Supporting Information

p-type Mesoscopic NiO as an Active Interfacial Layer for Carbon

Counter Electrodes Based Perovskite Solar Cells

Zonghao Liu,^a Meng Zhang,^a Xiaobao Xu,^a Lingling Bu,^a Wenjun Zhang,^a Wenhui Li,^a Zhixin Zhao,^a* Mingkui Wang, ^a* Yi-Bing Cheng,^{a,c} Hongshan He^b*

^a Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for

Optoelectronics, School of Optical and Electronic Information, Huazhong University

of Science and Technology, Wuhan, Hubei 430074, PR China.

^b Department of Chemistry, Eastern Illinois University, Charleston, Illinois 61920,

United States

^c Department of Materials Engineering, Monash University, Melbourne, Victoria

3800, Australia

*E-mail: <u>zhixin-zhao@hust.edu.cn;</u> *E-mail: <u>mingkui.wang@mail.hust.edu.cn;</u> *E-mail: <u>hhe@eiu.edu</u>.

Fig. S1 Cross-sectional scanning electron micrograph (SEM) of TiO₂/NiO(CH₃NH₃PbI₃)/carbon device and energy-dispersive x-ray (EDX) spectroscopy with elemental mapping of Ni, Ti, Pb, Sn and C.

Fig. S2 The absorbance of $TiO_2/NiO(CH_3NH_3PbI_3)$ films and $TiO_2/ZrO_2(CH_3NH_3PbI_3)$ films, the $CH_3NH_3PbI_3$ was deposited using two-step sequential deposition method.

TiO₂/NiO(CH₃NH₃PbI₃)/carbon devices: a) power conversion efficiency (PCE), b) short-circuit current density (J_{SC}), c) open-circuit voltage (V_{OC}), and d) fill factor.

 $TiO_2/ZrO_2(CH_3NH_3PbI_3)/carbon devices: a)$ power conversion efficiency (PCE), b) short circuit current density (J_{SC}), c) open circuit voltage (V_{OC}), and d) fill factor.

Fig. S5 The normalized photovoltaic parameters: open circuit voltage (Voc), short circuit current density (Jsc), fill factor (FF), and power conversion efficiency of TiO₂/NiO (CH₃NH₃PbI₃)/carbon device were recorded.

Fig. S6 a) Photo-current and b) photo-voltage response under different light intensity for $TiO_2/NiO(CH_3NH_3PbI_3)/carbon$ device (black square) and TiO_2/ZrO_2 (CH₃NH₃PbI₃)/carbon device (red circle).

Fig. S7 Nyquist plots of $TiO_2/NiO(CH_3NH_3PbI_3)/carbon$ device (red) and $TiO_2/ZrO_2 (CH_3NH_3PbI_3)/carbon$ device (blue) in the dark with bias at 0.75 V over the frequency range of 100 mHz to 2 MHz.

Figure S8 UV-vis spectra of NiO film and the Eg was calculated according to the equation: Eg $\approx 1240/\lambda$, showing that the NiO film have a band gap of ~ 3.5 eV.