 -x+1, -y, -z+1 #2 -x+1/2, y-1/2, z #3 x+1/2, -y+1/2, -z+1 #4 x-1/2, -y+1/2, -z+1

1.5. Table S5 Selected Bond lengths [Å] and angles [°] for 4.

Cd(1)-O(1)	2.058(3)
Cd(1)-O(1)#1	2.058(3)
Cd(1)-N(1)#1	2.275(4)
Cd(1)-N(1)#1	2.275(4)

Cd(1)-N(1)	2.275(4)
Cd(1)-N(3)#2	2.335(4)
Cd(1)-N(3)#3	2.335(4)
O(1)-Cd(1)-O(1)#1	179.998(1)
O(1)-Cd(1)-N(1)#1	102.98(13)
O(1)#1-Cd(1)-N(1)#1	77.02(13)
O(1)-Cd(1)-N(1)	77.02(13)
O(1)#1-Cd(1)-N(1)	102.98(13)
N(1)#1-Cd(1)-N(1)	179.999(1)
O(1)-Cd(1)-N(3)#2	90.45(13)
O(1)#1-Cd(1)-N(3)#2	89.55(13)
N(1)#1-Cd(1)-N(3)#2	93.49(14)
N(1)-Cd(1)-N(3)#2	86.51(14)
O(1)-Cd(1)-N(3)#3	89.55(13)
O(1)#1-Cd(1)-N(3)#3	90.45(13)
N(1)#1-Cd(1)-N(3)#3	86.50(14)
N(1)-Cd(1)-N(3)#3	93.49(14)
N(3)#2-Cd(1)-N(3)#3	179.999(1)
C(7)-O(1)-Cd(1)	117.2(3)
C(2)-N(1)-Cd(1)	131.0(3)
C(6)-N(1)-Cd(1)	109.6(3)
C(19)-N(3)-Cd(1)#4	123.9(3)
C(20)-N(3)-Cd(1)#4	119.0(3)

Symmetry transformations used to generate equivalent atoms: #1 -x+1, -y, -z+1 #2 -x+1/2, y-1/2, z #3 x+1/2, -y+1/2, -z+1 #4 x-1/2, -y+1/2, -z+1

1.6. Table S6 Selected Bond lengths [Å] and angles [°] for 5.

Cd(1)-O(1)#1	2.211(3)
Cd(1)-O(1)	2.211(3)
Cd(1)-N(3)#2	2.374(4)
Cd(1)-N(3)#3	2.374(4)
Cd(1)-N(1)	2.380(4)
Cd(1)-N(1)#1	2.380(4)
Cd(2)-N(2)#5	2.383(3)
Cd(2)-N(2)#6	2.383(3)
Cd(2)-N(2)	2.383(3)
Cd(2)-N(2)#7	2.383(3)
Cd(2)-N(2)#8	2.383(3)
N(3)-Cd(1)#9	2.374(4)

O(1)#1-Cd(1)-O(1)	180.0
O(1)#1-Cd(1)-N(3)#2	88.09(14)
O(1)-Cd(1)-N(3)#2	91.91(14)
O(1)#1-Cd(1)-N(3)#3	91.90(14)
O(1)-Cd(1)-N(3)#3	88.10(14)
N(3)#2-Cd(1)-N(3)#3	180.0
O(1)#1-Cd(1)-N(1)	107.55(11)
O(1)-Cd(1)-N(1)	72.46(11)
N(3)#2-Cd(1)-N(1)	91.75(15)
N(3)#3-Cd(1)-N(1)	88.25(15)
O(1)#1-Cd(1)-N(1)#1	72.45(11)
O(1)-Cd(1)-N(1)#1	107.55(11)
N(3)#2-Cd(1)-N(1)#1	88.25(15)
N(3)#3-Cd(1)-N(1)#1	91.75(15)
N(1)-Cd(1)-N(1)#1	180.0
C(7)-O(1)-Cd(1)	116.1(2)
C(2)-N(1)-Cd(1)	128.1(3)
C(6)-N(1)-Cd(1)	110.8(3)
N(2)#4-Cd(2)-N(2)#5	180.0
N(2)#4-Cd(2)-N(2)#6	93.93(12)
N(2)#5-Cd(2)-N(2)#6	86.07(12)
N(2)#4-Cd(2)-N(2)	86.07(12)
N(2)#5-Cd(2)-N(2)	93.93(12)
N(2)#6-Cd(2)-N(2)	86.08(12)
N(2)#4-Cd(2)-N(2)#7	93.93(12)
N(2)#5-Cd(2)-N(2)#7	86.07(12)
N(2)#6-Cd(2)-N(2)#7	93.92(12)
N(2)-Cd(2)-N(2)#7	180.0
N(2)#4-Cd(2)-N(2)#8	86.07(12)
N(2)#5-Cd(2)-N(2)#8	93.93(12)
N(2)#6-Cd(2)-N(2)#8	180.0
N(2)-Cd(2)-N(2)#8	93.93(12)
N(2)#7-Cd(2)-N(2)#8	86.07(12)
C(14)-N(2)-Cd(2)	125.6(3)
C(13)-N(2)-Cd(2)	118.1(3)
C(19)-N(3)-Cd(1)#9	124.9(4)
C(18)-N(3)-Cd(1)#9	118.6(4)

Symmetry transformations used to generate equivalent atoms: #1 -x-1/3, -y+1/3, -z+1/3 #2 -y-1/3, x-y+1/3, z-2/3 #3 y, -x+y, -z+1 #4 y, -x+y, -z #5 -y, x-y, z #6 x-y, x, -z #7 -x, -y, -z #8 -x+y, -x, z #9 -x+y-2/3, -x-1/3, z+2/3 2.1. Fig. S1 The coordination geometries of Zn1 and Zn2 in 1

2.2. Fig. S2 The space-filling mode of 1D infinite chain in 1 along the *a*-axis

2.3. Fig. S3 Schematic view showing 3-fold interpenetration in complex 1.

3.1. Fig. S4 The adjacen layers are connected via nonclassical C-H…N hydrogen bonds in 2.

3.2. Fig. S5 The space-filling mode of 3D network in 2.

3.3. Fig. S6 2D layer structure of 2 containing *meso*-helical chains (P+M).

4.1. Fig. S7 View of the coordination geometries of Zn(II) atoms in 3.

4.2. Fig. S8 The 2D polymeric network of 3.

5. Fig. S9 The 2D polymeric network of 4.

6. Fig. S10 The space-filling mode of 3D network in 5.

7. Fig. S11 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of the ligand L2-MOM.

9. Fig. S13 Fluorescence quench response of 1 upon exposure to NB (a), 2-NT (b) and 3-NT (c) vapour at the specified exposure times.

10. Fig. S14 Fluorescence quench response of 2 upon exposure to NB (a), 2-NT (b) and 3-NT (c) vapour at the specified exposure times.

11. Fig. S15 Fluorescence quench response of 3 upon exposure to NB (a), 2-NT (b) and 3-NT (c) vapour at the specified exposure times.

12. Fig. S16 Fluorescence quench response of 4 upon exposure to NB (a), 2-NT (b) and 3-NT (c) vapour at the specified exposure times.

13. Fig. S17 Fluorescence quench response of 5 upon exposure to NB (a), 2-NT (b) and 3-NT (c) vapour at the specified exposure times.

