Electronic Supplementary Information(ESI)

High performing smart electrochromic device based on honeycomb nanostructured*h*-WO₃ thin films: Hydrothermal assisted synthesis

Vijay. V. Kondalkar^a, Sawanta. S. Mali^{b,d}, Rohini. R. Kharade^a, Kishorkumar. V. Khot^a, Pallavi. B. Patil^a, Rahul. M. Mane^a, Sipra. Choudhury^c, Pramod. S. Patil^b, Chang. K. Hong^d, Jin. H. Kim^e, Popatrao. N. Bhosale^a*

^aMaterials Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, 416004, (M.S.), India ^bThin Film Materials Laboratory, Department of Physics, Shivaji University, Kolhapur, 416004, (M.S.), India ^cChemistry Division, Bhabha Atomic Research Centre (BARC), Mumbai, India ^dSchool of Applied Chemical Engineering, Chonnam National University, Gwangju, 500-757 (South Korea), ^ePhotonic and Electronic Thin Film Laboratory, Department of Materials Science and Engineering, Chonnam National University, Gwangju 500-757, South Korea

*Corresponding author E-mail address: p_n_bhosale@rediffmail.com, Tel.: +91 231 26099338, Fax: +91 231 2692333.

S1. Device fabrication

A schematic representation of EC device fabrication is shown in fig S1. For fabrication of electrochromic device based on the WO₃thinfilm, the injection filling technique was used. The acrylic adhesive tape was applied along to four edges of nanostructured WO₃ thin film leaving one open ports of about 1mm. The ITO coated glass substrate facing inwards was placed on acrylic tape and allowed to tight with WO₃ film. The 0.5 M LiClO₄ in propylene carbonate electrolyte was theninjected through one port using a syringe and then whole device was sealed with epoxy. The final configuration of device is Glass/FTO/WO₃/0.5M LiClO₄ in PC/ITO/Glass.Now device is ready for the use.

Fig. S1A schematic representation of EC device fabrication of honeycomb nanostructured WO₃ thin film.

S2. Raman Spectra

Raman spectroscopy was used to investigate the vibrational modes of WO₃ thin films deposited at different hydrothermal reaction time. In the spectrum three vibration modes were observed at 972, 798 and 277 cm⁻¹ which corresponds to modes of hexagonal WO₃ thin film.^{1,2}Raman band at 972 cm⁻¹ correspond to W=O symmetric stretching mode of terminal oxygen atom. The peak centered at 798 cm⁻¹ which could be attributed to O-W-O stretching. The band at 277 cm⁻¹ is related to bending mode of O-W-O bridging oxygen.³ No any other characteristic peak observed at 660 and 685 cm⁻¹ corresponding to hydrated WO₃ thin film.⁴

Fig. S2Raman spectra of WO₃ thin film deposited at different hydrothermal time.

S3. Cross section SEM image

The thickness values of deposited films were determined from the cross sectional SEM images. The average thickness for sample H_4 , H_6 , H_8 and H_{10} is 1.1, 1.18, 1.45 and 2.4 µm respectively.

Fig. S3The cross section SEM images of WO₃ thin film (a) sample $H_{4,}$ (b) $H_{6,}$ (c) H_8 and (d) H_{10} .

Fig. S4Cyclic voltammograms of nanostructured WO₃ thin film recorded at different scan rate.

Sample code	Rs	R _{CT}	Zw
	(Ω)	(Ω)	$(S s^{1/2} cm^{-2})$
H ₄	17	38.6	1.57×10-4
H_6	15.3	23.6	1.23×10 ⁻⁴
H_8	13.2	11.3	2.59×10 ⁻⁵
H_{10}	13.8	12.6	2.71×10-5

Table.S1EIS parameters of WO₃ thin film obtained by fitting the data to Randlescircuit.

References

- M. Dolores Soriano, P. Concepcion, J. M. Lopez Nieto, F. Cavani, S. Guidetti and C. Trevisanut, *Green Chem.*, 2011, 13, 2954-2962.
- 2. J. Li, X. Liu, Q. Han, X. Yao and X. Wang, J. Mater. Chem. A, 2013, 1, 1246-1253.
- 3. N. Huo, S. Yang, Z. Wei and J. Li, J. Mater. Chem. C, 2013, 1, 3999-4007.
- 4. K. Kalantar-zadeh, A. Vijayaraghavan, M-H. Ham, H. Zheng, M. Breedon, and M. S. Strano, *Chem. Mater.* 2010, 22, 5660-5666.