Supporting Information

## Cd(II)-Terpyridine-based complex as a ratiometric fluorescent probe for pyrophosphate detection in solution and as an imaging agent in living cells

Shu-Yan Jiao, Kun Li\*, Wei Zhang, Yan-Hong Liu, Zeng Huang and Xiao-Qi Yu\*

Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University No.29 Wangjiang Road, Chengdu, P. R. of China 610064 Fax: (+86 28 85415886) E-mail: kli@scu.edu.cn; xqyu@scu.edu.cn

## Contents

| Figure S1. Fluorescence response of L1 towards metal ions in CH <sub>3</sub> CN | 2  |
|---------------------------------------------------------------------------------|----|
| Figure S2. Mass spectrometry (HRMS) of L1-Cd(II) complex                        | 3  |
| Figure S3. Absorption spectra of L1 titration of $Cd^{2+}$                      | 3  |
| Figure S4. The determination L1-Cd(II) of the detection limit (LOD) for PPi     | 4  |
| Figure S5. Mass spectral analysis for L1-Cd(II) interaction with PPi            | 5  |
| Figure S6. Absorption spectra of L1, and L1-Cd(II) complex with PPi             | 6  |
| Figure S7. <sup>1</sup> H NMR spectra of <b>L1</b>                              | 7  |
| Figure S8. <sup>13</sup> C NMR spectra of L1                                    | 8  |
| Figure S9. Mass spectrometry (HRMS) of L1                                       | 9  |
| Figure S10. <sup>1</sup> H NMR spectra of L1-Cd(II) complex                     | 10 |
| Figure S11. <sup>13</sup> C NMR spectra of <b>L1-Cd(II)</b> complex             | 11 |
| Figure S12. XRD structure of L1-Cd(II) complex                                  | 12 |
| Table S1. Details of bond angles                                                | 13 |
| Table S2. Details of bond lengths                                               | 14 |

**Figure S1.** Fluorescence spectra of **L1** (10  $\mu$ M) in CH<sub>3</sub>CN in the presence of various metal ions (50  $\mu$ M): (1) Ni<sup>+</sup>; (2) Mn<sup>2+</sup>; (3) Cu<sup>2+</sup>; (4) Fe<sup>3+</sup>; (5) Co<sup>2+</sup>; (6) Ag<sup>+</sup>; (7) Ca<sup>2+</sup>; (8) Na<sup>+</sup>; (9) K<sup>+</sup>; (10) Li<sup>+</sup>; (11) Zn<sup>2+</sup>; (12) Cd<sup>2+</sup>; (13) Al3<sup>+</sup>; (14) Host.



Figure S2. Structure of L1-Cd(II) complex and Mass spectrometry (HRMS) of L1-Cd(II) complex





Figure S3. Absorption spectra of L1(10  $\mu$ M) titration of Cd<sup>2+</sup>



**Figure S4.** The determination **L1-Cd(II)** complex of the detection limit (LOD) for PPi





Figure S5. Mass spectral analysis for L1-Cd(II) interaction with PPi

Figure S6. Absorption spectra of L1 (10  $\mu$ M), L1-Cd(II) complex(10  $\mu$ M), and L1-Cd(II) complex (10  $\mu$ M) with PPi (10  $\mu$ M)





Figure S7. <sup>1</sup>H NMR spectra of L1

190 180 170 ⊥<mark>156.18</mark> ⊥155.71 160 150 N 136.87 **N** || Ν 140 129.54 128.40 130 -127.35 126.39 125.84 == 120 125.19 123.87 110 123.82 121.41 100 8 77.32 77.00 76.69 8 70 8 8 \$ 30 20 ю 0





Figure S9. Mass spectrometry (HRMS) of L1



Figure S10. <sup>1</sup>H NMR spectra of L1-Cd(II) complex



Figure S11. <sup>13</sup>C NMR spectra of L1-Cd(II) complex

Figure S12. XRD structure of L1-Cd(II) complex, details of band angles, bond lengths



Table S1. Bond Lengths for L1-Cd(II) complex.

| Atom | Atom    | Length/Å | Atom | Atom | Length/Å  |
|------|---------|----------|------|------|-----------|
| Cd2  | $O2^1$  | 2.544(4) | C44  | С9   | 1.391(9)  |
| Cd2  | O2      | 2.591(3) | C44  | C25  | 1.363(7)  |
| Cd2  | $O3^1$  | 2.352(3) | C46  | C43  | 1.422(7)  |
| Cd2  | O10     | 2.462(4) | C46  | C47  | 1.402(8)  |
| Cd2  | 013     | 2.504(4) | N11  | C6   | 1.331(6)  |
| Cd2  | N21     | 2.311(3) | N11  | C29  | 1.335(6)  |
| Cd2  | N22     | 2.359(3) | C43  | C25  | 1.419(7)  |
| Cd2  | N11     | 2.363(3) | C47  | C12  | 1.370(8)  |
| O2   | $Cd2^1$ | 2.544(4) | C48  | C33  | 1.365(9)  |
| O2   | N23     | 1.256(5) | C1   | C6   | 1.505(6)  |
| 03   | $Cd2^1$ | 2.352(3) | C1   | C20  | 1.367(6)  |
| O3   | N23     | 1.274(5) | C4   | C18  | 1.373(7)  |
| 06   | N23     | 1.214(5) | C6   | C13  | 1.391(6)  |
| 08   | N18     | 1.210(5) | C7   | C16  | 1.378(6)  |
| 010  | N18     | 1.246(5) | C7   | C20  | 1.399(6)  |
| 013  | N18     | 1.242(6) | C12  | C22  | 1.426(8)  |
| N21  | C1      | 1.339(5) | C13  | C40  | 1.377(6)  |
| N21  | C38     | 1.335(5) | C16  | C38  | 1.377(6)  |
| N22  | C4      | 1.348(6) | C18  | C24  | 1.360(7)  |
| N22  | C35     | 1.331(5) | C22  | C41  | 1.339(9)  |
| C45  | C46     | 1.418(8) | C24  | C32  | 1.369(7)  |
| C45  | C9      | 1.352(9) | C27  | C29  | 1.378(7)  |
| C49  | C42     | 1.404(7) | C27  | C40  | 1.354(7)  |
| C49  | C43     | 1.410(6) | C32  | C35  | 1.385(6)  |
| C49  | C7      | 1.499(6) | C33  | C41  | 1.409(10) |
| C42  | C48     | 1.426(7) | C35  | C38  | 1.505(6)  |

C42 C12 1.438(7)

| Atom            | Atom | Atom    | Angle/•    | Atom | Atom | Atom | Angle/•  |
|-----------------|------|---------|------------|------|------|------|----------|
| $O2^1$          | Cd2  | 02      | 69.48(13)  | C48  | C42  | C12  | 117.4(5) |
| O3 <sup>1</sup> | Cd2  | O2      | 92.88(12)  | C25  | C44  | C9   | 120.5(6) |
| $O3^1$          | Cd2  | $O2^1$  | 51.92(11)  | C45  | C46  | C43  | 118.7(5) |
| O3 <sup>1</sup> | Cd2  | O10     | 81.05(13)  | C47  | C46  | C45  | 121.6(5) |
| $O3^1$          | Cd2  | O13     | 77.49(15)  | C47  | C46  | C43  | 119.7(5) |
| $O3^1$          | Cd2  | N22     | 134.02(12) | C6   | N11  | Cd2  | 117.4(3) |
| $O3^1$          | Cd2  | N11     | 86.94(12)  | C6   | N11  | C29  | 118.4(4) |
| 010             | Cd2  | O2      | 149.37(12) | C29  | N11  | Cd2  | 124.3(3) |
| 010             | Cd2  | $O2^1$  | 83.58(11)  | C49  | C43  | C46  | 118.7(4) |
| 010             | Cd2  | 013     | 50.23(12)  | C49  | C43  | C25  | 123.2(4) |
| 013             | Cd2  | O2      | 157.21(13) | C25  | C43  | C46  | 118.1(4) |
| 013             | Cd2  | $O2^1$  | 117.02(13) | C12  | C47  | C46  | 121.9(5) |
| N21             | Cd2  | $O2^1$  | 147.04(11) | 08   | N18  | O10  | 121.0(4) |
| N21             | Cd2  | O2      | 87.24(11)  | 08   | N18  | O13  | 123.0(5) |
| N21             | Cd2  | $O3^1$  | 156.53(12) | O13  | N18  | O10  | 115.9(4) |
| N21             | Cd2  | O10     | 110.02(12) | C33  | C48  | C42  | 120.6(6) |
| N21             | Cd2  | 013     | 93.56(14)  | N21  | C1   | C6   | 115.4(3) |
| N21             | Cd2  | N22     | 69.45(11)  | N21  | C1   | C20  | 121.3(4) |
| N21             | Cd2  | N11     | 70.05(11)  | C20  | C1   | C6   | 123.2(4) |
| N22             | Cd2  | $O2^1$  | 86.00(11)  | N22  | C4   | C18  | 122.8(5) |
| N22             | Cd2  | O2      | 87.48(11)  | N11  | C6   | C1   | 117.0(4) |
| N22             | Cd2  | O10     | 76.04(12)  | N11  | C6   | C13  | 121.1(4) |
| N22             | Cd2  | 013     | 114.14(13) | C13  | C6   | C1   | 121.9(4) |
| N22             | Cd2  | N11     | 137.65(12) | C16  | C7   | C49  | 121.6(4) |
| N11             | Cd2  | O2      | 78.73(11)  | C16  | C7   | C20  | 117.9(4) |
| N11             | Cd2  | $O2^1$  | 124.39(11) | C20  | C7   | C49  | 120.5(4) |
| N11             | Cd2  | O10     | 130.34(12) | C45  | C9   | C44  | 120.5(5) |
| N11             | Cd2  | 013     | 80.15(12)  | C47  | C12  | C42  | 119.4(5) |
| $Cd2^1$         | O2   | Cd2     | 110.52(13) | C47  | C12  | C22  | 121.7(5) |
| N23             | O2   | $Cd2^1$ | 91.3(3)    | C22  | C12  | C42  | 118.9(5) |
| N23             | O2   | Cd2     | 112.6(2)   | C40  | C13  | C6   | 119.5(4) |
| N23             | O3   | $Cd2^1$ | 100.0(3)   | C38  | C16  | C7   | 119.7(4) |
| N18             | O10  | Cd2     | 97.9(3)    | C24  | C18  | C4   | 119.0(4) |
| 02              | N23  | O3      | 116.4(4)   | C1   | C20  | C7   | 119.6(4) |
| 06              | N23  | 02      | 123.3(4)   | C41  | C22  | C12  | 121.9(6) |
| 06              | N23  | O3      | 120.3(4)   | C18  | C24  | C32  | 119.1(4) |
| N18             | 013  | Cd2     | 96.0(3)    | C44  | C25  | C43  | 121.0(5) |
| C1              | N21  | Cd2     | 119.8(3)   | C40  | C27  | C29  | 118.3(4) |
| C38             | N21  | Cd2     | 120.3(3)   | N11  | C29  | C27  | 123.4(5) |

Table S2. Bond Angles for L1-Cd(II) complex.

| C38 | N21 | C1  | 119.9(3) | C24 | C32 | C35 | 119.3(5) |
|-----|-----|-----|----------|-----|-----|-----|----------|
| C4  | N22 | Cd2 | 123.6(3) | C48 | C33 | C41 | 121.6(6) |
| C35 | N22 | Cd2 | 117.8(3) | N22 | C35 | C32 | 122.1(4) |
| C35 | N22 | C4  | 117.6(4) | N22 | C35 | C38 | 116.0(3) |
| C9  | C45 | C46 | 121.1(5) | C32 | C35 | C38 | 121.8(4) |
| C42 | C49 | C43 | 121.1(4) | N21 | C38 | C16 | 121.4(4) |
| C42 | C49 | C7  | 119.4(4) | N21 | C38 | C35 | 115.1(3) |
| C43 | C49 | C7  | 119.5(4) | C16 | C38 | C35 | 123.4(4) |
| C49 | C42 | C48 | 123.4(5) | C27 | C40 | C13 | 119.3(4) |
| C49 | C42 | C12 | 119.1(4) | C22 | C41 | C33 | 119.6(6) |