SUPPLEMENTARY INFORMATION

Synthesis of Aromatic Functionalized Cage-Rearranged Silsesquioxanes (T₈, T₁₀, and T₁₂) *via* Nucleophilic Substitution Reactions

Supansa Chimjarn,^{*a*} Rungthip Kunthom,^{*a*} Prapassorn Chancharone,^{*a*} Rapheepraew Sodkhomkhum, ^{*a*} Preeyanuch Sangtrirutnugul, ^{*a*} and Vuthichai Ervithayasuporn^{**a,b*}

^{*a*} Department of Chemistry, Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI road, Ratchathewi, Bangkok 10400, Thailand.

^b Capability Building Unit for Nanoscience and Nanotechnology, Faculty of Science, Mahidol University, Rama VI road, Ratchathewi, Bangkok 10400, Thailand.

Email: vuthichai.erv@mahidol.ac.th

* Corresponding author: V. Ervithayasuporn Tel: +66-2-201-5126, Fax: +66-2-354-7151

EXPERIMENTAL SECTION

Materials. 3-Chloropropyltrimethoxysilane (purity; >95.0 %) was purchased from Tokyo Chemical Industry Co., Ltd. and used without additional purification for preparing a starting material: octakis(3-chloropropyl)octasilsesquioxane (1).¹ 4-Nitrophenol sodium salt hydrate, 4-hydroxybenzaldehyde, and 4-bromophenol were purchased from Sigma Aldrich, while anhydrous *N*,*N*-dimethylformamide (DMF) was bought from Honeywell B&J. Precoated silica gel 60 F_{254} plates and silica gel (No. 60) used for chromatography were purchased from Merck & Co., Inc.

Physical Measurement and Instrumentation. Fourier transform nuclear magnetic resonance spectra were obtained by using a Bruker-AscendTM 400 high-resolution magnetic resonance spectrometer for ¹H (400 MHz), ¹³C{¹H} (100 MHz) and ²⁹Si{¹H} (79 MHz) nuclei. Chemical shifts were reported in δ units (parts per million) relative to tetramethylsilane, and residual solvents peaks were used as a reference. High-resolution mass spectrometery was performed with a VQ-TOF 2 Micromass spectrometer and

elemental analyses were performed on a Perkin Elmer 2400 CHN. Melting points were obtained by using a Gallenkamp Sanyo melting detector. DSC measurements were carried out using a DSC Q200 (TA Instruments). Approximately, 15 mg of the samples were capsulated in aluminum pans and each experiment was performed under nitrogen atmosphere. For MALDI-TOF MS (Bruker Daltonics-Autoflex II) analysis, the matrix 2,5-dihydroxybenzoic acid (DHBA) was dissolved in THF (10 mg/mL), and mixed with sample solution (0.5~1.0 mg/mL in THF) in 1:1 v/v ratio. The samples were spotted onto the target and dried in air. C/H/N elemental analyses of resulting products were carried out by using an elemental analyzer (EA) (CHNS/O Analyzer) Perkin Elmer, PE2400 Series II, while their X-ray powder diffraction patterns were characterized by Bruker model D₈ diffractometer with CuK_a radiation at $\lambda =$ 0.154 nm. Applied voltage and current were used at 40 kV and 30 mA, respectively. The mode of recorded system was operated with 2 $\theta = 2.00-29.99^{\circ}$ (scan rate = 0.003° s⁻¹).

General procedure to prepare sodium para-oxybenzaldehyde and para-bromophenoxide salts.

Phenol derivatives were dissolved in sodium hydroxide solution (1 N) at molar ratio of 1:1 and further stirred until turning into a clear solution. The clear solution was stirred at room temperature for 30 minutes. Then the complete reaction was evaporated to obtain phenoxide salts. These solid salts were further dried under vacuum and heated at 60° C to complete a dryness.

Synthesis of para-Nitrobenzene-Functionalized Cage-Rearranged Silsesquioxanes. Octakis(3proproxy-para-nitrobenzene)octasilsesquioxane (2), decakis(3-proproxy-paranitrobenzene)decasilsesquioxane (3), and dodecakis(3-proproxy-para-nitrobenzene)dodecasilsesquioxane (4). Firstly, a certain amount of sodium p-nitrophenol salt hydrate was dried under vacuum at 60°C until the yellow crystals of the salt hydrate turned into an orange powder. Dried para-nitrophenol sodium salt (6.34 g; 39.4 mmol) and octakis(3-chloropropyl)octasilsesquioxane (3.00 g; 2.90 mmol) were introduced into a two-neck flask equipped with a condenser and further dried under vacuum at room temperature for an hour. 20 mL of anhydrous DMF was added. After heating at 70°C for 3 days, the solution was cooled in an ice bath, cold CH₂Cl₂ (100 mL) and cold deionized water (40 mL) were added while the solution was stirred for 10 minutes. To the organic layer, 50 ml of water was added and the organic solution was further extracted. The aqueous layer was extracted with CH₂Cl₂ (3 x 100 mL). The combined organic layer was concentrated to ca. 100 mL, after which it was washed with saturated NaHCO₃ and further washed by a mixture of water and methanol to completely eliminate an excessive starting material of pnitrophenol or until the solution turned to light yellow color. The solution was then dried with anhydrous sodium sulfate. Evaporation of the organic solvent gave a pale yellow, fluffy crude product (3.20 g), which was analyzed by thin-layer chromatography using an eluent of 1.5% ethyl acetate in CH₂Cl₂. TLC analysis showed three separate spots at $R_f = 0.45$, 0.30 and 0.18 with a broad baseline ($R_f = 0-0.15$). A partial amount of the crude product (2.74 g) was purified by a gradient column chromatography (a gradient system: 0%, 1%, 1.5%, 2%, and 10% ethyl acetate in CH₂Cl₂) to afford the pure compound 2

(0.49 g, 0.26 mmol, 11% yield as a white powder, further recrystallized in hot dichloromethane; $R_{\rm f}$ = 0.45; m.p. 164.3–165.5°C; ¹H NMR (400 MHz, CD₂Cl₂, 25°C): $\delta = 0.79$ (t, ³J(H,H) = 8.0 Hz, 16H), 1.91 (quintet, ${}^{3}J(H,H) = 8.0$ Hz, 16H), 3.98 (t, ${}^{3}J(H,H) = 6.8$ Hz, 16H), 6.92 (d, ${}^{3}J(H,H) = 9.2$ Hz, 16H), 8.14 (t, ${}^{3}J(H,H) = 9.2$ Hz, 16H); ${}^{13}C{}^{1}H$ NMR (100 MHz, CD₂Cl₂, 25°C): $\delta = 8.64$, 23.1, 70.9, 114.9, 126.4, 142.1, 164.6 ppm; ²⁹Si{¹H} NMR (79 MHz, CD₂Cl₂, 25°C, TMS): $\delta = -66.7$ ppm; HRMS (ESI): m/z calcd for $C_{72}H_{80}N_8O_{36}Si_8+K^+$: 1896.2500 [M+K⁺]; found: 1896.2209.; Anal. Calcd for $C_{72}H_{80}N_8O_{36}Si_8$: $%C = 46.54, \ \%H = 4.34, \ \%N = 6.03; \text{ found } \%C = 46.44, \ \%H = 4.56, \ \%N = 6.06. \text{ Compound } \mathbf{3} \text{ (0.81 g.)}$ 0.35 mmol, 18% yield as a pale yellow fluffy solid); $R_f = 0.30$, ¹H NMR (400 MHz, DMSO- d_6 , 25°C): $\delta =$ 0.71 (t, ${}^{3}J(H,H) = 8.0$ Hz, 20H), 1.75 (quintet, ${}^{3}J(H,H) = 7.6$ Hz, 20H), 3.97 (t, ${}^{3}J(H,H) = 6.8$ Hz, 20H), 7.00 (d, ${}^{3}J(H,H) = 9.2$ Hz, 20H), 8.08 (d, ${}^{3}J(H,H) = 9.2$ Hz, 20H); ${}^{13}C{}^{1}H$ NMR (100 MHz, DMSO- d_{6} , 25° C): $\delta = 7.95$, 22.1, 69.9, 114.7, 125.7, 140.6, 163.7 ppm; 29 Si{¹H} NMR (79 MHz, DMSO- d_6 , 25°C, TMS): $\delta = -68.1$ ppm; HRMS (ESI): m/z calcd for C₉₀H₁₀₀N₁₀O₄₅Si₁₀+K⁺: 2361.3142 [M+K⁺]; found: 2361.2932.; Anal. Calcd for $C_{90}H_{100}N_{10}O_{45}Si_{10}$: %C = 46.54, %H = 4.34, %N = 6.03; found %C = 46.70, %H = 4.41, %N = 6.10. Compound 4 (0.41 g, 0.15 mmol, 9% yield as a pale yellow fluffy solid); $R_{\rm f}$ = 0.18; ¹H NMR (400 MHz, DMSO- d_6 , 25°C): $\delta = 0.72$ (m, 24H), 1.76 (m, 24H), 3.96 (m, 24 H), 6.98 (d, ${}^{3}J(H,H) = 9.2$ Hz, 24H), 8.05 (d, ${}^{3}J(H,H) = 9.2$ Hz, 24H); ${}^{13}C{}^{1}H$ NMR (100 MHz, DMSO- d_{6} , 25°C): $\delta =$ 7.82, 8.41, 22.2, 69.9, 114.6, 125.6, 140.6, and 163.6 ppm; ²⁹Si{¹H}NMR (79 MHz, DMSO-*d*₆, 25°C, TMS): $\delta = -67.8$ and -70.3 ppm; HRMS (ESI): m/z calcd for $C_{108}H_{120}N_{12}O_{54}Si_{12}+K^+$: 2825.3910 [M+K⁺]; found: 2825.3566.; Anal. Calcd for $C_{108}H_{120}N_{12}O_{54}Si_{12}$: %C = 46.54, %H = 4.34, %N = 6.03; found %C = 46.79, %H = 4.47, %N = 5.74.

Synthesis of para-Benzaldehyde-Functionalized Cage-Rearranged Silsesquioxanes. Octakis(3proproxy-para-benzaldehyde)octasilsesquioxane (5), decakis(3-proproxy-parabenzaldehyde)decasilsesquioxane and dodecakis(3-proproxy-para-(6), benzaldehyde)dodecasilsesquioxane (7). Firstly, a certain amount of sodium p-oxybenzaldehyde salt hydrate was dried under vacuum at 60°C until the white powder of the salt hydrate turned into an pale (4.45 powder. Dried *p*-oxybenzaldehyde vellow salt g; 30.9 mmol) and octakis(3chloropropyl)octasilsesquioxane (2.00 g; 1.93 mmol) were introduced into a two-neck flask equipped with a condenser and further dried under vacuum at room temperature for an hour. 30 mL of anhydrous DMF was added. After heating at 70°C for 1 day, the solution was cooled in an ice bath, cold CH₂Cl₂ (100 mL) and cold deionized water (40 mL) were added while the solution was stirred for 10 minutes. To the organic layer, 50 ml of water was added and the organic solution was further extracted. The aqueous layer was extracted with CH₂Cl₂ (3 x 100 mL). The combined organic layer was concentrated to ca. 100 mL, after which it was washed with saturated NaHCO₃ followed by water. The solution was then dried with anhydrous sodium sulfate. Evaporation of the organic solvent gave a pale yellow, fluffy crude product (2.45 g), which was analyzed by thin-layer chromatography using an eluent of 30% ethyl acetate in CH₂Cl₂. TLC analysis showed three separate spots at $R_f = 0.46$, 0.37 and 0.28 with a broad baseline (R_f = 0-0.20). A partial amount of the crude product (1.24 g) was purified by a gradient column chromatography (a gradient system: 20%, 21% and 22% ethyl acetate in CH₂Cl₂) to afford the pure compound 5 (0.10 g, 0.06 mmol, 6.02 % yield as a white solid, further recrystallized in tetrahydrofuran and hexane (1:1); $R_f = 0.46$; m.p. 104.9–105.5°C; ¹H NMR (400 MHz, CDCl₃, 25°C): $\delta = 0.78$ (t, ³J(H,H) $= 8.4 \text{ Hz}, 16\text{H}, 1.89 \text{ (quintet, } {}^{3}\text{J}(\text{H},\text{H}) = 7.6 \text{ Hz}, 16\text{H}, 3.94 \text{ (t, } {}^{3}\text{J}(\text{H},\text{H}) = 6.4 \text{ Hz}, 16\text{H}), 6.94 \text{ (d, } {}^{3}\text{J}(\text{H},\text{H}) = 6.4 \text{ Hz}, 16\text{H}), 6.94 \text{ (d, } {}^{3}\text{J}(\text{H},\text{H}) = 6.4 \text{ Hz}, 16\text{H}), 6.94 \text{ (d, } {}^{3}\text{J}(\text{H},\text{H}) = 6.4 \text{ Hz}, 16\text{H}), 6.94 \text{ (d, } {}^{3}\text{J}(\text{H},\text{H}) = 6.4 \text{ Hz}, 16\text{H}), 6.94 \text{ (d, } {}^{3}\text{J}(\text{H},\text{H}) = 6.4 \text{ Hz}, 16\text{H}), 6.94 \text{ (d, } {}^{3}\text{J}(\text{H},\text{H}) = 6.4 \text{ Hz}, 16\text{H}), 6.94 \text{ (d, } {}^{3}\text{J}(\text{H},\text{H}) = 6.4 \text{ Hz}, 16\text{H}), 6.94 \text{ (d, } {}^{3}\text{J}(\text{H},\text{H}) = 6.4 \text{ Hz}, 16\text{H}), 6.94 \text{ (d, } {}^{3}\text{J}(\text{H},\text{H}) = 6.4 \text{ Hz}, 16\text{H}), 6.94 \text{ (d, } {}^{3}\text{J}(\text{H},\text{H}) = 6.4 \text{ Hz}, 16\text{H}), 6.94 \text{ (d, } {}^{3}\text{J}(\text{H},\text{H}) = 6.4 \text{ Hz}, 16\text{H}), 6.94 \text{ (d, } {}^{3}\text{J}(\text{H},\text{H}) = 6.4 \text{ Hz}, 16\text{H}), 6.94 \text{ (d, } {}^{3}\text{J}(\text{H},\text{H}) = 6.4 \text{ Hz}, 16\text{H}), 6.94 \text{ (d, } {}^{3}\text{J}(\text{H},\text{H}) = 6.4 \text{ Hz}, 16\text{H}), 6.94 \text{ (d, } {}^{3}\text{J}(\text{H},\text{H}) = 6.4 \text{ Hz}, 16\text{H}), 6.94 \text{ (d, } {}^{3}\text{J}(\text{H},\text{H}) = 6.4 \text{ Hz}, 16\text{H}), 6.94 \text{ (d, } {}^{3}\text{J}(\text{H},\text{H}) = 6.4 \text{ Hz}, 16\text{H}), 6.94 \text{ (d, } {}^{3}\text{J}(\text{H},\text{H}) = 6.4 \text{ Hz}, 16\text{H}), 6.94 \text{ (d, } {}^{3}\text{J}(\text{H},\text{H}) = 6.4 \text{ Hz}, 16\text{H}), 6.94 \text{ (d, } {}^{3}\text{J}(\text{H},\text{H}) = 6.4 \text{ Hz}, 16\text{H}), 6.94 \text{ (d, } {}^{3}\text{J}(\text{H},\text{H}) = 6.4 \text{ Hz}, 16\text{H}), 6.94 \text{ (d, } {}^{3}\text{J}(\text{H},\text{H}) = 6.4 \text{ Hz}, 16\text{H}), 6.94 \text{ (d, } {}^{3}\text{J}(\text{H},\text{H}) = 6.4 \text{ Hz}, 16\text{H}), 6.94 \text{ (d, } {}^{3}\text{J}(\text{H},\text{H}) = 6.4 \text{ Hz}, 16\text{Hz}, 16\text{Hz$ 8.8 Hz, 16H), 7.78 (d, ${}^{3}J(H,H) = 8.8$ Hz, 16H), 9.81 (s, 8 H); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃, 25°C): δ $= 8.64, 23.1, 70.9, 114.9, 126.4, 142.1, 164.6 \text{ ppm}; {}^{29}\text{Si}\{^{1}\text{H}\}$ NMR (79 MHz, CDCl₃, 25°C, TMS): $\delta = -$ 66.762 ppm; HRMS (ESI): m/z calcd for C₈₀H₈₈O₂₈Si₈+Na⁺: 1744.3547 [M+Na⁺]; found: 1744.3316.; Anal. Calcd for $C_{80}H_{88}O_{28}Si_8$: %C = 55.79, %H = 5.15; found %C = 56.10, %H = 5.64. Compound 6 (0.25 g, 0.12 mmol, 14.76 % yield as a pale yellow viscous liquid); $R_{\rm f} = 0.37$,¹H NMR (400 MHz, $CDCl_3, 25^{\circ}C$): $\delta = 0.78$ (t, ${}^{3}J(H,H) = 8.4$ Hz, 20H), 1.89 (quintet, ${}^{3}J(H,H) = 8.0$ Hz, 20H), 3.93 (t, ${}^{3}J(H,H)$ = 6.0 Hz, 20 H, $6.92 \text{ (d, }^{3}\text{J}(\text{H},\text{H}) = 8.8 \text{ Hz}, 20 \text{H}$), $7.76 \text{ (d, }^{3}\text{J}(\text{H},\text{H}) = 8.8 \text{ Hz}, 20 \text{H}$), 9.81 (s, 10 H); $^{13}\text{C}\{^{1}\text{H}\}$ NMR (100 MHz, CDCl₃, 25°C): δ = 7.95, 22.1, 69.9, 114.7, 125.7, 140.6, 163.7 ppm; ²⁹Si{¹H} NMR (79) MHz, CDCl₃, 25°C, TMS): $\delta = -68.620$ ppm; HRMS (ESI): m/z calcd for C₁₀₀H₁₁₀O₃₅Si₁₀+Na⁺: 2174.4452 [M+Na⁺]; found: 2174.4067.; Anal. Calcd for $C_{100}H_{110}O_{35}Si_{10}$: %C = 55.79, %H = 5.15; found %C = 55.55, %H = 5.15. Compound 7 (0.06 g, 0.02 mmol, 3.61% yield as a pale yellow viscous liquid); $R_{\rm f} = 0.28$; ¹H NMR (400 MHz, CDCl₃, 25°C): $\delta = 0.80$ (m, 24H), 1.90 (m, 24H), 3.94 (m, 24 H), 6.91 (d, ${}^{3}J(H,H) = 8.4$ Hz, 24H), 7.74 (d, ${}^{3}J(H,H) = 8.4$ Hz, 24H), 9.79 (s, 12H); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃, 25° C): $\delta = 8.7, 9.3, 22.8, 22.9, 69.8, 114.6, 130.0, 131.9, 163.7, and 190.5 ppm; ²⁹Si{¹H}NMR (79 MHz,$ CDCl₃, 25°C, TMS): $\delta = -68.302$ and -71.032 ppm; HRMS (ESI): m/z calcd for C₁₂₀H₁₃₂O₄₂Si₁₂+Na⁺: 2605.5389 [M+Na⁺]; found: 2605.5347.; Anal. Calcd for $C_{120}H_{132}O_{42}Si_{12}$: %C = 55.79, %H = 5.15; found %C = 55.45, %H = 5.34.

Synthesis of para-Bromobenzene-Functionalized Cage-Rearranged Silsesquioxanes. Octakis(3proproxy-para-bromobenzene)octasilsesquioxane decakis(3-proproxy-para-(8), bromobenzene)decasilsesquioxane dodecakis(3-proproxy-para-(9), and nitrobenzene)dodecasilsesquioxane (10). Firstly, a certain amount of sodium *p*-bromophenoxide salt hydrate was dried under vacuum at 60°C until the yellow-white crystals of the salt hydrate turned into a white powder. Dried para-bromopheoxide sodium salt (4.51 g; 23.1 mmol) and octakis(3chloropropyl)octasilsesquioxane (2.00 g; 1.93 mmol) were introduced into a round bottom flask covered with a septum and further dried under vacuum at 60°C for 2 hours. 15 mL of anhydrous DMF was added. After heating at 55°C for 12 hours, the solution was cooled in an ice bath, cold CH₂Cl₂ (100 mL) and cold deionized water (40 mL) were added while the solution was stirred for 10 minutes. To the organic layer, 50 ml of water was added and the organic solution was further extracted. The aqueous layer was extracted with CH₂Cl₂ (3 x 100 mL). The combined organic layer was concentrated to ca. 100 mL, after which it was washed with saturated NaHCO₃ and further washed by a mixture of water and methanol until the solution turned to clear or completely eliminate an excessive starting material of *p*-bromophenol. The

solution was then dried with anhydrous sodium sulfate. Evaporation of the organic solvent gave a clear white, viscous crude product (3.24 g), which was analyzed by thin-layer chromatography using an eluent of 45% CH₂Cl₂ in hexane. TLC analysis showed three separate spots at $R_f = 0.45$, 0.40, and 0.37 with a broad baseline ($R_f = 0-0.15$). A partial amount of the crude product (3.12 g) was purified by a gradient column chromatography (an isolated system: 35% CH₂Cl₂ in hexane) to afford the pure compound 8 (0.27 g, 0.13 mmol, 6.57 % yield as a white solid, further recrystallized in system of dichloromethane and hexane); $R_{\rm f} = 0.45$; m.p. 134.2-134.5°C; ¹H NMR (400 MHz, CDCl₃, 25°C): $\delta = 0.72$ (t, ³J(H,H) = 8.0 Hz, 16H), 1.82 (quintet, ${}^{3}J(H,H) = 8.0$ Hz, 16H), 3.81 (t, ${}^{3}J(H,H) = 6.4$ Hz, 16H), 6.74 (d, ${}^{3}J(H,H) = 6.4$ Hz, 16H), 6.74 (d, {}^{3}J(H,H) = 6.4 Hz, 16H), 6.74 (d, {} 9.2 Hz, 16H), 7.34 (d, ${}^{3}J(H,H) = 8.8$ Hz, 16H); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃, 25°C): $\delta = 8.1, 22.6,$ 69.5, 112.7, 116.2, 132.2, 158.0 ppm; ²⁹Si{¹H} NMR (79 MHz, CDCl₃, 25°C, TMS): $\delta = -66.765$ ppm; MALDI-TOF MS: m/z calcd for C₇₂H₈₀Br₈O₂₀Si₈+H⁺: 2128.69 [M+H⁺]; found: 2128.390.; Anal. Calcd for $C_{72}H_{80}Br_8O_{20}Si_8$: %C = 40.61, %H = 3.79; found %C = 41.03, %H = 3.97. Compound 9 (0.60 g, 0.23) mmol, 14.59 % yield as a viscous clear liquid); $R_{\rm f} = 0.40$, ¹H NMR (400 MHz, CDCl₃, 25°C): $\delta = 0.72$ (t, ${}^{3}J(H,H) = 8.0 \text{ Hz}, 20H), 1.81 \text{ (quintet, } {}^{3}J(H,H) = 8.0 \text{ Hz}, 20H), 3.81 \text{ (t, } {}^{3}J(H,H) = 6.4 \text{ Hz}, 20H), 6.73 \text{ (d, }$ ${}^{3}J(H,H) = 8.8$ Hz, 20H), 7.32 (d, ${}^{3}J(H,H) = 8.8$ Hz, 20H); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃, 25°C): $\delta =$ 8.7, 22.8, 69.5, 112.8, 116.2, 132.3, 158.0 ppm; ${}^{29}Si{}^{1}H$ NMR (79 MHz, CDCl₃, 25°C, TMS): $\delta = -68.6$ ppm; MALDI-TOF MS: m/z calcd for $C_{90}H_{100}Br_{10}O_{25}Si_{10}+H^+$: 2658.61 [M+H⁺]; found: 2658.578.; Anal. Calcd for $C_{90}H_{100}Br_{10}O_{25}Si_{10}$: %C = 40.61, %H = 3.79; found %C = 40.96, %H = 3.84. Compound 10 (0.25 g, 0.08 mmol, 6.19 % yield as a white solid); $R_{\rm f} = 0.37$; m.p. 126.3-127.5°C; ¹H NMR (400 MHz, $CDCl_{3}, 25^{\circ}C$): $\delta = 0.72$ (m, 24H), 1.82 (m, 24H), 3.80 (m, 24 H), 6.71 (d, ³J(H,H) = 8.8 Hz, 24H), 7.30 (d, ${}^{3}J(H,H) = 6.8$ Hz, 24H); ${}^{13}C{}^{1}H{}NMR$ (100 MHz, CDCl₃, 25°C): $\delta = 8.7, 9.3, 22.9, 23.1, 69.7, 112.8, 1$ 116.2, 132.3, and 158.0 ppm; ${}^{29}Si{}^{1}H{}NMR$ (79 MHz, CDCl₃, 25°C, TMS): $\delta = -68.300$ and -70.973 ppm; MALDI-TOF MS: m/z calcd for C₁₀₈H₁₂₀Br₁₂O₃₀Si₁₂+Na⁺: 3217.51 [M+Na⁺]; found: 3217.486.; Anal. Calcd for $C_{108}H_{120}Br_{12}O_{30}Si_{12}$: %C = 40.61, %H = 3.79; found %C = 40.66, %H = 3.84.

Figure S2: ${}^{13}C{}^{1}H$ NMR (100 MHz) of compound 2 in CD_2Cl_2

Figure S4: HRMS (ESI) of compound 2

11887

5861 19288 6417

8099 7004 7426

7726 6311 7465

6758 6818 6649

6973 39813 39602

0.3198 0.0972 0.2923

0.2317 0.2683 0.2532

0.2435 0.2982 0.2539

0.2806 0.2783 0.2855

0.2724 0.0591 0.0729

1081.2926

1874.2990 1874.8189 1875.2681

1876.2863 1879.2574 1880.2454 1881.2551

1882.2464 1895.2300 1896.2209

1897.2275

1899.2265 2352.8494 2885.3235

13004 8569

4597 6656

4636

38.9 31.9 42.6 37.2 42.0 48.2 44.0 28.3 81.9

100.0 89.3 58.9

31.6 45.7 31.8

15.8 14.0 9.1

4.6 6.9 4.7

Figure S5: DSC thermograms of compound **2** over the temperature range from -90 to 180°C at heating and cooling rates of 20°C/min under nitrogen atmosphere.

Figure S6: ¹H NMR (400 MHz) of compound 3 in DMSO- d_6

Figure S7: ${}^{13}C{}^{1}H$ NMR (100 MHz) of compound **3** in DMSO- d_6

Figure S8: ²⁹Si{¹H} NMR (79 MHz) of compound **3** in DMSO- d_6

0

20

40

60

1st Heating

2nd Heating

1st Cooling

2nd Cooling

at a heating and cooling rate of 20°C/min under nitrogen atmosphere.

-20

-100

-80

-60

-40

Figure S12: ${}^{13}C{}^{1}H$ NMR (100 MHz) of compound 4 in DMSO- d_6

			ſ	Aas	s Spe	ectrur	n Lis	t Repor	t			
Analysis Info Analysis Name VESCH5610030021.d						Acqu	isition Date	10/3 Adm	/2013 2:3	9:54 PM		
Sample Name T12-Nitro T12-Nitro							Instru	iment	micrOTOF 72			
Acquisition Parameter Source Type ESI Scan Range n/a Scan Begin 50 m/z Scan End 3000 m/z		lon Polarity Capillary Exit Hexapole RF Skimmer 1 Hexapole 1			Pos 400 800 54. 21.	sitive 0.0 V 0.0 V 4 V 4 V		Set Corrector Fill 75 V Set Pulsar Pull 398 V Set Pulsar Push 380 V Set Reflector 1300 V Set Filght Tube 9000 V Set Detector TOF 1910 V				
Inten x10 1.	s.)4 .5-									+	MS, 0.4-0.5	5min #(24-30) 2825.3566
1. 0.	.0- .5- .297.1	6618 	76: 	5.5483	1080.8։ հայ վայիս կայ 1000	594 ¹⁴ . արիսկովունո	50.4140 	1874.45 البراغان.	23 87 14414,14414,144	852.224	41 1.1.1.1.1.1.1.1. 2500	ահպետեսեր m/z
_#	m/z	1	1%	S/N	FWHM	Res.				•		
1	89.1344	2267	14.6 17.0	12.2	0.0069	13009						
3	101.8914	2301	14.8	12.4	0.0077	13188						
4	145.1505	2439	15.7	13.2	0.0101	14374						
5	234.0787	2359	15.2	13.8	0.0110	21355						
6	234.1524	2248	14.4	13.2	0.0116	20213						
/	297.0018	2827	20.0	20.1	0.0133	18921						
9	504 6242	2226	14.3	14.2	0.0215	23512						
10	765.5483	2678	17.2	16.5	0.0211	36362						
11	1080.8594	2457	15.8	15.0	0.0237	45595						
12	1450.4140	2958	19.0	19.0	0.0286	50766						
13	1450.6257	2812	18.1	18.0	0.0375	38704						
15	2352 4329	3208	20.6	19.4	0.0596	39440						
16	2611.5760	2348	15.1	14.7	0.0356	73356						
17	2807.3876	4084	26.2	25.2	0.3716	7555						
18	2808.3857	7781	50.0	48.5	0.3631	7735						
19	2809.3902	9486	60.9	59.2	0.3719	/555 7711						
20	2811 39/9	7889	34.0	49.1	0.3045	7280						
21	2812.3949	3850	24.7	23.7	0.3303	8515						
23	2823.3585	5708	36.7	35.3	0.3820	7392						
24	2824.3611	12436	79.9	77.5	0.3861	7315						
25	2825.3566	15570	100.0	97.2	0.3618	7810						
26	2826.3574	14126	90.7	88.1	0.3489	8100						
27	2827.3650	10269	66.0	63.9	0.3534	8000						
28	2828.3626	3363	37.3	35.9 20.6	0.3664	7162						
29	2884.8419	2326	14.9	14.0	0.0414	69614						

Figure S14: HRMS (ESI) of compound 4

Figure S15: DSC thermograms of compound **4** over the temperature range from -90 to 40°C at a heating and cooling rate of 20°C/min under nitrogen atmosphere.

Figure S16: X-ray powder diffractograms of compounds 2, 3 and 4.

Figure S18: ${}^{13}C{}^{1}H$ NMR (100 MHz) of compound 5 in CDCl₃

Figure S20: HRMS (ESI) of compound 5

Figure S22: ${}^{13}C{}^{1}H$ NMR (100 MHz) of compound 6 in CDCl₃

Figure S24: HRMS (ESI) of compound 6

Figure S26: ${}^{13}C{}^{1}H$ NMR (100 MHz) of compound 7 in CDCl₃

Figure S28: HRMS (ESI) of compound 7

Figure S30: ${}^{13}C{}^{1}H$ NMR (100 MHz) of compound 8 in CDCl₃

Figure S31: ${}^{29}Si{}^{1}H$ NMR (79 MHz) of compound 8 in CDCl₃

D:\DATA\Pat\20140910\T8Gate1000-2

Instrument FLEX-PC Instrument type autoflexTOF/TOF

Bruker Daltonics flexAnalysis

printed: 09/13/2014 12:49:15 PM

Figure S32: MALDI-TOF MS of compound 8

Figure S33: ¹H NMR (400 MHz) of compound **9** in CDCl₃

Figure S34: ${}^{13}C{}^{1}H$ NMR (100 MHz) of compound 9 in CDCl₃

→ Br

Figure S35: ²⁹Si $\{^{1}H\}$ NMR (79 MHz) of compound 9 in CDCl₃

D:\DATA\Pat\20140910\T10Gate1000-2

Date of acquisition	2014-09-10 13.40.03
Acquisition method name	D:\Methods\flexControlMethods\LP_pepmix_jj.par
Aquisition operation mode	Linear
Voltage polarity	POS
Number of shots	590
Name of spectrum used for calibration	
Calibration reference list used	
Instrument Info	
User	Pat
In a function of the	

 User
 Pat

 Instrument
 FLEX-PC

 Instrument type
 autoflexTOF/TOF

Bruker Daltonics flexAnalysis

printed: 09/13/2014 12:46:55 PM

Figure S37: ¹H NMR (400 MHz) of compound 10 in CDCl₃

Figure S38: ${}^{13}C{}^{1}H$ NMR (100 MHz) of compound 10 in CDCl₃

Figure S39: ²⁹Si{¹H} NMR (79MHz) of compound **10** in CDCl₃

D:\DATA\Pat\20140826\T12DHB1-10LPpromix

Bruker Daltonics flexAnalysis

printed: 08/26/2014 12:39:50 PM

Figure S40: MALDI-TOF MS of compound 10

Reference

1. B. Marciniec, M. Dutkiewicz, H. Maciejewski, and M. Kubicki, *Organometallics* 2008, 27, 793-794.