Self-assembly of triangular metallomacrocycles using unsymmetrical bisterpyridine ligands: isomer differentiation *via* TWIM mass spectrometry

Yen-Peng Liang, Yun-Jui Ho, Yin-Hsuan Lee and Yi-Tsu Chan*

Contents

General Information	S2
Ligand Synthesis	S3
Complexation	S12
Characterization of Complex using NMR	S13
Characterization of Complex using ESI MS	S21
Tandem Mass Experiments	S28
Characterization of Complex using ESI TWIM MS	S29
CCS experiment, Molecular Modeling and Crystal Data	S33
References	S36

Materials and Methods

Materials and General Methods. Unless otherwise noted, reagents and solvents were used as received from Fisher Scientific and Sigma-Aldrich without further purification. $Zn(NTf_2)_2$ were synthesized according to the literature procedure.¹ Column chromatography was conducted using basic Al₂O₃ (50-200 µm) from Acros and silica gel (75-200 µm) from Fuji Silysia GS series. ¹H and ¹³C NMR spectra were recorded at 25 °C on a Varian Mercury NMR 400 spectrometer, where chemical shifts (δ in ppm) were determined with respect to the nondeuterated solvents as a reference.

X-ray Crystallography. Single crystal X-ray data were collected from Oxford Diffraction Gemini A CCD diffractometer using CrysAlisPro software (Agilent Technologies). Graphite monochromated Cu-K_a radiation ($\lambda = 1.54178$ Å) at 200(2) K was used to collect diffraction data. Empirical absorption correction using spherical harmonics from SCALE3 ABSPACK² was applied. The structure was solved and refined using SHELXS-97³ and SHELXL-97⁴ programs, respectively. In the crystal, three MeCN solvent molecules were not properly modeled. Therefore, the structure was refined by masking MeCN molecules with PLATON/SQUEEZE technique. The structure was deposited at the Cambridge Crystallographic Data Center with the deposition number of CCDC 1024226.

MALDI TOF Mass Spectrometry. Matrix-assisted laser desorption/ionization coupled with time-of-flight detector (MALDI TOF) mass spectrometry was conducted on a Bruker Autoflex Speed MALDI TOF/TOF Mass spectrometer with a Nd-YAG 355 nm laser. 1 μ L of CHCA (α -cyano-4-hydroxycinnamic acid) matrix solution (10 mg/ml in a mixture of MeCN/H₂O/TFA = 50/49.9/0.1 wt%) was first deposited on a MALDI plate and air-dried. Aliquots of sample solution (1 mg/ml in CHCl₃) were then added onto the matrix spots for characterization. The spectra were acquired in reflection mode.

Ligand Synthesis

4'-(4-Boronophenyl)-2,2':6',2"-terpyridine $(1)^5$ and 4'-bromo-1,1'-biphenyl-4carboxaldehyde $(2)^6$ were synthesized according to the literature procedures.

Scheme S1 Synthesis of terpyridine derivatives. *Reagents and conditions*: (a) 2-acetylpyridine, NaOH, EtOH, 25 °C; (b) NH₄OH, reflux; (c) bis(pinacolato)diboron, PdCl₂(dppf), KOAc, DMSO, 80 °C.

4'-[4'-Bromo-(1,1'-biphenyl)-4-yl]-2,2':6',2''-terpyridine (3). To an EtOH solution (147 mL) of 2-acetylpyridine (4.9 g, 40.6 mmol) and **2** (4.8 g, 18.5 mmol), NaOH (4.4 g, 110.7 mmol) was added. After being stirred at 25 °C for 10 h under N₂, NH₄OH (28 wt%, 70 ml) was added into the mixture, which was then refluxed for additional 20 h. After cooling to 25 °C, the precipitate was filtered and washed with EtOH/H₂O (1:1, v/v) to allow isolation of **3** as a white solid (4.8 g, 10.3 mmol) in 56% yield. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.74 (s, 2H), 8.72-8.70 (d, *J* = 4.0 Hz, 2H), 8.66-8.64 (d, *J* = 8.0 Hz, 2H), 7.94-7.92 (d, *J* = 8.4 Hz, 2H), 7.86-7.82 (dt, *J* = 7.6 Hz, 2H), 7.65-7.63 (d, *J* = 8.4 Hz, 2H), 7.55-7.46 (d, *J* = 8.8 Hz, 4H), and 7.34-7.30 (dd, *J* = 4.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 156.34, 156.13, 149.63, 149.30, 140.65, 139.42, 137.78, 137.03, 132.12, 128.82, 127.97, 127.50, 124.03, 122.08, 121.54, and 118.78. ESI MS: calcd. for C₂₇H₁₈BrN₃ [M + Na]⁺: *m/z* = 486.0576; found: 486.0577.

4'-[4'-Pinacolatoboron-(1,1'-biphenyl)-4-yl]-2,2':6',2''-terpyridine (4). Borylation of aryl bromides was referenced to the method described in the literature.⁷ To a degassed two-neck flask containing bis(pinacolato)diboron (2.9 g, 11.3 mmol),

PdCl₂(dppf) (0.2 g, 0.3 mmol), and KOAc (3.0 g, 30.1 mmol), **3** (4.8 g, 10.3 mmol) and anhydrous DMSO (62 ml) were added and the mixture was stirred at 80 °C for 1 day under N₂. After cooling to 25 °C, the reaction mixture was extracted with toluene and the combined organic extract was washed with H₂O, dried over anhydrous MgSO₄, and then evaporated to dryness under reduced pressure to give **4** as a brownish solid (2.5 g, 4.9 mmol) in 47% yield. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.77 (s, 2H), 8.73-8.71 (d, *J* = 4.0 Hz, 2H), 8.67-8.65 (d, *J* = 8.0 Hz, 2H), 8.00-7.98 (d, *J* = 8.4 Hz, 2H), 7.91-7.85 (m, *J* = 8.0 Hz, 4H), 7.76-7.74 (d, *J* = 8.4 Hz, 2H), 7.68-7.66 (d, *J* = 8.4 Hz, 2H), 7.36-7.33 (dd, *J* = 4.8 Hz, 2H), and 1.37 (s, 12H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 156.48, 156.21, 149.93, 149.36, 143.25, 141.83, 137.81, 137.08, 135.57, 127.95, 127.90, 126.62, 124.04, 121.60, 118.92, 84.08, and 25.10. ESI MS: calcd. for C₃₃H₃₀BN₃O₂ [M + Na]⁺: *m/z* = 534.2329; found: 534.2334.

4'-(2-Bromophenyl)-2,2':6',2''-terpyridine (5). To an EtOH solution (270 mL) of 2acetylpyridine (14.5 g, 119.6 mmol) and 2-bromobenzaldehyde (10.0 g, 54.4 mmol), NaOH (13.0 g, 326.2 mmol) was added. After being stirred at 25 °C for 10 h under N₂, NH₄OH (28 wt%, 200 ml) was added into the mixture, which was then refluxed for additional 20 h. After cooling to 25 °C, the precipitate was filtered and washed with EtOH/H₂O (1:1, v/v) to allow isolation of **5** as a white solid (3.3 g, 8.5 mmol) in 15.7% yield. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.70-8.66 (m, 4H), 8.53 (s, 2H), 7.90-7.85 (dt, *J* = 7.8 Hz, 2H), 7.70-7.68 (d, *J* = 8.0 Hz, 1H), 7.47-7.45 (d, *J* = 7.6 Hz,1H), 7.41-7.37 (dt, *J* = 7.4 Hz, 1H), 7.35-7.32 (m, *J* = 4.8 Hz, 2H), and 7.28-7.23 (dt, *J* = 7.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 156.10, 155.36, 150.84, 149.23, 140.51, 136.91, 133.25, 131.01, 129.77, 127.57, 119.48, 123.92, 122.04, 121.75, and 121.42. ESI MS: calcd. for C₂₁H₁₄BrN₃ [M + Na]⁺: *m/z* = 410.0263; found: 410.0267.

Scheme S2 Synthesis of bisterpyridine ligands. *Reagents and conditions*: (a) 1, Na₂CO₃, Pd(PPh₃)₄, toluene/H₂O/*t*-BuOH (3:3:1, v/v/v), reflux; (b) 4, Na₂CO₃, Pd(PPh₃)₄, toluene/H₂O/*t*-BuOH (3:3:1, v/v/v), reflux.

4'-[2'-Bromo-(1,1'-biphenyl)-4-yl]-2,2':6',2''-terpyridine (6). To a degassed twoneck flask containing 1,2-dibromobenzene (3.1 g, 13.4 mmol), **1** (0.7 g, 2.1 mmol), and Na₂CO₃ (6.8 g, 64.2 mmol), a mixed solvent (168 mL) of toluene/H₂O/*t*-BuOH (3:3:1, v/v/v) was added. After being purged with N₂ for 30 min, Pd(PPh₃)₄ (39.4 mg, 33.9 µmol) was added into the mixture, which was then refluxed for 1 day under N₂. After cooling to 25°C, the mixture was extracted with CHCl₃ and the combined organic extract was dried over anhydrous MgSO₄ and then evaporated to dryness under reduced pressure. The residue was subjected to flash column chromatography (basic Al₂O₃, CHCl₃) and then recrystallized from MeOH to give **6** as a white solid (0.5 g, 1.0 mmol) in 47% yield. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.78 (s, 2H), 8.71-8.70 (d, *J* = 4.8 Hz, 2H), 8.66-8.64 (d, *J* = 7.6 Hz, 2H), 7.96-7.94 (d, *J* = 8.0 Hz, 2H), 7.86-7.82 (dt, *J* = 7.6 Hz, 2H), 7.68-7.66 (dd, *J* = 7.2 Hz, 1H), 7.55-7.53 (d, *J* = 8.0 Hz, 2H), 7.36-7.35 (d, *J* = 4.0 Hz, 2H), 7.33-7.30 (dd, *J* = 6.0 Hz, 2H), and 7.22-7.18 (m, *J* = 4.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 156.15, 155.91, 149.73, 149.12, 141.93, 141.76, 137.68, 136.85, 133.25, 131.27, 130.04, 128.99, 127.52, 126.99, 123.90, 122.61, 121.40, and 118.90. ESI MS: calcd. for C₂₇H₁₈BrN₃ [M + Na]⁺: m/z = 486.0576; found: 486.0567.

2,4'-Di(4'-terpyridinyl)biphenyl (L1). By a similar procedure to that for **6**, **L1** was obtained in 85.9 % yield (0.8 g, 1.3 mmol) from **5** (0.6 g, 1.5 mmol), **1** (0.7 g, 1.9 mmol), Na₂CO₃ (1.6 g, 15.5 mmol), and Pd(PPh₃)₄ (125.4 mg, 108.5 µmol). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.69-8.67 (d, J = 4.8 Hz, 2H), 8.65-8.63 (d, J = 4.8 Hz, 2H), 8.63 (s, 2H), 8.63-8.60 (d, J = 8 Hz, 2H), 8.56-8.54 (d, J = 8 Hz, 2H), 8.30 (s, 2H), 7.87-7.80 (m, 4H), 7.77-7.74 (d, J = 8.5 Hz, 2H), 7.62-7.60 (d, J = 6.6 Hz, 1H), 7.53-7.46 (m, 3H), 7.40-7.37 (d, J = 8.5 Hz, 2H), 7.34-7.31 (m, 2H), and 7.28-7.25 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 156.22, 156.13, 155.79, 155.26, 151.64, 149.76, 149.16, 149.14, 149.09, 149.08, 141.72, 140.04, 138.53, 136.85, 136.76, 136.69, 130.65, 130.53, 128.66, 127.86, 127.09, 123.83, 123.73, 122.19, 121.39, 121.37, and 118.75. ESI MS: calcd. for C₄₂H₂₈N₆ [M + H]⁺: *m/z* = 617.2448; found: 617.2441.

2,4''-Di(4'-terpyridinyl)-1,1':4',1''-terphenyl (L2). By a similar procedure to that for **6**, **L2** was obtained in 76.3 % yield (0.9 g, 1.2 mmol) from **5** (0.6 g, 1.6 mmol), **4** (0.8 g, 1.6 mmol), Na₂CO₃ (1.7 g, 16.4 mmol), and Pd(PPh₃)₄ (132.5 mg, 114.6 µmol). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.73 (s, 2H), 8.72-8.70 (d, J = 4.8 Hz, 2H), 8.66-8.64 (d, J = 8 Hz, 2H), 8.61-8.59 (d, J = 4.8 Hz, 2H), 8.53-8.51 (d, J = 8 Hz, 2H), 8.29 (s, 2H), 7.92-7.90 (d, J = 8.5 Hz, 2H), 7.89-7.84 (dt, J = 8 Hz, 2H), 7.81-7.77 (dt, J = 7.6 Hz, 2H), 7.62-7.60 (d, J = 8.5 Hz, 3H), 7.54-7.44 (m, 5H), 7.36-7.32 (m, 4H), and 7.28-7.25 (dd, J = 4.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 156.28, 156.19, 155.96, 155.24, 151.64, 149.74, 149.16, 141.47, 140.30, 140.27, 140.43, 138.76, 138.43, 137.15, 136.94, 136.79, 130.64, 130.51, 128.71, 127.78, 127.68, 127.50, 126.89, 123.93, 123.75, 122.32, 121.49, 121.33, and 118.72. ESI MS: calcd. for C₄₈H₃₂N₆ [M + H]⁺: m/z = 693.2761; found: 693.2775.

4-(4'-terpyridinyl)-2''-[4-(4'-terpyridinyl)phenyl]-1,1':4',1''-terphenyl (L3). By a similar procedure to that for **6**, **L3** was obtained in 72.1 % yield (1.1 g, 1.4 mmol) from **6** (0.8 g, 1.9 mmol), **4** (1.1 g, 2.1 mmol), Na₂CO₃ (2.0 g, 19.0 mmol), and Pd(PPh₃)₄ (153.7 mg, 133.0 µmol). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.78 (s, 2H), 8.75 (s, 2H), 8.74-8.71 (dd, J = 6.9 Hz, 4H), 8.69-8.65 (dd, J = 6.7.0 Hz, 4H), 7.99-7.97 (d, J = 8.5 Hz, 2H), 7.91-7.86 (dt, J = 5.4 Hz, 4H), 7.84-7.82 (d, J = 8.4 Hz, 2H), 7.77-7.75 (d, J = 8.5 Hz, 2H), 7.59-7.57 (d, J = 8.3 Hz, 2H), 7.52-7.45 (m, 4H), 7.38-7.33 (dd, J = 3.4 Hz, 6H), and 7.30-7.28 (d, J = 8.3 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 156.32, 156.28, 155.96, 149.91, 149.58, 149.17, 142.43, 141.33, 140.81, 140.18, 139.96, 138.52, 137.19, 136.93, 136.60, 130.86, 130.80, 130.53, 130.46, 127.93, 127.75, 127.58, 127.1, 126.83, 123.91, 121.50, 121.44, 118.88, and 118.78. ESI MS: calcd. for C₅₄H₃₆N₆ [M + Na]⁺: m/z = 791.2894; found: 791.2871.

Fig. S2 ¹H and ¹³C NMR spectra of 4.

Fig. S7 1 H and 13 C NMR spectra of L3.

Fig. S8 MALDI TOF MS spectrum of L1.

Fig. S9 MALDI TOF MS spectrum of L2.

Complexation

Anion Ligand	PF6 [−]	NTf2 ⁻
L1	R1a	R1b
L2	R2a	R2b
L3	R3a	R3b

Table S1 Six complexation reactions from different combinations of anions and ligands.

Scheme S3 Complexation flowchart of Zn^{II} complexes.

Characterization of complexes using NMR

A mixture of Z1a and Z1a'. Yield: 56.1 mg, 91.4% as a mixture. ¹H NMR (400 MHz, CD₃CN) of Z1a: δ (ppm) 8.77 (s, 6H), 8.60 (s, 6H), 8.48-8.46 (d, J = 8.1 Hz, 6H), 8.33-8.31 (d, J = 8.2 Hz, 6H), 8.21-8.19 (d, J = 8.4 Hz, 6H), 8.12-8.08 (dt, J = 7.8 Hz, 6H), 8.05-8.00 (dt, J = 7.8 Hz, 6H), 8.00-7.98 (m, 3H), 7.87-7.78 (m, 21H), 7.70-7.68 (d, J = 5.1 Hz, 6H), 7.56-7.52 (dd, J = 5.2 Hz, 6H), and 7.26-7.23 (dd, J = 5.1 Hz, 6H). 3',5'-tpy*H* of Z1a': δ (ppm) 8.96 (s, 1H), 8.65 (s, 1H), 8.52 (s, 1H), 8.40 (s, 1H), 8.35 (s, 1H), and 8.30 (s, 1H). ESI MS (m/z): 827.1281 [M-3PF₆]³⁺ (calcd. m/z = 827.1304), 584.1057 [M-4PF₆]⁴⁺ (calcd. m/z = 584.1068), 438.2896 [M-5PF₆]⁵⁺ (calcd. m/z = 438.2925), and 341.0808 [M-6PF₆]⁶⁺ (calcd. m/z = 341.0831).

A mixture of Z1b and Z1b'. Yield: 67.0 mg, 95.1% as a mixture. ¹H NMR (400 MHz, CD₃CN) of Z1b: δ (ppm) 8.77 (s, 6H), 8.61 (s, 6H), 8.49-8.47 (d, J = 8.1 Hz, 6H), 8.34-8.32 (d, J = 8.1 Hz, 6H), 8.22-8.20 (d, J = 8.4 Hz, 6H), 8.13-8.09 (dt, J = 7.8 Hz, 6H), 8.04-8.02 (dt, J = 7.8 Hz, 6H), 8.00-7.98 (m, 3H), 7.87-7.78 (m, 21H), 7.70-7.68 (d, J = 4.4 Hz, 6H), 7.58-7.55 (dd, J = 5.1 Hz, 6H), and 7.26-7.23 (dd, J = 5.2 Hz, 6H). 3',5'-tpyH of Z1b': δ (ppm) 8.98 (s, 1H), 8.68 (s, 1H), 8.55 (s, 1H), 8.41 (s, 1H). ESI MS (m/z): 962.1032 [M-3NTf₂]³⁺ (calcd. m/z = 962.0834), 651.3428 [M-4NTf₂]⁴⁺ (calcd. m/z = 651.3336), 465.0878 [M-5NTf₂]⁵⁺ (calcd. m/z = 465.0834), and 340.9193 [M-6NTf₂]⁶⁺ (calcd. m/z = 340.9166).

Z2a. Yield: 83.5 mg, 95.3%. ¹H NMR (400 MHz, CD₃CN): δ (ppm) 8.90 (s, 6H), 8.69-8.67 (d, J = 8.1 Hz, 6H), 8.52 (s, 6H), 8.28-8.26 (d, J = 8.1 Hz, 6H), 8.19-8.13 (m, 12H), 8.07-8.03 (dt, J = 7.7 Hz, 6H), 8.01-7.98 (d, J = 5.5 Hz, 3H), 7.85-7.75 (m, 33H), 7.61-7.59 (d, J = 8.4 Hz, 6H), 7.48-7.45 (dd, J = 5.1 Hz, 6H), and 7.34-7.31 (dd, J = 5.1 Hz, 6H). ¹³C NMR (100 MHz, CD₃CN): δ (ppm) 181.10, 158.73, 157.05, 150.98, 150.17, 149.34, 149.23, 148.96, 143.92, 142.63, 142.52, 142.12, 141.35, 140.26, 137.45, 136.72, 132.68, 132.21, 132.14, 131.51, 130.19, 130.05, 129.22, 128.80, 128.48, 126.24, 124.67, 124.05, and 122.84. ESI MS (m/z): 903.1733 [M-3PF₆]³⁺ (calcd. m/z = 903.1620), 641.1351 [M-4PF₆]⁴⁺ (calcd. m/z = 641.1304), 483.9145 [M-5PF₆]⁵⁺ (calcd. m/z = 483.9115), and 379.0996 [M-6PF₆]⁶⁺ (calcd. m/z = 379.0989).

Z2b. Yield: 67.0 mg, 90.4%. ¹H NMR (400 MHz, CD₃CN): δ (ppm) 8.91 (s, 6H), 8.69-8.67 (d, J = 8.1 Hz, 6H), 8.54 (s, 6H), 8.30-8.28 (d, J = 8.1 Hz, 6H), 8.20-8.13 (m, 12H), 8.08-8.04 (dt, J = 7.8 Hz, 6H), 8.02-8.00 (d, J = 5.3 Hz, 3H), 7.85-7.76 (m, 33H), 7.62-7.60 (d, J = 8.3 Hz, 6H), 7.49-7.45 (dd, J = 5.1 Hz, 6H), and 7.35-7.33 (dd, J = 5.2 Hz, 6H). ¹³C NMR (100 MHz, CD₃CN): δ (ppm) 181.13, 158.76, 157.09, 151.00, 150.18, 149.31, 149.20, 148.97, 143.97, 142.63, 142.53, 142.12, 141.36, 140.30, 137.44, 136.70, 132.70, 132.21, 131.51, 130.19, 129.23, 128.81, 128.51, 126.28, 124.68, 124.07, 122.87, 122.81, and 119.63. ESI MS (*m/z*): 1038.1305 [M-3NTf₂]³⁺ (calcd. *m/z* = 1038.1150), 708.6121 [M-4NTf₂]⁴⁺ (calcd. *m/z* = 708.6069), 510.9054 [M-5NTf₂]⁵⁺ (calcd. *m/z* = 510.9021), and 378.9378 [M-6NTf₂]⁶⁺ (calcd. *m/z* = 378.9324).

A mixture of Z3a and Z3a'. Yield: 69.0 mg, 98.4% as a mixture. ¹H NMR (400 MHz, CD₃CN) of Z3a: δ (ppm) 8.99-8.96 (m, 12H), 8.71-8.68 (m, 12H), 8.30-8.25 (m, 6H), 8.16-8.11 (m, 18H), 8.07-8.03 (m, 6H), 7.83-7.77 (m, 18H), 7.68-7.57 (m, 18H), 7.52-7.42 (m, 6H), and 7.39-7.35 (m, 12H). 3',5'-tpy*H* of Z3a': δ (ppm) 8.99 (s, 2H), 8.97 (s, 2H), 8.96 (s, 1H), 8.96 (s, 1H). ESI MS (*m*/*z*): 978.8776 [M-3PF₆]³⁺ (calcd. *m*/*z* = 978.8604), 697.9171 [M-4PF₆]⁴⁺ (calcd. *m*/*z* = 697.9043), 529.3398 [M-5PF₆]⁵⁺ (calcd. *m*/*z* = 529.3306), and 417.1233 [M-6PF₆]⁶⁺ (calcd. *m*/*z* = 417.1147).

A mixture of Z3b and Z3b'. Yield: 96.0 mg, 94.6% as a mixture. ¹H NMR (400 MHz, CD₃CN) of Z3b: 8.99-8.96 (m, 12H), 8.71-8.68 (m, 12H), 8.29-8.25 (m, 6H), 8.16-8.12 (m, 18H), 8.06-8.04 (m, 6H), 7.82-7.77 (m, 18H), 7.68-7.57 (m, 18H), 7.52-7.42 (m, 6H), and 7.39-7.36 (m, 12H). 3',5'-tpy*H* of Z3b': δ (ppm) 8.99 (s, 2H), 8.97 (s, 2H), 8.97 (s, 1H), 8.96 (s, 1H). ESI MS (*m/z*): 1114.1704 [M-3NTf₂]³⁺ (calcd. *m/z* = 1114.1465), 765.6414 [M-4NTf₂]⁴⁺ (calcd. *m/z* = 765.6306), 556.5302 [M-5NTf₂]⁵⁺ (calcd. *m/z* = 556.5211), and 417.1233 [M-6NTf₂]⁶⁺ (calcd. *m/z* = 417.1147).

Fig. S11 2D ¹H ROESY spectrum of **R1a**, showing red 3',5'-tpy*H*s coupled with 3',3"-tpy*H*s and the adjacent phenyl protons of **Z1a'**. ([**L1**] = 1.2×10^{-3} M, CD₃CN).

Fig. S12 2D ¹H ROESY spectrum of **R1a**, showing blue 3',5'-tpy*H*s coupled with 3',3"-tpy*H*s and adjacent phenyl protons of **Z1a'**. ([**L1**] = 1.2×10^{-3} M, CD₃CN).

Fig. S13 2D ¹H COSY spectrum of **R1a**, showing 3',3"-, 4',4"-, 5',5"- and 6',6"-tpy*H*s' coupling correlations of **Z1a**. ([**L1**] = 1.2×10^{-3} M, CD₃CN).

Fig. S14 2D ¹H COSY spectrum of **R1a**, showing red 5',5"-tpy*H*s coupled with 4',4"- and 6',6"-tpy*H*s of **Z1a'**. ([**L1**] = 1.2×10^{-3} M, CD₃CN).

Fig. S15 2D ¹H COSY spectrum of **R1a**, showing blue 5',5"-tpy*H*s coupled with 4',4"- and 6',6"-tpy*H*s of **Z1a'**. ([**L1**] = 1.2×10^{-3} M, CD₃CN).

Fig. S10 integration of 5,5-tpy/is signals in the H NWR spectrum of K1D. ([L1] 1.2×10^{-3} M, CD₃CN).

Fig. S19 ¹H NMR spectra of R3a-b.

Fig. S21 Deconvolution of 3',5'-tpy*H*s signals in ¹H NMR spectrum of **R3b**. ([L3] = 1.1×10^{-3} M, CD₃CN).

2D DOSY NMR

Fig. S25 ESI MS spectrum of R1a.

Fig. S26 Calculated and experimental isotope patterns of Z2a.

Fig. S27 ESI MS spectrum of R3a.

Fig. S30 Calculated and experimental isotope patterns of Z2b.

Tandem Mass Experiments

Selected ion	Counterion		
[M-5A] ⁵⁺	$\mathbf{PF_6}^-$	NTf ₂	
Complex	Z1a	Z1b	
<i>E</i> _{cm} (eV)	1.79	1.86	
Complex	Z2a ^a	Z2b ^a	
<i>E</i> _{cm} (eV)	3.17	3.42	
Complex	Z3a	Z3b	
<i>E</i> _{cm} (eV)	1.49	1.84	
٧		4	

Table S2 Center-of-mass collision energies (E_{cm}) of Zn^{II} complexes.

^a The E_{cm} needed to completely fragment [M-6A+F]⁵⁺ ions.

Characterization of Complex using ESI TWIM MS

Fig. S32 (a) MS^2 TWIM MS spectra of **R1a** $[M-4PF_6]^{4+}$ ions and (b) the drift time deconvolution at 4 V.

Fig. S33 (a) MS^2 TWIM MS spectra of **R1a** $[M-5PF_6]^{5+}$ ions and (b) the drift time deconvolution at 4 V.

Fig. S34 (a) MS² TWIM MS spectra of R1b $[M-4NTf_2]^{4+}$ ions and (b) the drift time deconvolution at 4V.

Fig. S35 (a) MS^2 TWIM MS spectra of **R1b** $[M-5NTf_2]^{5+}$ ions and (b) the drift time deconvolution at 4 V.

Fig. S36 MS² TWIM MS experiment of **Z2b** $[M-5NTf_2]^{5+}$ ions. Similar to the phenomenon in the literature,⁸ linear isomers were observed.

Fig. S37 (a) MS^2 TWIM MS spectra of R3a $[M-4PF_6]^{4+}$ ions and (b) the drift time deconvolution at 4 V.

Fig. S38 (a) MS^2 TWIM MS spectra of **R3a** $[M-5PF_6]^{5+}$ ions and (b) the drift time deconvolution at 4V.

Fig. S39 (a) MS^2 TWIM MS spectra of **R3b** $[M-5NTf_2]^{5+}$ ions and (b) the drift time deconvolution at 4 V.

Fig. S41 Energy-minimized structures of (a) HT **Z3** and (b) HH **Z3'** along with their calculated total potential energies using universal force field in Forcite module of Materials Studio program.

Experimental					
charge state structure	6+	5+	4+	3+	avg. (stdv.)
HT Z1 a	386.4	384.3	391.3	405.1	391.8 (9.4)
HH Z1 a'	378.3	377.2	385.9	399.7	385.3 (10.4)
HT Z1b	379.6	381.7	398.4	417.8	394.4 (17.7)
HH Z1b '	375.9	373.8	389.8	407.8	386.8 (15.7)
Z2a	425.5	445.2	448.7	464.7	446.0 (16.1)
Z2b	433.3	438.3	448.3	478.7	449.6 (20.3)
HT Z3 a	531.1	539.9	540.9	NA	537.3 (5.4)
HH Z3a'	523.1	530.3	528.9	NA	527.4 (3.8)
НТ Z3b	530.8	544.0	553.6	575.9	551.1 (19.0)
НН Z3b'	519.6	532.2	542.0	565.4	539.8 (19.4)

 Table S3 (a) Experimental and (b) theoretical average CCS (standard deviation) results (in Å²).

 (a)

(b)

Theoretical			
Method	MOBCAL		
CCS type Structure	РА	ТМ	
HT Z1	378.4 (0.6)	424.3 (6.7)	
HH Z1'	371.3 (1.7)	417.9 (8.0)	
Z2	455.6 (1.1)	505.9 (8.5)	
Z2 crystal	450.1	516.6	
HT Z3	536.3 (2.1)	579.9 (11.7)	
HH Z3'	531.5 (2.6)	576.9 (12.9)	

Table S4 Crystal data and structure refinement for Z2a.

Identification code	ic16714_sq		
Empirical formula	C156 H120 F36 N18 O3 P6 Zn3		
Formula weight	3360.62		
Temperature	200(2) K		
Wavelength	1.54178 Å		
Crystal system	Trigonal		
Space group	P-3		
Unit cell dimensions	a = 32.7382(5) Å	α= 90°.	
	b = 32.7382(5) Å	β=90°.	
	c = 9.1893(4) Å	$\gamma = 120^{\circ}$.	
Volume	8529.5(5) Å ³		
Z	2		
Density (calculated)	1.309 Mg/m ³		
Absorption coefficient	1.834 mm ⁻¹		
F(000)	3420		
Crystal size	0.25 x 0.20 x 0.15 mm ³		
Theta range for data collection	9.587 to 67.981°.		
Index ranges	-39<=h<=34, -28<=k<=36, -8<=l<=11		
Reflections collected	22133		
Independent reflections	10236 [R(int) = 0.0721]		
Completeness to theta = 67.679°	98.9 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	1.00000 and 0.90111		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	10236 / 284 / 760		
Goodness-of-fit on F ²	1.175		
Final R indices [I>2sigma(I)]	R1 = 0.0947, wR2 = 0.2265		
R indices (all data)	R1 = 0.2105, $wR2 = 0.2862$		
Extinction coefficient	0		
Largest diff. peak and hole	0.619 and -0.535 e.Å ⁻³		

References

- 1 M. P. Sibi and G. Petrovic, *Tetrahedron: Asymmetry*, 2003, 14, 2879-2882.
- 2 SCALE3 ABSPACK *An Oxford Diffraction program* (1.0.4,gui:1.0.3) (C) 2005 Oxford Diffraction Ltd.
- 3 G. M. Sheldrick, *SHELXS-97*, *Program for Crystal Structure Solution*; University of Göttingen, Germany, 1997.
- 4 G. M. Sheldrick, *SHELXL-97*, *Program for the Refinement of Crystal Structures*; University of Göttingen, Germany, 1997.
- 5 P. Jarosz, K. Lotito, J. Schneider, D. Kumaresan, R. Schmehl and R. Eisenberg, *Inorg. Chem.*, 2009, **48**, 2420-2428.
- 6 J.-C. Poupon, D. Marcoux, J.-M. Cloarec and A. B. Charette, Org. Lett., 2007, 9, 3591-3594.
- 7 C. J. Aspley and J. A. Gareth Williams, New J. Chem., 2001, 25, 1136-1147.
- 8 Y.-T. Chan, X. Li, M. Soler, J.-L. Wang, C. Wesdemiotis and G. R. Newkome, J. Am. Chem. Soc., 2009, **131**, 16395-16397.