Supporting Information

Synthesis, Structure, Topology and Catalytic Application of a Novel Cubane-based Copper(II) Metal–Organic Framework derived from a Flexible Amido Tripodal Acid

Anirban Karmakar,*^{a,b} Clive L. Oliver*^c, Somnath Roy^b and Lars Öhrström^a

^aChemical and Biological Engineering, Physical Chemistry, Chalmers University of Technology, Kemivägen 10, Gothenburg, Sweden. E-mail: <u>ohrstrom@chalmers.se</u>

^bCentro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal. Email: <u>anirbanchem@gmail.com</u>

^cCentre for Supramolecular Chemistry Research, Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa. Email: <u>*Clive.Oliver@uct.ac.za*</u>

Table S1: Crystal data and structure refinement detail for						
Compound 1						
Formulae	C ₂₀ H ₂₉ Cu ₂ N ₃ O ₁₃					
Mol. wt.	646.54					
Crystal system	Tetragonal					
Space group	P4 ₃ 2 ₁ 2					
Temperature /K	100					
Wavelength /Å	0.71073					
a /Å	18.9809(12)					
b/Å	18.9809(12)					
c/Å	17.5707(12)					
α/°	90					
β/°	90					
γ/°	90					
V/ Å ³	6330.3(9)					
Z	8					
Density/Mgm ⁻³	1.357					
Abs. Coeff. /mm ⁻¹	1.401					
F(000)	2656					
Refl. collected	40233					
Refl. unique	9790					
Мах. 20/°	30.682					
	-27 <= h <= 23					
Ranges (h, k, l)	-27 <= k <= 26					
	-25 <= l <= 25					

Complete to 2θ (%)	99.9
Refl. with I > 2σ(I)	7629
Data/ Restraints/Parameters	9790/ 184/ 412
Goof (F ²)	1.046
R1 [l > 2s(l)]	0.0566
wR2 [I > 2s(I)]	0.1588
R1 [all data]	0.0775
wR2 [all data]	0.1712

Table S2: Selected bond distances (Å) and angles (°) of 1						
	Bond		Bond angles		Bond angles	
	distances					
Cu1-01M2	1.945(4)	<0W1-Cu1-01M1	92.81(17)	<0W2–Cu2 01M2	101.80(19)	
Cu1-01M2'	1.961(4)	<01M2-Cu1-OW1	95.71(19)	<01M1 Cu2-OW2	167.64(19)	
Cu1-OW1	2.004(5)	<01M2-Cu1-OW1	174.44(19)	<01M1-Cu2-OW2	91.74(19)	
Cu1-01M1	2.424(4)	<01M2-Cu1-01M1	84.22(15)	<01M1-Cu2-01M1	78.39(18)	
Cu2-01M1	1.951(4)	<01M2-Cu1-01M1	85.26(15)	<01M1-Cu2-01M2	84.95(16)	
Cu2-01M1'	1.967(4)	<01M2-Cu1-01M2	78.92(17)	<01M1-Cu2-01M2	85.31(15)	
Cu1-02	1.969(4)	<01M2-Cu1-O2	93.36(17)	<01M1-Cu2-05	170.94(17)	
Cu2–OW2	1.989(5)	<01M2-Cu1-O2	170.85(17)	<01M1-Cu2-05	94.92(17)	
Cu2-01M2	2.405(4)	<02-Cu1-OW1	91.86(19)	<05-Cu2-OW2	95.6(2)	
Cu1–Cu1	3.0155(13)	<02-Cu1-01M1	90.30(15)	<05-Cu2-01M2	88.05(16)	
Cu2–Cu2	3.0362(13)					
Cu2-05	1.977(4)					

Table S3: C-H····O interactions (Å, °) in complex 1							
Complex	D-HA	D…H (Å)	H…A (Å)	D…A (Å)	<d-h…a(°)< td=""><td>Symmetry</td></d-h…a(°)<>	Symmetry	
1	C2-H2A01	0.95	2.44	3.3464(2)	160	1/2-y,1/2+x,-1/4+z	
	C1M2–H1MF…O2	0.98	2.59	3.1125(2)	113	-	
	C16A-H16A····O7	1.00	2.38	2.7986(2)	104	-	
	C17A–H17E····O9A	0.98	2.54	2.9553(2)	105	-	

Figure S1: (A) FT-IR spectra of **1** before (black line) and after (red line) the Henry reaction. (B) PXRD diffractograms of **1** before (red line) and after (green line) the Henry reaction.

Figure S2

Figure S3 Space-filling model of MOF 1

Figure S4 Example of integration in the ¹H-NMR spectrum for the determination of Henry reaction products (Table 1, Entry 6).

Figure S5 Thermogravimetric curve for framework **1**.