Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2014

Supporting Information

An expedient approach to fluorescent 3-substituted 4*H*-quinolizin-4 ones *via* (η⁴vinylketene)-Fe(CO)₃ complexes

Alfredo Rosas-Sánchez,[†] Rubén A. Toscano,[‡] José G. López-Cortés[‡] and M. Carmen Ortega-Alfaro ^{†,*}

[†]Instituto de Ciencias Nucleares, UNAM, Circuito Exterior, Ciudad Universitaria, Coyoacán, C.P. 04510, México D.F., México.

[‡]Instituto de Química, UNAM, Circuito Exterior, Ciudad Universitaria, Coyoacán, C.P. 04510, México D.F., México.

carmen.ortega@nucleares.unam.mx

Contents

1. ¹ H and ¹³ C NMR Spectra	
1.1 Spectra of compounds 1a-l	S2
1.2 Spectra of compounds 2a-j,l	S14
1.3 Spectra of compounds 3a-i,l	S25
1.4 Spectra of compounds 4a-l	S35
2. Absorption and Emission Spectroscopy of Compounds 4a-l	S47
3. X-ray Analysis Data	S54

1. ¹H and ¹³C NMR Spectra

1.1 Spectra of compounds 1a-l.

2. Absorption and Emission Spectroscopy of Compounds 4a-l

		Absorption maxima		Fluorescence ^c	Quantum yield ^d
Compound	λ_{1abs} , ($\epsilon_1 \times 10^4$)	$\lambda_{2abs}, (\epsilon_2 \times 10^4)$	λ_{3abs} , ($\epsilon_3 \times 10^4$)	$\lambda_{ m em}$	Φ
4a	246 (2.40)	270 (1.88)	406 (2.72)	483	0.25
4b	245 (1.67)		407 (1.66)	486	0.25
4c	245 (1.56)	278 (1.37)	409 (1.92)	485	0.23
4d	245 (1.38)	280 (1.24)	410 (1.68)	485	0.10
4e	246 (1.40)	269 (1.17)	410 (1.79)	483	0.36
4f	250 (2.09)		408 (2.52)	491	0.23
4g	249 (1.95)	291 (2.15)	412 (2.41)	491	0.32
4h	259 (2.39)		412 (2.05)	494	0.29
4i			418 (1.06)	495	0.19
4k	258 (1.94)	291 (1.27)	428 (2.67)	498	0.26
41	243 (1.82)		418 (0.99)	525	0.04

Table S1. Electronic absorption and fluorescence of compounds 4 in $CHCl_3^{a,b}$

 $\overline{{}^a\lambda}$ in nm; ε in L·mol⁻¹·cm⁻¹

^b Compounds **4i** and **4j** decompose in solution

 $c \lambda_{ex} = 365 \text{ nm}$

^{*d*} Referred to quinine sulfate in 0.1 M H₂SO₄ ($\Phi = 0.546$)

800

0.0

200

S49

S50

S51

5. X-ray Analysis Data

	2a	2h	3g	4a	4d	4e
Formula	C ₁₈ H ₁₁ FeNO ₅	C ₂₂ H ₁₃ Fe NO ₅	C ₂₄ H ₁₅ FeNO ₄	C ₁₅ H ₁₁ NO	C ₁₅ H ₁₀ INO	$C_{16}H_{10}F_3NO$
MW (g ⁻¹ mol ⁻¹)	377.13	427.18	437.22	221.25	347.14	289.25
Crystal size (mm ³)	0.312 x 0.296 x 0.282	0.430 x 0.326 x 0.140	0.458 x 0.292 x 0.108	0.442 x 0.403 x 0.156	0.478 x 0.232 x 0.174	0.486 x 0.264 x 0.236
Crystal system	Triclinic	Monoclinic	Triclinic	Orthorhombic	Monoclinic	Monoclinic
Space group	<i>P</i> -1	$P2_{1}/c$	<i>P</i> -1	$Pca2_1$	$P2_{1}/n$	$P2_{1}/c$
Cell parameters						
<i>a</i> (Å)	7.136(1)	10.5432(4)	9.1323(6)	15.2083(8)	6.492(4)	13.9430(15)
<i>b</i> (Å)	10.037(1)	15.2269(5)	10.4497(7)	6.5450(3)	21.091(13)	12.7966(14)
<i>c</i> (Å)	12.659(2)	12.0419(4)	11.6044(8)	21.7516(12)	9.629(6)	7.3613(8)
α (°)	92.570(2)	90	87.700(1)	90	90	90
eta(°)	104.792(2)	91.721(1)	82.514(1)	90	102.311(10)	98.394(8)
$\gamma(^{\circ})$	105.483(2)	90	69.343(1)	90	90	90
V (Å ³)	838.51(18)	1932.34(12)	1027.36(12)	2165.12(19)	1288.1(14)	1299.4(4)
Ζ	2	4	2	8	4	4
$d_{\rm c}$ (Mg m ⁻³)	1.494	1.468	1.413	1.357	1.790	1.479
Reflections collected	9209	11033	8848	13809	10484	10269
Independent reflections, $R(int)$	3065, 0.0206	3544, 0.0290	3736, 0.0436	4802, 0.0442	2368, 0.0629	2388, 0.0650
Data / parameters	3065 / 226	3544 / 262	3736 / 271	4802 / 307	2368 / 163	2388 / 247
Final <i>R</i> 1, <i>wR</i> 2 [<i>I</i> >2σ(<i>I</i>)]	0.0308, 0.0800	0.0349, 0.0868	0.0330, 0.0698	0.0563, 0.1249	0.0415, 0.0973	0.0534, 0.1072
R1, wR2 (all data)	0.0332, 0.0818	0.0448, 0.0934	0.0414, 0.0737	0.0808, 0.1431	0.0548, 0.1033	0.0926, 0.1219
GoF on F ²	1.062	1.016	0.945	1.024	1.063	1.034
CCDC number	1026201	1026202	1026203	1026204	1026205	1026206

Table S2. X-ray Data Collection and Structure Refinement Details for Compounds 2a, 2h, 3g, 4a, 4d and 4e.

Figure S1. ORTEP view of 2a with thermal ellipsoids at 30% of probability level.

Fe(1)-C(18) 1.804(2)	O(2)-C(16) 1.126(2)	C(3)-C(5) 1.478(2)	C(10)-C(11) 1.385(3)
Fe(1)-C(19) 1.807(2)	O(3)-C(17) 1.125(3)	N(4)-C(9) 1.337(3)	C(10)-C(15) 1.393(3)
Fe(1)-C(16) 1.825(2)	O(4)-C(18) 1.139(2)	N(4)-C(5) 1.338(2)	C(11)-C(12) 1.385(3)
Fe(1)-C(17) 1.829(2)	O(5)-C(19) 1.134(3)	C(5)-C(6) 1.389(3)	C(12)-C(13) 1.377(3)
Fe(1)-C(2) 2.110(2)	C(1)-C(2) 1.478(2)	C(6)-C(7) 1.379(3)	C(13)-C(14) 1.375(3)
Fe(1)-C(3) 2.124(2)	C(1)-C(10) 1.498(2)	C(7)-C(8) 1.369(3)	C(14)-C(15) 1.372(3)
O(1)-C(1) 1.220(2)	C(2)-C(3) 1.412(2)	C(8)-C(9) 1.371(3)	
C(18)-Fe(1)-C(19)	C(16)-Fe(1)-C(3)	C(2)-C(3)-C(5)	C(11)-C(10)-C(1)
116.34(10)	94.37(7)	123.66(16)	122.96(16)
C(18)-Fe(1)-C(16)	C(17)-Fe(1)-C(3)	C(2)-C(3)-Fe(1)	C(15)-C(10)-C(1)
87.77(8)	88.75(8)	69.99(10)	118.23(17)
C(19)-Fe(1)-C(16)	C(2)-Fe(1)-C(3)	C(5)-C(3)-Fe(1)	C(12)-C(11)-C(10)
90.18(9)	38.97(6)	115.19(11)	120.14(19)
C(18)-Fe(1)-C(17)	O(1)-C(1)-C(2)	C(9)-N(4)-C(5)	C(13)-C(12)-C(11)
89.79(9)	121.61(16)	117.25(18)	120.2(2)
C(19)-Fe(1)-C(17)	O(1)-C(1)-C(10)	N(4)-C(5)-C(6)	C(14)-C(13)-C(12)
89.15(9)	119.50(17)	122.13(17)	120.1(2)
C(16)-Fe(1)-C(17)	C(2)-C(1)-C(10)	N(4)-C(5)-C(3)	O(3)-C(17)-Fe(1)
176.87(8)	118.89(15)	118.39(16)	176.0(2)
C(18)-Fe(1)-C(2)	C(3)-C(2)-C(1)	C(6)-C(5)-C(3)	O(4)-C(18)-Fe(1)
108.18(8)	120.70(15)	119.46(17)	178.0(2)
C(19)-Fe(1)-C(2)	C(15)-C(14)-C(13)	C(7)-C(6)-C(5)	O(5)-C(19)-Fe(1)
135.36(9)	120.0(2)	119.2(2)	176.1(2)
C(16)-Fe(1)-C(2)	C(14)-C(15)-C(10)	C(8)-C(7)-C(6)	
88.37(7)	120.8(2)	118.8(2)	
C(17)-Fe(1)-C(2)	O(2)-C(16)-Fe(1)	C(7)-C(8)-C(9)	
94.26(8)	175.20(17)	118.5(2)	
C(18)-Fe(1)-C(3)	C(3)-C(2)-Fe(1)	N(4)-C(9)-C(8)	
146.79(9)	71.04(10)	124.0(2)	
C(19)-Fe(1)-C(3)	C(1)-C(2)-Fe(1)	C(11)-C(10)-C(15)	
96.81(9)	111.39(12)	118.79(18)	

 Table S3. Bond lengths [Å] and angles [°] for compound 2a

Figure S2. ORTEP view of 2h with thermal ellipsoids at 30% of probability level.

Fe(1)-C(21) 1.786(3)	O(3)-C(20) 1.131(3)	C(3)-C(14) 1.471(3)	C(9)-C(10) 1.403(5)
Fe(1)-C(19) 1.812(2)	O(4)-C(21) 1.141(3)	C(4)-C(5) 1.367(3)	C(10)-C(11) 1.358(4)
Fe(1)-C(20) 1.821(2)	O(5)-C(22) 1.126(3)	C(4)-C(12) 1.415(3)	C(11)-C(12) 1.419(3)
Fe(1)-C(22) 1.835(2)	N(1)-C(14) 1.338(3)	C(5)-C(6) 1.415(3)	C(12)-C(13) 1.414(4)
Fe(1)-C(2) 2.113(2)	N(1)-C(18) 1.339(3)	C(6)-C(7) 1.355(4)	C(14)-C(15) 1.387(3)
Fe(1)-C(3) 2.125(2)	C(1)-C(2) 1.482(3)	C(7)-C(13) 1.405(4)	C(15)-C(16) 1.376(4)
O(1)-C(1) 1.218(3)	C(1)-C(5) 1.498(3)	C(8)-C(9) 1.345(6)	C(16)-C(17) 1.360(5)
O(2)-C(19) 1.134(2)	C(2)-C(3) 1.415(3)	C(8)-C(13) 1.422(4)	C(17)-C(18) 1.377(5)
C(21)-Fe(1)-C(19)	C(22)-Fe(1)-C(3)	C(4)-C(5)-C(6)	C(7)-C(13)-C(8)
111.18(11)	87.15(10)	118.5(2)	123.1(3)
C(21)-Fe(1)-C(20)	C(2)-Fe(1)-C(3)	C(4)-C(5)-C(1)	C(12)-C(13)-C(8)
88.56(11)	39.00(8)	123.6(2)	118.2(3)
C(19)-Fe(1)-C(20)	C(14)-N(1)-C(18)	C(6)-C(5)-C(1)	N(1)-C(14)-C(15)
89.98(10)	116.9(2)	117.9(2)	122.5(2)
C(21)-Fe(1)-C(22)	O(1)-C(1)-C(2)	C(7)-C(6)-C(5)	N(1)-C(14)-C(3)
88.66(11)	121.1(2)	120.9(2)	117.7(2)
C(19)-Fe(1)-C(22)	O(1)-C(1)-C(5)	C(6)-C(7)-C(13)	C(15)-C(14)-C(3)
90.91(10)	119.3(2)	121.4(2)	119.7(2)
C(20)-Fe(1)-C(22)	C(2)-C(1)-C(5)	C(9)-C(8)-C(13)	C(16)-C(15)-C(14)
177.21(10)	119.60(19)	121.3(3)	119.1(3)
C(21)-Fe(1)-C(2)	C(3)-C(2)-C(1)	C(8)-C(9)-C(10)	C(17)-C(16)-C(15)
143.31(10)	120.4(2)	120.5(3)	118.9(3)
C(19)-Fe(1)-C(2)	C(3)-C(2)-Fe(1)	C(11)-C(10)-C(9)	C(16)-C(17)-C(18)
105.33(9)	70.97(12)	120.5(3)	118.9(3)
C(20)-Fe(1)-C(2)	C(1)-C(2)-Fe(1)	C(10)-C(11)-C(12)	N(1)-C(18)-C(17)
87.92(9)	110.32(14)	120.5(3)	123.7(3)
C(22)-Fe(1)-C(2)	C(2)-C(3)-C(14)	C(13)-C(12)-C(4)	O(2)-C(19)-Fe(1)
94.39(10)	123.8(2)	118.5(2)	179.8(2)
C(21)-Fe(1)-C(3)	C(2)-C(3)-Fe(1)	C(13)-C(12)-C(11)	O(3)-C(20)-Fe(1)
104.94(10)	70.04(12)	119.0(2)	174.9(2)
C(19)-Fe(1)-C(3)	C(14)-C(3)-Fe(1)	C(4)-C(12)-C(11)	O(4)-C(21)-Fe(1)
143.77(9)	114.67(15)	122.5(2)	177.4(2)
C(20)-Fe(1)-C(3)	C(5)-C(4)-C(12)	C(7)-C(13)-C(12)	O(5)-C(22)-Fe(1)
93.68(9)	121.9(2)	118.7(2)	176.6(2)

Table S4. Bond lengths [Å] and angles [°] for compound 2h

Figure S3. ORTEP view of 3g with thermal ellipsoids at 50% of probability level.

		8	
Fe(1)-C(24) 1.792(2)	C(1)-C(2) 1.474(3)	C(8)-C(9) 1.394(3)	C(15)-C(16) 1.381(3)
Fe(1)-C(23) 1.801(2)	C(2)-C(3) 1.412(2)	C(8)-C(11) 1.492(3)	С(15)-Н(15) 0.9300
Fe(1)-C(22) 1.858(2)	C(2)-C(5) 1.481(3)	C(9)-C(10) 1.381(3)	С(16)-Н(16) 0.9300
Fe(1)-C(1) 1.931(2)	C(3)-C(4) 1.415(3)	C(9)-H(9) 0.9300	C(17)-C(18) 1.387(3)
Fe(1)-C(3) 2.1037(19)	С(3)-Н(3) 0.9800	C(10)-H(10) 0.9300	C(18)-C(19) 1.380(3)
Fe(1)-C(2) 2.1522(18)	C(4)-C(17) 1.481(3)	C(11)-C(12) 1.390(3)	С(18)-Н(18) 0.9300
Fe(1)-C(4) 2.1612(19)	C(4)-H(4) 0.9800	C(11)-C(16) 1.391(3)	C(19)-C(20) 1.377(3)
O(1)-C(1) 1.194(2)	C(5)-C(6) 1.393(3)	C(12)-C(13) 1.390(3)	С(19)-Н(19) 0.9300
O(2)-C(22) 1.135(2)	C(5)-C(10) 1.394(3)	C(12)-H(12) 0.9300	C(20)-C(21) 1.372(3)
O(3)-C(23) 1.139(2)	C(6)-C(7) 1.380(3)	C(13)-C(14) 1.368(3)	С(20)-Н(20) 0.9300
O(4)-C(24) 1.141(2)	С(6)-Н(6) 0.9300	C(13)-H(13) 0.9300	С(21)-Н(21) 0.9300
N(1)-C(21) 1.342(3)	C(7)-C(8) 1.392(3)	C(14)-C(15) 1.380(3)	
N(1)-C(17) 1.349(2)	С(7)-Н(7) 0.9300	C(14)-H(14) 0.9300	
C(24)-Fe(1)-C(23) 100.30(10)	C(22)-Fe(1)-C(3) 93.83(8)	C(23)-Fe(1)-C(4) 166.10(8)	C(7)-C(8)-C(9) 116.82(19)
C(24)-Fe(1)-C(22) 98.51(9)	C(1)-Fe(1)-C(3) 72.15(8)	C(22)-Fe(1)-C(4) 93.82(8)	C(7)-C(8)-C(11) 121.10(19)
C(23)-Fe(1)-C(22) 92.28(9)	C(24)-Fe(1)-C(2) 134.92(9)	C(1)-Fe(1)-C(4) 80.45(8)	C(9)-C(8)-C(11) 122.07(18)
C(24)-Fe(1)-C(1) 96.80(9)	C(23)-Fe(1)-C(2) 97.44(8)	C(3)-Fe(1)-C(4) 38.73(7)	C(10)-C(9)-C(8) 121.76(19)
C(23)-Fe(1)-C(1) 90.30(9)	C(22)-Fe(1)-C(2) 121.86(8)	C(2)-Fe(1)-C(4) 68.76(7)	С(10)-С(9)-Н(9) 119.1
C(22)-Fe(1)-C(1) 163.75(8)	C(1)-Fe(1)-C(2) 41.89(8)	C(21)-N(1)-C(17) 116.65(19)	C(8)-C(9)-H(9) 119.1
C(24)-Fe(1)-C(3) 129.16(9)	C(3)-Fe(1)-C(2) 38.73(7)	O(1)-C(1)-C(2) 137.09(19)	C(9)-C(10)-C(5) 121.13(19)

Table S5. Bond lengths [Å] and angles $[\circ]$ for compound 3g

C(23)-Fe(1)-C(3)	C(24)-Fe(1)-C(4)	O(1)-C(1)-Fe(1)	С(9)-С(10)-Н(10)
128.36(8)	91.14(9)	145.11(17)	119.4
C(2)-C(1)-Fe(1)	C(5)-C(10)-H(10)	C(2)-C(3)-Fe(1)	C(14)-C(13)-H(13)
77.10(11)	119.4	72.49(11)	119.6
C(3)-C(2)-C(1)	C(12)-C(11)-C(16)	C(4)-C(3)-Fe(1)	C(12)-C(13)-H(13)
111.10(16)	117.40(19)	72.83(11)	119.6
C(3)-C(2)-C(5)	C(12)-C(11)-C(8)	C(2)-C(3)-H(3)	C(13)-C(14)-C(15)
126.60(18)	120.75(19)	120.3	118.6(2)
C(1)-C(2)-C(5)	C(16)-C(11)-C(8)	C(4)-C(3)-H(3)	C(13)-C(14)-H(14)
121.62(17)	121.8(2)	120.3	120.7
C(3)-C(2)-Fe(1)	C(13)-C(12)-C(11)	Fe(1)-C(3)-H(3)	C(15)-C(14)-H(14)
68.78(10)	121.1(2)	120.3	120.7
C(1)-C(2)-Fe(1)	C(13)-C(12)-H(12)	C(3)-C(4)-C(17)	C(14)-C(15)-C(16)
61.01(10)	119.5	121.83(17)	121.0(2)
C(5)-C(2)-Fe(1)	C(11)-C(12)-H(12)	C(3)-C(4)-Fe(1)	C(14)-C(15)-H(15)
130.64(13)	119.5	68.44(10)	119.5
C(2)-C(3)-C(4)	C(14)-C(13)-C(12)	C(17)-C(4)-Fe(1)	C(16)-C(15)-H(15)
118.99(17)	120.8(2)	121.35(13)	119.5
C(3)-C(4)-H(4)	C(15)-C(16)-C(11)	C(5)-C(6)-H(6)	C(21)-C(20)-C(19)
112.8	121.0(2)	119.3	118.3(2)
C(17)-C(4)-H(4)	C(15)-C(16)-H(16)	C(6)-C(7)-C(8)	C(21)-C(20)-H(20)
112.8	119.5	121.7(2)	120.8
Fe(1)-C(4)-H(4)	C(11)-C(16)-H(16)	C(6)-C(7)-H(7)	C(19)-C(20)-H(20)
112.8	119.5	119.2	120.8
C(6)-C(5)-C(10)	N(1)-C(17)-C(18)	C(8)-C(7)-H(7)	N(1)-C(21)-C(20)
117.24(18)	122.23(18)	119.2	124.5(2)
C(6)-C(5)-C(2)	N(1)-C(17)-C(4)	C(17)-C(18)-H(18)	C(20)-C(21)-H(21)
120.70(18)	116.95(17)	120.2	117.7
C(10)-C(5)-C(2)	C(18)-C(17)-C(4)	C(20)-C(19)-C(18)	N(1)-C(21)-H(21)
122.02(18)	120.81(19)	118.7(2)	117.7
C(7)-C(6)-C(5)	C(19)-C(18)-C(17)	С(20)-С(19)-Н(19)	
121.36(19)	119.6(2)	120.6	
C(7)-C(6)-H(6)	C(19)-C(18)-H(18)	С(18)-С(19)-Н(19)	
119.3	120.2	120.6	
O(4)-C(24)-Fe(1)	O(3)-C(23)-Fe(1)	O(2)-C(22)-Fe(1)	
176.7(2)	177.9(2)	175.91(18)	

Figure S4. ORTEP view of 4a with thermal ellipsoids at 50% of probability level.

Table S6. Bor	d lengths	[Å] and	angles [°] for compoun	d 4a

O(1)-C(4) 1.236(5)	N(5)-C(6) 1.384(5)	C(11)-C(16) 1.397(6)
C(1)-C(10) 1.379(6)	N(5)-C(10) 1.393(5)	C(12)-C(13) 1.375(6)
C(1)-C(2) 1.381(7)	C(6)-C(7) 1.336(7)	C(13)-C(14) 1.388(7)
C(2)-C(3) 1.389(6)	C(7)-C(8) 1.405(6)	C(14)-C(15) 1.351(7)
C(3)-C(4) 1.428(5)	C(8)-C(9) 1.347(6)	C(15)-C(16) 1.391(7)
C(3)-C(11) 1.478(6)	C(9)-C(10) 1.425(5)	
C(4)-N(5) 1.439(5)	C(11)-C(12) 1.385(6)	

C(10)-C(1)-C(2)	C(3)-C(4)-N(5)	C(8)-C(9)-C(10)	C(13)-C(12)-C(11)
119.3(4)	115.6(3)	121.8(4)	121.3(5)
C(1)-C(2)-C(3)	C(6)-N(5)-C(10)	C(1)-C(10)-N(5)	C(12)-C(13)-C(14)
123.7(4)	119.5(4)	118.8(4)	119.9(5)
C(2)-C(3)-C(4)	C(6)-N(5)-C(4)	C(1)-C(10)-C(9)	C(15)-C(14)-C(13)
119.1(4)	117.0(3)	123.7(4)	119.8(5)
C(2)-C(3)-C(11)	C(10)-N(5)-C(4)	N(5)-C(10)-C(9)	C(14)-C(15)-C(16)
120.3(4)	123.5(3)	117.5(3)	120.8(5)
C(4)-C(3)-C(11)	C(7)-C(6)-N(5)	C(12)-C(11)-C(16)	C(15)-C(16)-C(11)
120.6(3)	121.8(4)	117.8(4)	120.3(5)
O(1)-C(4)-C(3)	C(6)-C(7)-C(8)	C(12)-C(11)-C(3)	
127.5(4)	120.5(4)	122.5(4)	
O(1)-C(4)-N(5)	C(9)-C(8)-C(7)	C(16)-C(11)-C(3)	
117.0(3)	118.9(4)	119.5(4)	

Figure S5. ORTEP view of 4d with thermal ellipsoids at 50% of probability level.

I(1)-C(14) 2.095(4)	C(4)-N(10) 1.438(5)	C(11)-C(16) 1.393(5)
O(1)-C(4) 1.231(4)	C(5)-C(6) 1.331(6)	C(11)-C(12) 1.396(5)
C(1)-C(9) 1.370(5)	C(5)-N(10) 1.382(5)	C(12)-C(13) 1.378(6)
C(1)-C(2) 1.371(6)	C(6)-C(7) 1.409(6)	C(13)-C(14) 1.380(5)
C(2)-C(3) 1.386(5)	C(7)-C(8) 1.333(6)	C(14)-C(15) 1.377(5)
C(3)-C(4) 1.426(5)	C(8)-C(9) 1.426(6)	C(15)-C(16) 1.378(5)
C(3)-C(11) 1.474(5)	C(9)-N(10) 1.393(4)	

 Table S7. Bond lengths [Å] and angles [°] for compound 4d

C(9)-C(1)-C(2)	C(6)-C(5)-N(10)	N(10)-C(9)-C(8)	C(12)-C(13)-C(14)
120.7(3)	122.4(4)	116.8(3)	120.2(4)
C(1)-C(2)-C(3)	C(5)-C(6)-C(7)	C(5)-N(10)-C(9)	C(15)-C(14)-C(13)
122.7(4)	119.8(4)	119.6(3)	119.9(4)
C(2)-C(3)-C(4)	C(8)-C(7)-C(6)	C(5)-N(10)-C(4)	C(15)-C(14)-I(1)
119.7(3)	119.0(4)	116.8(3)	119.7(3)
C(2)-C(3)-C(11)	C(7)-C(8)-C(9)	C(9)-N(10)-C(4)	C(13)-C(14)-I(1)
121.1(3)	122.5(4)	123.6(3)	120.4(3)
C(4)-C(3)-C(11)	C(1)-C(9)-N(10)	C(16)-C(11)-C(12)	C(14)-C(15)-C(16)
119.2(3)	118.1(3)	117.6(3)	119.8(4)
O(1)-C(4)-C(3)	C(1)-C(9)-C(8)	C(16)-C(11)-C(3)	C(15)-C(16)-C(11)
127.5(3)	125.1(4)	121.8(3)	121.5(3)
O(1)-C(4)-N(10)	C(6)-C(5)-N(10)	C(12)-C(11)-C(3)	
117.4(3)	122.4(4)	120.6(3)	
C(3)-C(4)-N(10)	C(5)-C(6)-C(7)	C(13)-C(12)-C(11)	
115.2(3)	119.8(4)	120.9(4)	

Figure S6. ORTEP view of 4e with thermal ellipsoids at 50% of probability level.

O(1)-C(4) 1.229(2)	C(5)-N(10) 1.388(3)	C(13)-C(14) 1.384(3)
C(1)-C(9) 1.371(3)	C(6)-C(7) 1.405(4)	C(14)-C(15) 1.378(3)
C(1)-C(2) 1.378(3)	C(7)-C(8) 1.343(3)	C(14)-C(17) 1.479(4)
C(2)-C(3) 1.384(3)	C(8)-C(9) 1.412(3)	C(15)-C(16) 1.377(3)
C(3)-C(4) 1.424(3)	C(9)-N(10) 1.389(3)	C(17)-F(1) 1.351(5)
C(3)-C(11) 1.478(3)	C(11)-C(16) 1.395(3)	C(17)-F(2) 1.353(5)
C(4)-N(10) 1.436(3)	C(11)-C(12) 1.395(3)	C(17)-F(3) 1.349(6)
C(5)-C(6) 1.330(3)	C(12)-C(13) 1.370(3)	

Table S8. Bond lengths [Å] and angles [°] for compound 4e

C(9)-C(1)-C(2)	C(5)-C(6)-C(7)	C(16)-C(11)-C(12)	C(15)-C(16)-C(11)
120.7(2)	120.2(3)	117.6(2)	120.9(2)
C(1)-C(2)-C(3)	C(8)-C(7)-C(6)	C(16)-C(11)-C(3)	F(1)-C(17)-F(2)
122.3(2)	119.3(2)	122.71(19)	104.7(4)
C(2)-C(3)-C(4)	C(7)-C(8)-C(9)	C(12)-C(11)-C(3)	F(3)-C(17)-F(2)
19.63(19)	121.7(3)	119.64(19)	105.8(5)
C(2)-C(3)-C(11)	C(1)-C(9)-N(10)	C(13)-C(12)-C(11)	F(3)-C(17)-F(1)
120.58(18)	118.10(19)	121.2(2)	105.9(5)
C(4)-C(3)-C(11)	C(1)-C(9)-C(8)	C(12)-C(13)-C(14)	F(1)-C(17)-C(14)
119.78(18)	124.4(2)	120.5(2)	112.2(5)
O(1)-C(4)-C(3)	N(10)-C(9)-C(8)	C(15)-C(14)-C(13)	F(2)-C(17)-C(14)
127.2(2)	117.5(2)	119.2(2)	113.1(5)
O(1)-C(4)-N(10)	C(5)-N(10)-C(9)	C(15)-C(14)-C(17)	F(3)-C(17)-C(14)
117.34(19)	119.80(19)	121.0(2)	114.3(6)
C(3)-C(4)-N(10)	C(5)-N(10)-C(4)	C(13)-C(14)-C(17)	
115.48(18)	116.76(18)	119.8(2)	
C(6)-C(5)-N(10)	C(9)-N(10)-C(4)	C(16)-C(15)-C(14)	
121.5(2)	123.42(18)	120.5(2)	