Electronic Supporting Information (ESI)

A Series of Cobalt and Nickel Clusters Based on Thiol-containing Ligands Accompanied by

in situ Ligand Formation

Song-De Han, Xiao-Hong Miao, Sui-Jun Liu, and Xian-He Bu*

Department of Chemistry, TKL of Metal- and Molecule-Based Material Chemistry and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, P.R. China.

^{*}Corresponding author. E-mail: buxh@nankai.edu.cn. Fax: +86-22-23502458

Scheme. S1 The possible formation routes of the *in situ* generated ligands from HMBT.

Fig. S1 The supramolecular packing mode of 1.

Fig. S2 The 1D supramolecular chain of 2.

Fig. S3 The supramolecular packing mode of 2.

Fig. S4 The supramolecular packing mode of 3.

Fig. S5 The supramolecular packing mode of 4.

Fig. S6 The supramolecular packing mode of 5.

Fig. S7 The supramolecular packing mode of 6.

Fig. S8 The supramolecular packing mode of 7.

Fig. S9 The 1D supramolecular chain of 8.

Fig. S10 The supramolecular packing mode of 8.

Fig. S11 The simulated and experimental PXRD patterns of 1.

Fig. S12 The simulated and experimental PXRD patterns of 6.

Fig. S13 The χ_{M}^{-1} vs T plot of **1**. Solid lines represent the Curie-Weiss fitting.

Fig. S14 The plot of *M* vs *H* for **1**.

Fig. S15 The χ_{M}^{-1} vs T plot of 6. Solid lines represent the Curie-Weiss fitting.

Fig. S16 The plot of *M* vs *H* for **6**.

Fig. S17 The TG curve of 6.

As shown in Fig. S17, complex **6** showed a gradual weight loss of 5.76% between ambient temperature and 180°C in agreement with the theoretical value of removing one lattice water molecule and two lattice methanol molecules (theoretically Calcd. 6.11% for **6**). A plateau was present between 180°C and 230°C. Further heating above 250 °C causes the framework to collapse accompanied by the decomposition of the organic ligands.

Fig. S18 The solid UV-VIS spectra of 1.

Fig. S19 The solid UV-VIS spectra of 2.

Fig. S20 The solid UV-VIS spectra of 3.

Fig. S21 The solid UV-VIS spectra of 4.

Fig. S22 The solid UV-VIS spectra of 5.

Fig. S23 The solid UV-VIS spectra of 6.

Fig. S24 The solid UV-VIS spectra of 7.

Fig. S25 The solid UV-VIS spectra of 8.

Table S1 Bond valences (s) calculated as $s = \exp[(r_0-r)/B]$ with B = 0.37, $r_0 = 2.02$ for Co(III)-S pairs, $r_0 = 1.75$ for Co(III)–N pairs and $r_0 = 1.637$ for Co(III)–O pairs.¹⁻³

Nr	Bond	Dist	r ₀	В	Sum	Diff
1	Col-Ol	1.9530	1.637	0.37	1.78	1.22
2	Co1-N1	2.025	1.75	0.37		
3	Co1-N3	2.031	1.75	0.37		
4	Col-S3	2.3507	2.02	0.37		

Co1:

Co2:

Nr	Bond	Dist	r ₀	В	Sum	Diff
1	Co2-O1	1.962	1.637	0.37	1.79	1.21
2	Co2-S4	2.3092	2.02	0.37		
3	Co2-S4	2.3092	2.02	0.37		
4	Co2-S4	2.3092	2.02	0.37		

 Table S2 The selected bond lengths [Å] and angles [°] of 1-8.

		1	
Co(1)-O(1)	1.952(2)	Co(1)-O(2)	1.957(2)
Co(1)-N(1)	2.021(2)	Co(1)-N(3)	2.037(2)
Co(4)-O(1)	1.9262(19)	Co(4)-N(5)	2.012(2)
Co(4)-S(8)	2.2933(12)	Co(4)-S(6)	2.2935(11)
Co(3)-O(1)	1.9342(19)	Co(3)-S(10)	2.2804(11)
Co(3)-S(3)	2.3007(11)	Co(3)-S(1)	2.3104(12)
Co(2)-O(1)	1.951(2)	Co(2)-O(3)	1.966(2)
Co(2)-N(2)	2.021(3)	Co(2)-N(4)	2.028(3)
O(1)-Co(1)-O(2)	106.71(9)	O(1)-Co(1)-N(1)	108.99(9)
O(2)-Co(1)-N(1)	111.14(10)	O(1)-Co(1)-N(3)	110.50(9)
O(2)-Co(1)-N(3)	103.26(10)	N(1)-Co(1)-N(3)	115.81(10)
O(1)-Co(4)-S(8)	104.90(7)	O(1)-Co(4)-N(5)	118.73(9)
N(5)-Co(4)-S(8)	105.19(8)	O(1)-Co(4)-S(6)	108.82(6)

N(5)-Co(4)-S(6)	104.28(8)	S(8)-Co(4)-S(6)	115.37(4)		
O(1)-Co(2)-O(3)	104.22(9)	O(1)-Co(2)-N(2)	116.55(9)		
O(3)-Co(2)-N(2)	111.39(11)	O(1)-Co(2)-N(4)	102.68(9)		
O(3)-Co(2)-N(4)	107.66(10)	N(2)-Co(2)-N(4)	113.43(10)		
O(1)-Co(3)-S(10)	109.23(6)	O(1)-Co(3)-S(3)	112.25(6)		
S(10)-Co(3)-S(3)	126.17(4)	O(1)-Co(3)-S(1)	109.68(7)		
S(10)-Co(3)-S(1)	101.67(4)	S(3)-Co(3)-S(1)	95.20(4)		
		2			
Ni(1)-N(2)#1	1.908(4)	Ni(1)-N(2)	1.908(4)		
Ni(1)-S(3)	2.2452(14)	Ni(1)-S(3)#1	2.2452(14)		
Ni(2)-O(1)	1.657(5)	Ni(2)-N(1)	2.014(4)		
Ni(2)-S(3)	2.3356(17)	Ni(2)-S(5)	2.3484(17)		
N(2)#1-Ni(1)-N(2)	180.00(12)	N(2)#1-Ni(1)-S(3)	87.18(11)		
N(2)-Ni(1)-S(3)	92.82(11)	N(2)#1-Ni(1)-S(3)#1	92.82(11)		
N(2)-Ni(1)-S(3)#1	87.18(11)	S(3)-Ni(1)-S(3)#1	180.00(6)		
O(1)-Ni(2)-N(1)	130.40(19)	O(1)-Ni(2)-S(3)	117.48(17)		
N(1)-Ni(2)-S(3)	89.87(12)	O(1)-Ni(2)-S(5)	113.73(16)		
N(1)-Ni(2)-S(5)	96.32(12)	S(3)-Ni(2)-S(5)	104.02(6)		
Symmetry transformation	tions used to genera	te equivalent atoms:			
#1 -x+2,-y+1,-z+1.					
		3			
Ni(1)-N(4)	1.900(9)	Ni(1)-S(4)	2.130(3)		
Ni(1)-S(3)	2.144(3)	Ni(1)-S(2)	2.150(3)		
Ni(2)-N(1)	1.935(10)	Ni(2)-S(5)	2.170(3)		
Ni(2)-S(4)	2.188(3)	Ni(2)-S(2)	2.262(3)		
Ni(4)-S(5)	2.179(3)	Ni(4)-S(10)	2.183(4)		
Ni(4)-S(8)	2.196(4)	Ni(4)-S(6)	2.200(4)		
Ni(3)-N(2)	1.944(10)	Ni(3)-S(6)	2.162(4)		
Ni(3)-S(4)	2.193(3)	Ni(3)-S(3)	2.259(3)		
$\mathbf{N}(A)$ $\mathbf{N}_{\mathbf{C}}(1)$ $\mathbf{C}(A)$	1510(2)	N(4) N(1) O(2)	01.2(2)		
N(4)-INI(1)-S(4) S(4) NI(1) S(2)	131.0(3)	N(4) - N(1) - S(3) N(4) - N(1) - S(3)	91.2(3)		
S(4)-NI(1)-S(3) S(4) NI(1) S(2)	00.70(12)	N(4)-N(1)-S(2) S(2) N(1) S(2)	91.0(3) 176.52(12)		
S(4)-INI(1)-S(2) N(1) Ni(2) S(5)	90.38(12)	S(3)-INI(1)-S(2) N(1) NS(2) S(4)	1/0.32(13) 176.2(2)		
N(1)-INI(2)-S(3) S(5) NI(2) S(4)	0/.0(3) 0/.16(12)	N(1) - N(2) - S(4) N(1) - N(2) - S(2)	1/0.3(3)		
S(3)-INI(2)-S(4) S(5) Ni(2) S(2)	94.10(13) 171.19(12)	N(1)-N(2)-S(2) S(4) N(2) S(2)	92.3(3) 96.31(12)		
S(3)-INI(2)-S(2) S(5) Ni(4) S(10)	1/1.10(13) 161.61(15)	S(4)-INI(2)-S(2) S(5) Ni(4) S(8)	80.21(12) 104.72(14)		
S(3)-INI(4)-S(10) S(10) N:(4) $S(2)$	101.01(13)	S(5) - NI(4) - S(8)	104.73(14)		
S(10)-NI(4)-S(6) S(10) NI(4) S(6)	95.00(13) 105.25(14)	S(3)-INI(4)-S(0) S(2) Ni(4) S(6)	30.39(12)		
S(10)-INI(4)-S(0) N(2) Ni(2) S(6)	103.23(14)	S(0)-INI(4)-S(0) N(2) NS(2) S(4)	100.98(14) 176.0(2)		
N(2)-INI(3)-S(0) S(4) $N(2)$ $S(4)$	89.0(3)	N(2) = N(3) - S(4)	1/0.0(3)		
S(0) - INI(3) - S(4) S(6) Ni(2) S(2)	74.30(13) 174.00(14)	IN(2)-INI(3)-O(3) S(A) Ni(2) S(2)	91.0(3) 91.25(12)		
3(0)-111(3)-3(3)	1/4.77(14)	<u>(4)-111(3)-3(3)</u>	04.33(12)		
$\frac{4}{100(5)}$					
NI(1) - IN(3) NI(1) - S(5)	1.070(3)	$\frac{1}{1} \frac{1}{1} \frac{1}{3}$	1.920(3)		
INI(1)-S(S)	2.1403(18)	INI(1)-S(/)	2.2483(18)		

Ni(4)-N(1)	1.882(5)	Ni(4)-N(8)	1.936(5)
Ni(4)-S(7)	2.1487(19)	Ni(4)-S(8)	2.2795(19)
Ni(2)-N(2)	1.866(5)	Ni(2)-N(6)	1.908(5)
Ni(2)-S(6)	2.139(2)	Ni(2)-S(5)	2.265(2)
Ni(3)-N(4)	1.874(5)	Ni(3)-N(7)	1.927(5)
Ni(3)-S(8)	2.1330(18)	Ni(3)-S(6)	2.2733(18)
N(3)-Ni(1)-N(5)	169.3(2)	N(3)-Ni(1)-S(5)	82.36(15)
N(5)-Ni(1)-S(5)	88.16(16)	N(3)-Ni(1)-S(7)	92.66(15)
N(5)-Ni(1)-S(7)	96.95(16)	S(5)-Ni(1)-S(7)	174.68(7)
N(1)-Ni(4)-N(8)	169.9(2)	N(1)-Ni(4)-S(7)	82.72(16)
N(8)-Ni(4)-S(7)	88.35(16)	N(1)-Ni(4)-S(8)	91.04(16)
N(8)-Ni(4)-S(8)	97.77(16)	S(7)-Ni(4)-S(8)	173.65(7)
N(2)-Ni(2)-N(6)	170.0(2)	N(2)-Ni(2)-S(6)	82.90(16)
N(6)-Ni(2)-S(6)	88.73(17)	N(2)-Ni(2)-S(5)	92.03(16)
N(6)-Ni(2)-S(5)	96.11(17)	S(6)-Ni(2)-S(5)	174.50(8)
N(4)-Ni(3)-N(7)	169.5(2)	N(4)-Ni(3)-S(8)	82.43(15)
N(7)-Ni(3)-S(8)	88.93(15)	N(4)-Ni(3)-S(6)	90.41(15)
N(7)-Ni(3)-S(6)	98.23(15)	S(8)-Ni(3)-S(6)	172.83(7)
	· · ·	5	
Ni(4)-N(4)	1.961(3)	Ni(4)-S(14)	2.1945(11)
Ni(4)-S(15)	2.2226(13)	Ni(4)-S(12)	2.2260(15)
Ni(3)-N(3)	1.987(3)	Ni(3)-S(15)	2.2188(12)
Ni(3)-S(14)	2.2326(12)	Ni(3)-S(8)	2.2404(14)
Ni(1)-N(1)	1.969(4)	Ni(1)-S(15)	2.1849(13)
Ni(1)-S(13)	2.2148(12)	Ni(1)-S(9)	2.2298(14)
Ni(2)-N(2)	1.967(4)	Ni(2)-S(13)	2.2092(13)
Ni(2)-S(14)	2.2214(13)	Ni(2)-S(7)	2.2326(15)
Ni(5)-N(5)	1.970(4)	Ni(5)-S(15)	2.1998(12)
Ni(5)-S(13)	2.2490(12)	Ni(5)-S(10)	2.2581(14)
Ni(6)-N(6)	1.972(4)	Ni(6)-S(13)	2.1961(13)
Ni(6)-S(14)	2.2341(12)	Ni(6)-S(11)	2.2360(14)
N(4)-Ni(4)-S(14)	166.16(11)	N(4)-Ni(4)-S(15)	86.35(11)
S(14)-Ni(4)-S(15)	92.07(5)	N(4)-Ni(4)-S(12)	87.76(12)
S(14)-Ni(4)-S(12)	94.64(5)	S(15)-Ni(4)-S(12)	172.78(5)
N(3)-Ni(3)-S(15)	86.21(11)	N(3)-Ni(3)-S(14)	168.90(12)
S(15)-Ni(3)-S(14)	91.16(5)	N(3)-Ni(3)-S(8)	89.58(11)
S(15)-Ni(3)-S(8)	175.04(6)	S(14)-Ni(3)-S(8)	93.47(5)
N(1)-Ni(1)-S(15)	167.56(12)	N(1)-Ni(1)-S(13)	87.04(11)
S(15)-Ni(1)-S(13)	91.22(5)	N(1)-Ni(1)-S(9)	87.57(12)
S(15)-Ni(1)-S(9)	95.11(6)	S(13)-Ni(1)-S(9)	172.64(6)
N(2)-Ni(2)-S(13)	167.95(11)	N(2)-Ni(2)-S(14)	86.47(11)
S(13)-Ni(2)-S(14)	90.77(5)	N(2)-Ni(2)-S(7)	89.86(11)
S(13)-Ni(2)-S(7)	92.99(6)	S(14)-Ni(2)-S(7)	176.24(5)
N(5)-Ni(5)-S(15)	165.59(12)	N(5)-Ni(5)-S(13)	86.54(11)
S(15)-Ni(5)-S(13)	89.93(4)	N(5)-Ni(5)-S(10)	90.39(11)

S(15)-Ni(5)-S(10)	94.37(5)	S(13)-Ni(5)-S(10)	173.67(5)	
N(6)-Ni(6)-S(13)	172.22(11)	N(6)-Ni(6)-S(14)	90.03(11)	
S(13)-Ni(6)-S(14)	90.78(5)	N(6)-Ni(6)-S(11)	89.11(11)	
S(13)-Ni(6)-S(11)	89.81(6)	S(14)-Ni(6)-S(11)	177.79(6)	
		6		
Co(1)-O(1)	1.9530(18)	Co(1)-N(1)	2.025(4)	
Co(1)-N(3)	2.031(5)	Co(1)-S(3)	2.3507(16)	
Co(2)-O(1)	1.962(5)	Co(2)-S(4)	2.3092(16)	
Co(2)-S(4)#2	2.3092(16)	Co(2)-S(4)#1	2.3092(16)	
	()			
O(1)-Co(1)-N(1)	114.7(2)	O(1)-Co(1)-N(3)	109.91(18)	
N(1)-Co(1)-N(3)	108.9(2)	O(1)-Co(1)-S(3)	106.54(5)	
N(1)-Co(1)-S(3)	105.03(15)	N(3)-Co(1)-S(3)	111.69(15)	
O(1)-Co(2)-S(4)	110.07(5)	O(1)-Co(2)-S(4)#2	110.07(5)	
S(4)-Co(2)-S(4)#2	108.86(5)	O(1)-Co(2)-S(4)#1	110.07(5)	
S(4)-Co(2)-S(4)#1	108.86(5)	S(4)#2-Co(2)-S(4)#1	108.86(5)	
Symmetry transformation	tions used to genera	te equivalent atoms:		
#1: -y+1/2,-z+1,x+1/2	; #2: z-1/2,-x+2	1/2,-y+1.		
v	,	7		
Ni(1)-N(3)	1.894(3)	Ni(1)-N(5)	1.897(3)	
Ni(1)-N(1)	1.898(3)	Ni(1)-N(7)	1.901(3)	
Ni(2)-S(3)	2.2350(13)	Ni(2)-S(1)	2.2355(13)	
Ni(2)-S(4)	2.2363(13)	Ni(2)-S(2)	2.2440(12)	
N(3)-Ni(1)-N(5)	89.43(13)	N(3)-Ni(1)-N(1)	90.15(13)	
N(5)-Ni(1)-N(1)	179.48(15)	N(3)-Ni(1)-N(7)	179.83(16)	
N(5)-Ni(1)-N(7)	90.45(14)	N(1)-Ni(1)-N(7)	89.97(14)	
S(3)-Ni(2)-S(1)	178.33(4)	S(3)-Ni(2)-S(4)	89.50(5)	
S(1)-Ni(2)-S(4)	89.91(5)	S(3)-Ni(2)-S(2)	90.59(5)	
S(1)-Ni(2)-S(2)	89.98(5)	S(4)-Ni(2)-S(2)	178.88(4)	
		8	· / · · ·	
Ni(1)-N(1)	1.905(4)	Ni(1)-N(1)#1	1.905(4)	
Ni(1)-S(3)#1	2.2269(13)	Ni(1)-S(3)	2.2270(13)	
Ni(2)-O(1)	1.629(9)	Ni(2)-S(3)	2.3113(14)	
Ni(2)-S(3)#2	2.3113(14)	Ni(2)-S(3)#3	2.3113(14)	
N(1)-Ni(1)-N(1)#1	162.9(2)	N(1)-Ni(1)-S(3)#1	93.51(12)	
N(1)#1-Ni(1)-S(3)#1	88.24(12)	N(1)-Ni(1)-S(3)	88.24(12)	
N(1)#1-Ni(1)-S(3)	93.51(12)	S(3)#1-Ni(1)-S(3)	168.27(7)	
O(1)-Ni(2)-S(3)	114.69(4)	O(1)-Ni(2)-S(3)#2	114.69(4)	
S(3)-Ni(2)-S(3)#2	103.79(5)	O(1)-Ni(2)-S(3)#3	114.69(4)	
S(3)-Ni(2)-S(3)#3	103.79(5)	S(3)#2-Ni(2)-S(3)#3	103.79(5)	
Symmetry transformations used to generate equivalent atoms:				
#1: -x+4/3, -x+y+2/3, -z+1/6; #2: -y+1, x-y, z; #3: -x+y+1, -x+1, z.				

References:

- J. J. Guo, W. Wang, Y.-D. Zhang, L. Yang, S.-H. Zhang and X.-Q. Zhang, J. Coord. Chem., 2013, 66, 1467.
- T. Ama, M. M. Rashid, T. Yonemura, H. Kawaguchi and T. Yasui, *Coord. Chem. Rev.*, 2000, 198, 101.
- Y. Y. Zhu, C. Cui, Y. Q. Zhang, J. H. Jia, X. Guo, C. Gao, K. Qian, S. D. Jiang, B. W. Wang,
 Z. M. Wang and S. Gao, *Chem. Sci.*, 2013, 4, 1802.