Towards understanding the design of dual-modal MR/fluorescent probes to sense zinc ions

C. Rivas,^a G. J. Stasiuk,^{a, b} M. Sae-Heng,^a and N. J. Long^a

^a Department of Chemistry, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.

^b School of Biological, Biomedical and Environmental Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX

Table of contents

Figure S1: ¹H NMR spectrum of 1, CDCl₃, 298 K.

Figure S2: CIMS spectrum of 1.

Figure S3: ¹H NMR spectrum of 2, CDCl₃, 298 K.

Figure S4: ESMS spectrum of 2.

Figure S5: ¹H NMR spectrum of L1, CDCl₃, 298 K.

Figure S6: ESMS spectrum of L1.

Figure S7. UV/vis. spectra of **Gd.L1** (100 μ M) in HEPES buffer (0.1 M; pH = 7.4) in the presence of increasing concentrations (0 to 5 eq.) of respective metal ion.

Figure S8. Fluorescence emission spectra of **Gd.L1** (1 mM) in 50:50 MeOH:HEPES buffer (0.1 M; pH = 7.4) in the presence of increasing concentrations (0 to 5 eq.) of Ca^{2+} .

Figure S9: ¹H NMR spectrum of 4, CDCl₃, 298 K.

Figure S10: HR ESMS spectrum of 4.

Figure S11: ¹H NMR spectrum of 5, CDCl₃, 298 K.

Figure S12: HR ESMS spectrum of 5.

Figure S13: ¹H NMR spectrum of L^2 , D_2O , 298 K.

Figure S14: HR ESMS spectrum of L².

Figure S15: ESI MS spectrum of GdL².

Figure S16: UV/vis. spectra of GdL² (100 μ M) in HEPES buffer (0.1 M; pH = 7.4)

in the presence of increasing concentrations (0 to 5 eq.) of Cu^{2+} .

Figure S17. UV/vis. spectra of **GdL**² (100 μ M) in HEPES buffer (0.1 M; pH = 7.4) in the presence of increasing concentrations (0 to 5 eq.) of Ca²⁺.

Figure S18. UV/vis. spectra of GdL² (100 μ M) in HEPES buffer (0.1 M; pH = 7.4) in the presence of increasing concentrations (0 to 5 eq.) of Mg²⁺.

Figure S19: ¹H NMR spectrum of 6, CDCl₃, 298 K.

Figure S20: HR ESMS spectrum of 6.

Figure S21: ¹H NMR spectrum of 7, CDCl₃, 298 K.

Figure S22: HR ESMS spectrum of 7.

Figure S23: ¹H NMR spectrum of L³, CDCl₃, 298 K.

Figure S24: HR ESMS spectrum of L³.

Figure S25: HR ESMS spectrum of GdL³.

Figure S26: UV-vis spectrum of GdL³ (100 μ M) in 50:50 MeOH:HEPES buffer (0.1 M; pH = 7.4).

Figure S27: Fluorescence spectra of GdL³ (100 μ M) in 50:50 MeOH:HEPES buffer

(0.1 M; pH = 7.4) in the presence of increasing concentrations (0 to 10 eq.) of Zn^{2+} .

Figure S1: ¹H NMR spectrum of 1, CDCl₃, 298 K.

Figure S2: CIMS spectrum of 1.

Figure S3: ¹H NMR spectrum of 2, CDCl₃, 298 K.

Figure S4: ESMS spectrum of 2.

Figure S5: ¹H NMR spectrum of L1, CDCl₃, 298 K.

Figure S7. UV/vis. spectra of GdL^1 (100 μ M) in HEPES buffer (0.1 M; pH = 7.4) in the presence of increasing concentrations (0 to 5 eq.) of respective metal ion.

Figure S8. Fluorescence emission spectra of GdL^1 (1 mM) in 50:50 MeOH:HEPES buffer (0.1 M; pH = 7.4) in the presence of increasing concentrations (0 to 5 eq.) of Ca^{2+} .

Figure S10: HR ESMS spectrum of 4.

Figure S11: ¹H NMR spectrum of 5, CDCl₃, 298 K.

Figure S12: HR ESMS spectrum of 5.

Figure S13: ¹H NMR spectrum of L^2 , D_2O , 298 K.

Figure S14: HR ESMS spectrum of L².

Figure S15: ESI MS spectrum of GdL².

Figure S16: UV/vis. spectra of **GdL²** (100 μ M) in HEPES buffer (0.1 M; pH = 7.4) in the presence of increasing concentrations (0 to 5 eq.) of Cu²⁺.

Figure S18. UV/vis. spectra of **GdL**² (100 μ M) in HEPES buffer (0.1 M; pH = 7.4) in the presence of increasing concentrations (0 to 5 eq.) of Mg²⁺.

Figure S19: ¹H NMR spectrum of 6, CDCl₃, 298 K.

Figure S20: HR ESMS spectrum of 6.

Figure S21: ¹H NMR spectrum of 7, CDCl₃, 298 K.

Figure S22: HR ESMS spectrum of 7.

Figure S23: ¹H NMR spectrum of L³, CDCl₃, 298 K.

Figure S24: HR ESMS spectrum of L³.

Figure S25: HR ESMS spectrum of GdL³.

Figure S26: UV-vis spectrum of GdL³ (100 μ M) in 50:50 MeOH:HEPES buffer (0.1 M; pH = 7.4).

Figure S27: Fluorescence spectra of **GdL**³ (100 μ M) in 50:50 MeOH:HEPES buffer (0.1 M; pH = 7.4) in the presence of increasing concentrations (0 to 10 eq.) of Zn²⁺.

