Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2014

Dalton Discussions

PREPRINT

Electronic Supplementary Information to

Optimizing the high-field relaxivity by self-assembling of macrocyclic Gd(III) complexes

Dale Lawson,^{a,c} Alessandro Barge,^b Enzo Terreno,^a David Parker,^c Silvio Aime,^a Mauro Botta^{d*}

^a Department of Molecular Biotechnology and Health Sciences, Molecular Imaging Center, University

of Torino, Via Nizza, 52, 10126, Torino, Italy.

^b Department of Drug Science and Technology, University of Torino, Via Giuria 9, 10125 Torino, Italy.

^c Department of Chemistry, Durham University, South Road, Durham DH1 3LE, UK

^d Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel

11, 15121, Alessandria, Italy Tel: +39 0131360253; E-mail: mauro.botta@unipmn.it

Equations used for the analysis of NMRD data

The measured longitudinal proton relaxation rate, R_1^{obs} is the sum of a paramagnetic and a diamagnetic contribution as expressed in Eq. [1], where r_1 is the proton relaxivity:

$$R_1^{obs} = R_1^d + R_1^p = R_1^d + r_1 \left[Gd^{3+} \right]$$
^[1]

The relaxivity can be divided into an inner and an outer sphere term as follows:

$$r_1 = r_{1is} + r_{1ss} + r_{1os}$$
^[2]

The inner sphere term is given in Eq. [3], where q is the number of inner sphere water molecules.¹

$$r_{\rm lis} = \frac{1}{1000} \times \frac{q}{55.55} \times \frac{1}{T_{\rm lm}^{\rm H} + \tau_{\rm m}}$$
[3]

The longitudinal relaxation rate of inner sphere protons, $1/T_{1m}^{H}$ is expressed by Eq. [4]:

$$\frac{1}{T_{1m}^{H}} = \frac{2}{15} \left(\frac{\mu_{0}}{4\pi}\right)^{2} \frac{\gamma_{I}^{2} g^{2} \mu_{B}^{2}}{r_{GdH}^{6}} S(S+1) \left[\frac{3\tau_{d1}}{1+\omega_{I}^{2} \tau_{d1}^{2}} + \frac{7\tau_{d2}}{1+\omega_{S}^{2} \tau_{d2}^{2}}\right]$$
[4]

where r_{GdH} is the effective distance between the electron charge and the ¹H nucleus, ω_I is the proton resonance frequency and ω_S is the Larmor frequency of the Gd(III) electron spin.

$$\frac{1}{\tau_{di}} = \frac{1}{\tau_{m}} + \frac{1}{\tau_{RH}} + \frac{1}{T_{ie}} \qquad i = 1, 2$$
[5]

The longitudinal and transverse electronic relaxation rates, $1/T_{1e}$ and $1/T_{2e}$ are expressed by Eq. [7]-[8], where τ_V is the electronic correlation time for the modulation of the zero-field-splitting interaction, E_V the corresponding activation energy and Δ^2 is the mean square zero-field-splitting energy. We assumed a simple exponential dependence of τ_V versus 1/T as written in Eq. [9].

$$\left(\frac{1}{T_{1e}}\right)^{2FS} = \frac{1}{25}\Delta^2 \tau_v \left\{ 4S(S+1) - 3 \right\} \left(\frac{1}{1 + \omega_s^2 \tau_v^2} + \frac{4}{1 + 4\omega_s^2 \tau_v^2}\right)$$
[7]

Dalton Discussions

$$\left(\frac{1}{T_{2e}}\right)^{ZFS} = \Delta^2 \tau_v \left(\frac{5.26}{1+0.372\omega_s^2 \tau_v^2} + \frac{7.18}{1+1.24\omega_s \tau_v}\right)$$

$$\tau_v = \tau_v^{298} \exp\left\{\frac{E_v}{R} \left(\frac{1}{T} - \frac{1}{298.15}\right)\right\}$$
[9]

The outer-sphere contribution can be described by Eq. [10] where N_A is the Avogadro constant, and J_{os} is its associated spectral density function.^{2,3}

$$r_{1os} = \frac{32N_A\pi}{405} \left(\frac{\mu_0}{4\pi}\right)^2 \frac{h^2 \gamma_S^2 \gamma_I^2}{a_{GdH} D_{GdH}} S(S+1) \left[3J_{os}(\omega_I; T_{1e}) + 7J_{os}(\omega_S; T_{2e})\right]$$
[10]

$$J^{OS}(\omega, T_{je}) = \operatorname{Re}\left[\frac{1 + \frac{1}{4}\left(i\omega\tau_{GdH} + \frac{\tau_{GdH}}{T_{je}}\right)^{\frac{1}{2}}}{1 + \left(i\omega\tau_{GdH} + \frac{\tau_{GdH}}{T_{je}}\right)^{\frac{1}{2}} + \frac{4}{9}\left(i\omega\tau_{GdH} + \frac{\tau_{GdH}}{T_{je}}\right) + \frac{1}{9}\left(i\omega\tau_{GdH} + \frac{\tau_{GdH}}{T_{je}}\right)^{\frac{1}{2}}}\right]$$
[11]

where j = 1, 2, $\tau_{GdH} = \frac{a_{GdH}^2}{D_{GdH}}$.

The same set of equations [3-5] can be used to evaluate the contribution to r_1 of the water molecules in the second coordination sphere, r_{1ss} .^{4,5}

- 1) Z. Luz, S. Meiboom, J. Chem. Phys. 1964, 40, 2686.
- 2) J. H. Freed, J. Chem. Phys. 1978, 68, 4034.
- 3) S. H. Koenig, R. D. Brown III, Prog. Nucl. Magn. Reson. Spectrosc. 1991, 22, 487.
- 4) M. Botta, Eur. J. Inorg. Chem. 2000, 399
- 5) K. D. Verma, A. Forgács, H. Uh, M. Beyerlein, M. E. Maier, S. Petoud, M. Botta, N. K. Logothetis *Chem. Eur. J.* 2013, 19, 18011

Equations used for the analysis of ¹⁷O NMR data

From the measured ¹⁷O NMR transversal relaxation rates and angular frequencies of the paramagnetic solutions, $1/T_1$, $1/T_2$ and ω , and of the acidified water reference, $1/T_{1A}$, $1/T_{2A}$ and ω_A , one can calculate the reduced relaxation rates, $1/T_{1r}$, $1/T_{2r}$ and reduced chemical shifts (Eq. **[1] - [2]**), where $1/T_{2m}$ is the relaxation rate of the bound water and $\Delta \omega_m$ is the chemical shift difference between bound and bulk water, τ_m is the mean residence time or the inverse of the water exchange rate k_{ex} and P_m is the mole fraction of the bound water.^{1,2}

$$\frac{1}{T_{2r}} = \frac{1}{P_m} \left[\frac{1}{T_2} - \frac{1}{T_{2A}} \right] = \frac{1}{\tau_m} \frac{T_{2m}^{-2} + \tau_m^{-1} T_{2m}^{-1} + \Delta \omega_m^2}{\left(\tau_m^{-1} + T_{2m}^{-1}\right)^2 + \Delta \omega_m^2} + \frac{1}{T_{2OS}}$$
[1]

$$\Delta \omega_{\rm r} = \frac{1}{P_{\rm m}} (\omega - \omega_{\rm A}) = \frac{\Delta \omega_{\rm m}}{(1 + \tau_{\rm m} T_{2\rm m}^{-1})^2 + \tau_{\rm m}^2 \Delta \omega_{\rm m}^2} + \Delta \omega_{os}$$
^[2]

Previous studies have shown that outer sphere contributions to the ¹⁷O relaxation rates are negligible.³ Equation [1] can be further simplified:

$$\frac{1}{T_{2r}} = \frac{1}{T_{2m} + \tau_m}$$
[3]

The exchange rate is supposed to assume the Eyring equation. In Eq. [4] ΔS^{\ddagger} and ΔH^{\ddagger} are the entropy and enthalpy of activation for the water exchange process, and k_{ex}^{298} is the exchange rate at 298.15 K.

$$\frac{1}{\tau_m} = k_{ex} = \frac{k_B T}{h} \exp\left\{\frac{\Delta S^{\ddagger}}{R} - \frac{\Delta H^{\ddagger}}{RT}\right\} = \frac{k_{ex}^{298} T}{298.15} \exp\left\{\frac{\Delta H^{\ddagger}}{R} \left(\frac{1}{298.15} - \frac{1}{T}\right)\right\}$$
[4]

In the transverse relaxation the scalar contribution, $1/T_{2sc}$, is the most important, Eq. [5]. $1/\tau_{s1}$ is the sum of the exchange rate constant and the electron spin relaxation rate.

$$\frac{1}{T_{2m}} \approx \frac{1}{T_{2SC}} = \frac{S(S+1)}{3} \left(\frac{A}{h}\right)^2 \tau_{S1}$$
[5]

$$\frac{1}{\tau_{S1}} = \frac{1}{\tau_m} + \frac{1}{T_{1e}}$$
[6]

- 1) Swift, T. J.; Connick, R. E. J. Chem. Phys. 1962, 37, 307.
- 2) Zimmermann, J. R.; Brittin, W. E. J. Phys. Chem. 1957, 61, 1328.
- 3) Micskei, K.; Helm, L.; Brücher, E.; Merbach, A. E. Inorg. Chem. 1993, 32, 3844.

Binding Interaction of the two Gd(III) complexes

The binding parameters involved in the non-covalent interaction between two paramagnetic complexes, GdL^1 and GdL^2 , can be determined by relaxometry using the well-consolidated Proton Relaxation Enhancement (PRE) method.

In a solution containing the two interacting systems, the observed water protons longitudinal relaxation rate is expressed by the following relationship:

$$R_{1}^{obs} = r_{1}^{GdL^{1}} \left[GdL^{1} \right] + r_{1}^{GdL^{2}} \left[GdL^{2} \right] + r_{1}^{Gd_{2}L^{1}L^{2}} \left[Gd_{2}L^{1}L^{2} \right] + R_{1}^{dia}$$
^[1]

where the r_i terms refer to the relaxivities, normalized to 1 mM, of the different paramagnetic species present in the solution. Note that $r_1^{Gd2L1L2}$ represents the molecular relaxivity of the adduct, *i.e* is two times higher than the average value normalized to 1 mM concentration of Gd(III). R_1^{dia} is the diamagnetic contribution measured by replacing the Gd(III) complexes with a diamagnetic analogue.

The concentration of both the unbound complexes can be expressed in terms of the bound species:

$$R_{1}^{obs} = r_{1}^{GdL^{1}} \left(GdL_{T}^{1} - \left[Gd_{2}L^{1}L^{2} \right] \right) + r_{1}^{GdL_{2}} \left(GdL_{T}^{2} - \left[Gd_{2}L^{1}L^{2} \right] \right) + r_{1}^{Gd_{2}L^{1}L^{2}} \left[Gd_{2}L^{1}L^{2} \right] + R_{1}^{dia}$$

$$R_{1}^{obs} - R_{1}^{dia} = r_{1}^{GdL^{1}} \left[Gd_{2}L^{1}L^{2} \right] \left(r_{1}^{Gd_{2}L^{1}L^{2}} - r_{1}^{GdL^{1}} - r_{1}^{GdL^{2}} \right) + r_{1}^{GdL^{1}} GdL_{T}^{1} + r_{1}^{GdL^{2}} GdL_{T}^{2}$$

$$[3]$$

where GdL_{T}^{1} and GdL_{T}^{2} represent the total concentration of the two complexes in the aqueous solution. The concentration of the adduct can be obtained by the expression of the chemical equilibrium:

$$GdL^1 + GdL^2 \iff Gd_2L^1L^2$$
 [4]

$$K_{A} = \frac{\left[Gd_{2}L^{1}L^{2}\right]}{\left[GdL^{1}\right]\left[GdL^{2}\right]} = \frac{\left[Gd_{2}L^{1}L^{2}\right]}{\left[GdL_{T}^{1} - Gd_{2}L^{1}L^{2}\right]\left[GdL_{T}^{2} - Gd_{2}L^{1}L^{2}\right]}$$
[5]

$$\left[\mathrm{Gd}_{2}\mathrm{L}^{1}\mathrm{L}^{2}\right] = \frac{\left(\mathrm{K}_{A}\mathrm{Gd}\mathrm{L}_{T}^{1} + \mathrm{K}_{A}\mathrm{Gd}\mathrm{L}_{T}^{2} + 1\right) - \sqrt{\left(\mathrm{K}_{A}\mathrm{Gd}\mathrm{L}_{T}^{1} + \mathrm{K}_{A}\mathrm{Gd}\mathrm{L}_{T}^{2} + 1\right)^{2} - 4\mathrm{K}_{A}^{2}\mathrm{Gd}\mathrm{L}_{T}^{1}\mathrm{Gd}\mathrm{L}_{T}^{2}}{2\mathrm{K}_{A}}$$

$$\left[\mathrm{Gd}_{2}\mathrm{L}^{1}\mathrm{L}^{2}\right] = \frac{\left(\mathrm{K}_{A}\mathrm{Gd}\mathrm{L}_{T}^{1} + \mathrm{K}_{A}\mathrm{Gd}\mathrm{L}_{T}^{2} + 1\right) - \sqrt{\left(\mathrm{K}_{A}\mathrm{Gd}\mathrm{L}_{T}^{1} + \mathrm{K}_{A}\mathrm{Gd}\mathrm{L}_{T}^{2} + 1\right)^{2} - 4\mathrm{K}_{A}^{2}\mathrm{Gd}\mathrm{L}_{T}^{1}\mathrm{Gd}\mathrm{L}_{T}^{2}}$$

$$\left[\mathrm{Gd}_{2}\mathrm{L}^{1}\mathrm{L}^{2}\mathrm{Gd}\mathrm{L}_{T}^{1} + \mathrm{K}_{A}\mathrm{Gd}\mathrm{L}_{T}^{2} + 1\right] = \frac{1}{2} \left(\mathrm{Gd}_{2}\mathrm{L}^{2}\mathrm{Gd}\mathrm{L}_{T}^{2} + 1\right)^{2} - 4\mathrm{K}_{A}^{2}\mathrm{Gd}\mathrm{L}_{T}^{1}\mathrm{Gd}\mathrm{L}_{T}^{2}}$$

$$\left[\mathrm{Gd}_{2}\mathrm{L}^{1}\mathrm{L}^{2}\mathrm{Gd}\mathrm{L}_{T}^{2} + 1\right] = \frac{1}{2} \left(\mathrm{Gd}_{2}\mathrm{L}^{2}\mathrm{Gd}\mathrm{L}_{T}^{2} + 1\right)^{2} - 4\mathrm{K}_{A}^{2}\mathrm{Gd}\mathrm{L}_{T}^{2}\mathrm{Gd}\mathrm{L}_{T}^{2} + 1$$

$$\left(\mathrm{Gd}_{2}\mathrm{L}^{2}\mathrm{Gd}\mathrm{L}_{T}^{2} + 1\right)^{2} - 4\mathrm{K}_{A}^{2}\mathrm{Gd}\mathrm{L}_{T}^{2} + 1$$

The combination between Eqs. 3 and 6 allows the analysis of the relaxation rate dependence on the total concentration of one of the two complexes chosen as independent variable in the titration (*e.g.* GdL^2 in the experiment reported in Fig. 7 left).

Figure S1. pH dependence of the longitudinal water proton relaxivity at 20 MHz and 25 °C of GdL²

