Supplementary Information for:

New AMD3100 derivatives for CXCR4 targeted molecular imaging studies: synthesis, anti-HIV-1 evaluation and binding affinities.

Sophie Poty,^{*a*} Pauline Désogère,^{*a*} Christine Goze,^{*a*} Frédéric Boschetti, ^{*b*} Thomas D'huys,^{*c*} Dominique Schols,^{*c*} Christopher Cawthorne,^{*d*} Stephen J. Archibald,^{*d*} Helmut R. Maëcke,^{*e*} and Franck Denat^{*a*}

^a ICMUB (UMR CNRS 6302), 9 Av. Alain Savary, BP 47870 21000 Dijon - France

^b Chematech, 9 Av. Alain Savary, BP 47870 21000 Dijon - France

^c Rega Institute for Medical Research, KU, Leuven, B-3000 Leuven – Belgium

^d Department of Chemistry, The University of Hull, Cottingham Road, Hull HU67RX – UK

^e Universitätsklinikum Freiburg, IMSRobert-Koch-Str. 1, Freiburg, D-79106 – Germany

Table of Figures:

Figure 1 : ¹ H NMR spectrum of compound 1 (CDCl ₃ , 300 MHz, 300 K)	5
Figure 2 : ¹³ C { ¹ H} NMR spectrum of compound 1 (CDCl ₃ , 75 MHz, 300 K)	6
Figure 3 : ¹ H NMR spectrum of compound 2 (CDCl ₃ , 500 MHz, 300 K)	6
Figure 4 : ¹³ C { ¹ H} NMR spectrum of compound 2 (CDCl ₃ , 75 MHz, 300 K)	7
Figure 5 : ¹ H NMR spectrum of compound 3 (CDCl ₃ , 300 MHz, 300 K)	8
Figure 6 : ¹³ C { ¹ H} NMR spectrum of compound 3 (DMSO, 125 MHz, 343 K)	8
Figure 7 : HR-MS (ESI) analysis of compound 3	9
Figure 8 : HPLC analysis of compound 3	10
Figure 9 : ¹ H NMR spectrum of compound 4 (CDCl ₃ , 500 MHz, 324 K)	11
Figure 10 : ¹³ C { ¹ H} NMR spectrum of compound 4 (CDCl ₃ , 500 MHz, 324 K)	11
Figure 11 : HR-MS (ESI) analysis of compound 4	12
Figure 12 : HPLC analysis of compound 4	13
Figure 13 : ¹ H NMR spectrum of compound 5 (D ₂ O, 300 MHz, 300 K)	14
Figure 14 : ¹³ C { ¹ H} NMR spectrum of compound 5 (D ₂ O, 300 MHz, 300 K)	14
Figure 15 : HR-MS (ESI) analysis of compound 5	15
Figure 16 : HPLC analysis of compound 5	16
Figure 17 : ¹ H NMR spectrum of compound 6 (CDCl ₃ , 300 MHz, 300 K)	17
Figure 18 : ¹³ C { ¹ H} NMR spectrum of compound 6 (CDCl ₃ , 300 MHz, 300 K)	17
Figure 19 : HR-MS (ESI) analysis of compound 6	18
Figure 20 : HPLC analysis of compound 6	19
Figure 21 : HR-MS (ESI) analysis of compound 7	20
Figure 22 : HPLC analysis of compound 7	21
Figure 23 : HR-MS (ESI) analysis of compound 8	22
Figure 24 : HPLC analysis of compound 8	23
Figure 25 : Absorption spectra of compound 8	23
Figure 26 : ¹ H NMR spectrum of compound 10 (CDCl ₃ , 300 MHz, 300 K)	24
Figure 27 : ¹³ C { ¹ H} NMR spectrum of compound 10 (CDCl ₃ , 300 MHz, 300 K)	24
Figure 28 : HR-MS (ESI) analysis of compound 10	25
Figure 29 : Absorption (plain line), emission (large dashed line) and excitation (small dashed line) spectra	26
of compound 10 .	26
Figure 30 : HR-MS (ESI) analysis of compound 11	27
Figure 31 : Absorption (plain line), emission (large dashed line) and excitation (small dashed line) spectra	28

of compound 11 .	28
Figure 32 : HR-MS (ESI) analysis of compound 12	29
Figure 33 : Absorption (plain line), emission (large dashed line) and excitation (small dashed line) spectra	30
of compound 12	30
Figure 34 : ¹ H NMR spectrum of compound 13 (CDCl ₃ , 300 MHz, 300 K)	31
Figure 35 : ¹³ C { ¹ H} NMR spectrum of compound 13 (CDCl ₃ , 300 MHz, 300 K)	31
Figure 36 : HR-MS (ESI) analysis of compound 13	32
Figure 37 : ¹ H NMR spectrum of compound 14 (CDCl ₃ , 500 MHz, 300 K)	33
Figure 38 : ¹¹ B NMR spectrum of compound 14 (CDCl ₃ , 160 MHz, 300 K)	33
Figure 39 : ESI-MS analysis of compound 14	34
Figure 40 : MALDI-TOF analysis of compound 15	34
Figure 41 : ¹ H NMR spectrum of compound 16 (CD ₃ OD, 160 MHz, 300 K)	35
Figure 42 : ¹¹ B NMR spectrum of compound 16 (CD ₃ OD, 160 MHz, 300 K)	36
Figure 43 : ¹⁹ F NMR spectrum of compound 16 (CD ₃ OD, 202 MHz, 300 K)	37
Figure 44 : ESI-MS analysis of compound 16	37
Figure 45 : Flow cytometric analysis of the binding of 12G-5 mAb in competition with compound 5 (20 μ M) in Jurkat	-
cells	38
Figure 46 : Flow cytometric analysis of the binding of 12G-5 mAb in competition with compound 6 (20 μ M) in Jurkat	-
cells	38
Figure 47 : Flow cytometric analysis of the binding of 12G-5 mAb in competition with compound 7 (20 μM) in Jurkat	-
cells	39
Figure 48 : Flow cytometric analysis of the binding of 12G-5 mAb in competition with compound 8 (20 μM) in Jurkat	5
cells	39
Figure 49 : Flow cytometric analysis of the binding of 12G-5 mAb in competition with AMD3100.8 HCl (20 μM) in	
Jurkat cells	40

General Considerations

Ligand purifications and HPLC analysis:

Flash Chromatography was performed using the Automatic Reveleris® Flash Chromatography System (GRACE) equipped with a multiple channel detection (UV (254 nm and/or 215 nm) and ELSD (Evaporative Light Scattering Detection)). Reveleris® 12g Silica Flash Cartridges and Reveleris® C18 RP 12g Cartridges were used for normal and reversed phase liquid chromatography respectively.

RP-HPLC analyses were performed according to the following method: C_{18} column (Merck Chromolith® High Resolution, 50-4.6 mm) with [MeCN/0.1 % TFA] and [H₂O/0.1 % TFA] as eluents [100 % H₂O/0.1 % TFA (2 min), followed by linear gradient from 0 to 100 % (5 min) of [MeCN/0.1 % TFA], a return to initial condition by linear gradient from 100 to 0 % (0.5 min) and 100 % [H₂O/0.1 % TFA] (3 min)] at a flow rate of 1.0 mL.min⁻¹.

Semi-preparative RP-HPLC was performed according to the following method: C₈ column (Macherey-Nagel NUCLEODUR, 5 μ m, 10 x 250 mm) with [MeCN/0.1 % TFA] and [H₂O/0.1 % TFA] as eluents: linear gradient from 0 to 60 % (45 min) of [MeCN/0.1 % TFA], linear gradient from 60 to 100 % (3 min) of [MeCN/0.1 % TFA], 100 % [MeCN/0.1 % TFA] (4 min), a return to initial condition by linear gradient from 100 to 0 % (2 min) and 100 % [H₂O/0.1 % TFA] (2 min) at a flow rate of 2.7 mL.min⁻¹. UV-vis detection with an Ultimate 3000 diode array detector at 214, 254, 280, 300 nm.

NMR, mass spectrometry measurements, photophysic measurements: The ¹H, ¹¹B, ¹³C and ¹⁹F NMR spectra were recorded at 298 K, 300 K or 330 K on BRUKER Avance 300, 500, 600 spectrometers using predeuterated solvents as internal standard. Matrix-Assisted Laser Desorption Ionization Time-Of-Flight (MALDI-TOF) mass spectrometry was carried out using a Bruker Daltonics Proflex III spectrometer and High Resolution Electrospray Mass Spectrometry (HRMS-ESI) was carried out using a LTQ-Orbitrap (Thermo). Absorption spectra were recorded on a JASCO V-630 Bio UV-Vis spectrophotometer. Emission and excitation spectra were recorded on a JASCO FP-8500 fluorescence spectrometer.

Elemental Analysis: The elemental analyses were performed with Fisons EA-1108 CHNS elemental analyzer instrument.

Quantum yield measurements : Measurement were performed in a solution of PBS (phosphate buffer saline) + 0.05 % NaN3. The sample concentration were chosen to obtain an absorbance included between 0.08 and 0.05. The fluorescence quantum yield (Φ_F) measurements were performed with a slit width of 5-5 nm for compound **10** and **12** and 5-2.5 nm for compound **11** for both excitation and emission. Relative quantum efficiencies were obtained by comparing the areas under the corrected emission spectra of the sample relative to a known standard and the following equation was used to calculate Φ_F :

$$\Phi_{F}(sample) = \Phi_{F}(standard) \times \left(\frac{I(sample)}{I(standard)}\right) \times \left(\frac{A(standard)}{A(sample)}\right) \times \left(\frac{n(sample)^{2}}{n(standard)^{2}}\right)$$

where Φ_F is the reported quantum yield of the standard, I is the integrated emission spectrum, A is the absorbance at the excitation wavelenght and n is the refractive index of the solvents used. Rhodamine 6G ($\Phi_F = 0.78$ in water, $\lambda_{exc} = 488$ nm) was used as the standard.

Figure 1 : ¹H NMR spectrum of compound **1** (CDCl₃, 300 MHz, 300 K)

Figure 3 : ¹H NMR spectrum of compound 2 (CDCl₃, 500 MHz, 300 K)

Figure 4 : ${}^{13}C$ { ${}^{1}H$ } NMR spectrum of compound 2 (CDCl₃, 75 MHz, 300 K)

Figure 6 : ¹³C {¹H} NMR spectrum of compound **3** (DMSO, 125 MHz, 343 K)

Figure 7 : HR-MS (ESI) analysis of compound 3

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	7,73	n.a.	28,985	1,688	1,72	n.a.	BMB
2	7,93	n.a.	7,328	0,498	0,51	n.a.	BMB
3	8,11	n.a.	4,444	0,209	0,21	n.a.	BMb
4	8,31	n.a.	817,450	95,983	97,57	n.a.	bMB
Total:			858,207	98,378	100,00	0,000	

Figure 8 : HPLC analysis of compound 3

Figure 10 : ${}^{13}C \{{}^{1}H\}$ NMR spectrum of compound 4 (CDCl₃, 500 MHz, 324 K)

Figure 11 : HR-MS (ESI) analysis of compound 4

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	8,14	n.a.	34,403	2,197	3,17	n.a.	BMB*
2	8,37	n.a.	11,687	0,442	0,64	n.a.	BMb
3	8,48	n.a.	728,289	66,538	95,86	n.a.	bMB
4	11,00	n.a.	0,000	0,232	0,33	n.a.	BMB
Total:			774,379	69,410	100,00	0,000	

Figure 12 : HPLC analysis of compound 4

Figure 14 : ${}^{13}C$ { ${}^{1}H$ } NMR spectrum of compound 5 (D₂O, 300 MHz, 300 K)

Figure 15 : HR-MS (ESI) analysis of compound 5

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	5,54	PorphDOTA	64,358	3,553	97,22	n.a.	BMB
2	8,53	n.a.	1,471	0,101	2,78	n.a.	BMB
Total:			65,829	3,654	100,00	0,000	

Figure 16 : HPLC analysis of compound 5

Figure 18 : ${}^{13}C$ { ${}^{1}H$ } NMR spectrum of compound 6 (CDCl₃, 300 MHz, 300 K)

Figure 19 : HR-MS (ESI) analysis of compound 6

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	5,37	n.a.	1924,809	119,738	99,29	n.a.	BMb*
2	5,49	PorphDOTA	8,751	0,211	0,17	n.a.	bMb
3	5,53	n.a.	15,780	0,651	0,54	n.a.	bMB
Total:			1949,340	120,599	100,00	0,000	

Figure 20	: HPLC	analysis	of com	pound	6
-----------	--------	----------	--------	-------	---

13spo_160_me_2 #1-20 RT: 0.01-0.15 AV: 20 NL: 2.00E8 T: FTMS + p ESI Full ms [70.00-1500.00]

Figure 21 : HR-MS (ESI) analysis of compound 7

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	5,39	n.a.	7,765	7,487	3,48	n.a.	BMb
2	5,64	n.a.	3,352	0,208	0,10	n.a.	bMB
3	5,89	n.a.	2720,563	205,104	95,38	n.a.	BMB
4	6,59	n.a.	1,909	0,141	0,07	n.a.	BMB
5	7,22	n.a.	5,913	1,658	0,77	n.a.	BMb
6	7,66	n.a.	3,662	0,285	0,13	n.a.	bMB
7	7,93	n.a.	1,375	0,166	0,08	n.a.	BMB
Total:			2744,539	215,049	100,00	0,000	

Figure 22 : HPLC analysis of compound 7

Figure 23 : HR-MS (ESI) analysis of compound 8

NO.	Ret. I ime	Peak Name	Height	Area	Rel.Area	Amount	l ype	
	min		mAU	mAU*min	%			
1	5,57	PorphDOTA	22,521	2,053	12,45	n.a.	BMb	
2	5,77	n.a.	247,118	14,441	87,55	n.a.	bMB	
Total:			269,640	16,494	100,00	0,000		

Figure 25 : Absorption spectra of compound 8 in PBS.

Figure 27 : ¹³C {¹H} NMR spectrum of compound **10** (CDCl₃, 300 MHz, 300 K)

Figure 28 : HR-MS (ESI) analysis of compound 10

Figure 29 : Absorption (plain line), emission (large dashed line) and excitation (small dashed line) spectra of compound **10** in PBS.

Figure 30 : HR-MS (ESI) analysis of compound 11

Figure 31 : Absorption (plain line), emission (large dashed line) and excitation (small dashed line) spectra of compound **11** in PBS.

Figure 32 : HR-MS (ESI) analysis of compound 12

Figure 33 : Absorption (plain line), emission (large dashed line) and excitation (small dashed line) spectra of compound **12** in PBS.

Figure 35 : ${}^{13}C$ { ${}^{1}H$ } NMR spectrum of compound **13** (CDCl₃, 300 MHz, 300 K)

Figure 36 : HR-MS (ESI) analysis of compound 13

Figure 38 : ¹¹B NMR spectrum of compound 14 (CDCl₃, 160 MHz, 300 K)

Figure 40 : MALDI-TOF analysis of compound 15

Figure 41 : ¹H NMR spectrum of compound **16** (CD₃OD, 160 MHz, 300 K)

Figure 42 : ¹¹B NMR spectrum of compound **16** (CD₃OD, 160 MHz, 300 K)

Figure 43 : ¹⁹F NMR spectrum of compound 16 (CD₃OD, 202 MHz, 300 K)

Figure 44 : ESI-MS analysis of compound 16

Flow cytometry analysis of compound 5 to 8 and AMD3100.8 HCl

Figure 45 : Flow cytometric analysis of the binding of 12G-5 mAb in competition with compound 5 (20 μ M) in Jurkat cells.

Negative control (purple), positive control (red), 12G-5 mAb in competition with compound 5 (light green) are shown.

Figure 46 : Flow cytometric analysis of the binding of 12G-5 mAb in competition with compound 6 (20 μ M) in Jurkat cells.

Negative control (purple), positive control (red), 12G-5 mAb in competition with compound **6** (dark green) are shown.

Figure 47 : Flow cytometric analysis of the binding of 12G-5 mAb in competition with compound 7 (20 μ M) in Jurkat cells.

Negative control (purple), positive control (red), 12G-5 mAb in competition with compound 7 (light blue) are shown.

Figure 48 : Flow cytometric analysis of the binding of 12G-5 mAb in competition with compound 8 (20 μ M) in Jurkat cells.

Negative control (purple), positive control (red), 12G-5 mAb in competition with compound 8 (dark blue) are shown.

Figure 49 : Flow cytometric analysis of the binding of 12G-5 mAb in competition with AMD3100.8 HCl (20 μ M) in Jurkat cells.

Negative control (purple), positive control (red), 12G-5 mAb in competition with AMD3100.8 HCl (orange) are shown.