Electronic Supplementary Information

Photocatalytic Oxidation of Organic Compounds in a Hybrid System Composed of Molecular Catalyst and Visible Light-Absorbing Semiconductor

Xu Zhou, ^a Fei Li,*^a Xiaona Li, ^b Hua Li, ^a Yong Wang ^a and Licheng Sun*^{a,c}

^a State Key Laboratory of Fine Chemicals, Dalian University of Technology (DUT), DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian 116024 (China) .Fax: (+86)-411-84986245; E-mail: lifei@dlut.edu.cn
^b Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology (DUT), Dalian 116024 (China).
^c Department of Chemistry, School of Chemical Science and Engineering, KTH Royal Institute of Technology ,10044 Stockholm (Sweden) Fax: (+46)-8-791 2333; E-mail:

lichengs@kth.se

Materials

Solvents were dried and distilled prior to use according to the standard methods. WO₃ (50 nm in diameter), α -Fe₂O₃ (30 nm in diameter), H₂¹⁸O (97 atom%) were purchased from Aladdin and [Co(NH₃)₅Cl]Cl₂ was purchased from Alfa Aesar. The ruthenium compounds [Ru(bpy)₃]Cl₂,¹ [Ru(tpa)(H₂O)₂](PF₆)₂,² [Ru(tpy)(bpy)(H₂O)](ClO₄)₂,³ and BiVO₄ powder (< 200 nm in diameter)⁴ were prepared according to literature methods. Phosphate buffer used in this study is a 0.1 M sodium dihydrogen phosphate aqueous solution (pH 4.7). This buffer was adjusted by 6 M HCl or NaOH aqueous solution to other required pH vlaues. All other chemicals are commercially available.

General methods

¹H NMR Spectra were collected at 298 K using a Bruker DRX-400 instrument. Electrospray ionization mass spectra were recorded on a Q-Tof Micromass spectrometer (Manchester, England). UV-Vis absorption measurements were carried out on an Agilent 8453 spectrophotometer. Electrochemical measurements were carried out on a CHI660D electrochemical potentiostat.

General procedure for photocatalytic oxidation

A degassed 0.1 M phosphate buffer solution (10 mL, pH 4.7) containing semiconductor powder (15 mg), organic substrate (10 mM), catalyst (0.04 mM), $[Co(NH_3)_5Cl]Cl_2$ (25 mM) was stirred at N₂ atmosphere under irradiated of a 300 W Xe lamp equipped with a cutoff filter ($\lambda > 400$ nm) for 5 h at 25°C. The resulted solution was extracted with CH₂Cl₂ for three times and dried with anhydrous Na₂SO₄. After removal of solvent by vacuum, the products were characterized and quantified by ¹H NMR spectroscopy (two representative ¹H NMR spectra used for product quantification in the oxidation of benzyl alcohol or sulfide were shown in Figure S2 and S3) or GC. Method for recovery of BiVO₄: After photocatlaysis, BiVO₄ powder together with the deposition of Co^{II} complex were seperated form reaction solution by centrifugation. The obtained solid was dispersed in HOAc aqueous solution (pH 2 \sim 2.5) and sonicated for 3 hours, then washed with water for several times and dried in oven at 100°C for 3 h. BiVO₄ was found to be quantitatively recovered and was identified by XRD to be unchanged.

Oxygen evolution experiment

BiVO₄ powder (15 mg) and $[Co(NH_3)_5Cl]Cl_2$ (25 mM) in 0.1 M phosphate buffer solution (10 mL, pH 4.7) were added to a reactor with a space volume of 40 mL. The solution was degassed by argon for 30 min. Photocatalysis was started by light irradiation at 25°C with the same light source as used for hydrocarbon oxidation. The gas sample was taken by syringe from the headspace of the vial and was analyzed on a Techcomp GC 7890T instrument equipped with a 5 Å molecular sieve column and a thermal conductivity detector with argon a carrier gas.

¹⁸O labeling experiment with thioanisole as the substrate

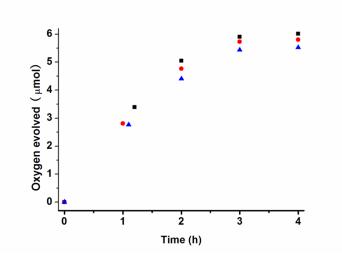
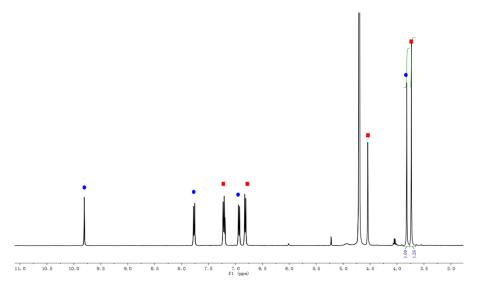
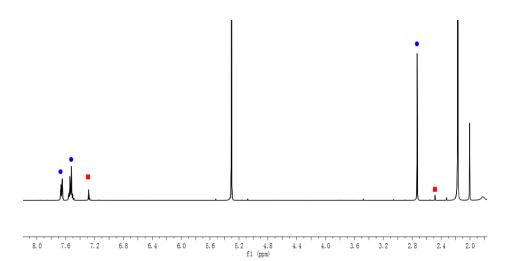
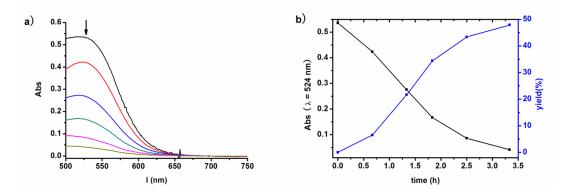

An Ar-degassed H₂¹⁸O phosphate buffer solution (1 mL) containing BiVO₄ (2 mg), thionaisol (10 mM), complex **2** (0.04 mM) and [Co(NH₃)₅Cl]Cl₂ (25 mM) was stirred for 4 h under the irradiation of a 300 W Xe lamp light with a cutoff filter ($\lambda > 400$ nm) and stirred for 4 h at 25°C. The resulted solution was extracted with CH₂Cl₂ and the products were analyzed by ESI-MS.

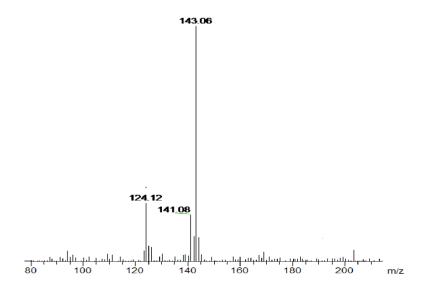
Photo-generation of Ru(IV)=O complexes

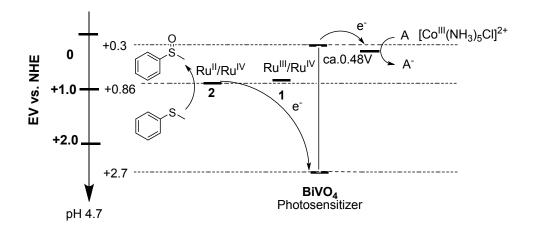

A phosphate buffer solution (10 mL) containing ruthenium catalyst (0.04 mM), BiVO₄ (15 mg), and $[Co(NH_3)_5Cl]Cl_2$ (5 mM) was irradiated for 15 min at 25°C. A 5 mL aliquote was taken from the reaction mixture and was centrifugalized to remove BiVO₄ powder. The resulted transparent solution was used as a sample for spectroscopic analysis by UV-Vis.

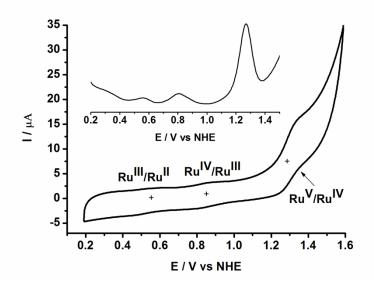
Electrichemical generation of Ru(IV)=O complexes


Constant potential electrolyses were carried out in a three-electrode cell equipped with a clean 2×2 cm² FTO glass as the working electrode, a platinum wire as the counter electrode and an Ag/AgCl (3.5 M KCl) reference electrode at ambient pressure and room temperature. The electrolyte were phosphate buffer solutions (pH 4.7, 20 mL) containing ruthenium 0.04 mM ruthenium complexes. The electrochemical generation of Ru(IV)=O complexes were monitored by UV-Vis absorption. Potentials versus NHE were calibrated by using Ru(bpy)₃Cl₂ as a reference with $E(Ru^{II/III}) = 1.26$ V vs. NHE.


Figure S1. Time courses of oxygen evolution from 0.1 M phosphate buffer solutions (10 mL, pH 4.7) containing (\blacksquare) BiVO₄ (15 mg) and [Co(NH₃)₅Cl]²⁺ (25 mM), (\bullet) [Ru(tpa)(H₂O)₂]²⁺ (0.04 mM), BiVO₄ (15 mg) and [Co(NH₃)₅Cl]²⁺ (25 mM), and (\bullet) BiVO₄ (15 mg), [Co(NH₃)₅Cl]²⁺ (25 mM) and benzyl alcohol (10 mM) under visible light ($\lambda > 400$ nm) irradiation.


Figure S2. ¹H NMR spectrum of the residue extracted by DCM from the resulted solution of photocatalytic dehydrogenation of 4-methoxybenzyl alcohol (solvent CDCl₃), 4-methoxybenzyl alcohol (\bullet), 4-methoxybenzaldehyde (\blacksquare)). Reaction conditions: catalyst (0.04 mM), BiVO₄ (15 mg), 4-methoxybenzyl alcohol (10 mM), and [Co(NH₃)₅Cl]Cl₂ (25 mM) in a 0.1 M (pH 4.7) phosphate buffer solution irradiated for 5 h.


Figure S3. ¹H NMR spectrum of the residue extracted by DCM from resulted solution of photocatalytic oxidation of thioanisole (solvent CDCl₃), thioanisole (\blacksquare), methyl phenyl sulfoxide (\bullet)). Reaction conditions: BiVO₄ (15 mg), thioanisole (10 mM), [Ru(tpy)(bpy)(H₂O)]²⁺ (0.04 mM), [Co(NH₃)₅Cl]Cl₂ (10 mM) in 0.1 M sodium dihydrogen phosphate buffer irradiated for 5 h.


Figure S4. (a) Visible absorption spectral changes of $[Co(NH_3)_5Cl]^{2+}$ (10 mM) during photocatalytic procedure in 0.1 M phosphate buffer solution (10 mL, pH = 4.7) containing BiVO₄ (15 mg), $[Ru(tpy)(bpy)(H_2O)]^{2+}$ (0.04 mM) and thioanisole (10 mM) upon irradiation (UV-Vis absorption analyses were carried out after removing BiVO₄ from each aliquot of the reaction solution). (b) Time courses of the generation of methyl phenyl sulfoxide (blue) and the consumption of $[Co(NH_3)_5Cl]Cl_2$ decided by the absorption changes at 524 nm in (a). Note that the maximum yield for the conversion of sulfide to sulfoxide is 50% under the present conditions.

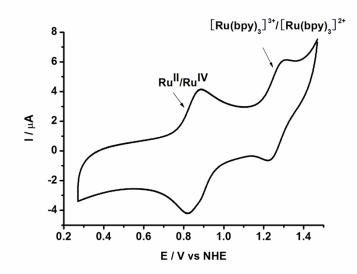

Figure S5. ESI-MS spectrum of methyl phenyl sulfoxide generated by photocatalytic oxygenation of thioanisole with $H_2^{18}O$ as solvent. PhSCH₃ m/z = 124, PhS (¹⁶O) CH₃ m/z = 141 [M + H]⁺, PhS (¹⁸O) CH₃ m/z = 143 [M + H]⁺.

Figure S6. Energy levels of BiVO₄, catalysts and [Co^{III}(NH₃)₅Cl]²⁺ in pH 4.7 aqueous solution^[5].

Figure S7. Cyclic and different pulse voltammogram of 0.04 mM complexes **1** in 0.1 M phosphate buffer solutions (20 mL, pH 4.7). Complex **1** exhibits three redox couples at 0.51, 0.83 and 1.27 V derived from Ru^{II}-OH₂/Ru^{III}-OH, Ru^{III}-OH/Ru^{IV}=O and Ru^{IV}=O/Ru^V=O.

Figure S8. Cyclic voltammogram of 0.04 mM complexes **2** in 0.1 M phosphate buffer solution (20 mL, pH 4.7). Complex **2** shows a small potential separation between Ru^{II} -OH₂/Ru^{III}-OH and Ru^{III} -OH/Ru^{IV}=O. The two-electron waves were further confirmed by comparison of integrated area with a known one electron/one proton couple $[Ru(bpy)_3]^{2+}/[Ru(bpy)_3]^{3+}$ under the same conditions.

Entry	рН	Yield (%)	TON
1	2.5	1	-
2	3.0	26	65
3	4.7	29	73
4	6.0	19	47

Table S1. Photocatalytic oxidation of benzyl alcohol with BiVO₄ as light absorber at different pH values.^{*a*}

^{*a*} Reaction conditions: catalyst **1** (0.04 mM), BiVO₄ powder (15 mg), benzyl alcohol (10 mM), and $[Co(NH_3)_5Cl]^{2+}$ (25 mM) in 0.1 M phosphate buffer were irradiation with 300 W Xe lamp with a 400 nm cutoff filter for 5 h.

Entry	catalyst	subatrate	product	Yield(%)
1	1	Thioanisole	Methyl phenyl sulfoxide	78
2	-	Thioanisole	Methyl phenyl sulfoxide	80
3	2	Thioanisole	Methyl phenyl sulfoxide	79
4 ^b	-	Thioanisole	Methyl phenyl sulfoxide	72

Table S2. Photocatalytic oxygenation of thioanisole.^a

^{*a*} Reaction conditions: catalyst (0.04 mM), $[Ru(bpy)_3]^{2+}$ (8×10⁻⁵ M), thioanisole (10 mM) and $[Co(NH_3)_5Cl]^{2+}$ (25 mM) in 0.1 M phosphate buffers irradiated under 300 W Xe lamp equipped with a 400 nm cutoff filter for 5 h. ^{*b*} AM 1.5G solar simulator was used as light source.

References

- 1 B. P. Sullivan, D. J. Salmon and T. J. Meyer, *Inorg. Chem.*, 1978, 17, 3334-3341.
- 2 Y. Hirai, T. Kojim, Y. Mizutani, Y. Shiota, K. Yoshizawa, S. Fukuzumi, Angew. Chem. Int. Ed., 2008, 47, 5772-5776.
- 3 F. Li, M. Yu, Y. Jiang, F. Huang, Y. Li, B. Zhang, and L. Sun, *Chem. Commun.*, 2011, 47, 8949-8951.
- 4 A. Iwase, A. Kudo, J. Mater. Chem., 2010, 20, 7536-7542.
- 5