Electronic supplementary information (ESI)

Bodipy functionalized *ortho*-carborane dyads for low-energy photosensitization

Guo Fan Jin,^{*a*} Yang-Jin Cho,^{*a*} Kyung-Ryang Wee,^{*a*} Seong Ahn Hong,^{*a*} Il-Hwan Suh,^{*a*} Ho-Jin Son,^{*a*} Jong-Dae Lee, ^{**b*} Won-Sik Han,^{**c*} Dae Won Cho,^{**a*} and Sang Ook Kang^{**a*}

^a Department of Advanced Materials Chemistry, Korea University, Sejong 339-700, South Korea.
 ^b Department of Chemistry, Chosun University, Gwangju 501-759, South Korea.
 ^c Department of Chemistry, Seoul Women's University, Seoul 139-774, South Korea.

Contents

Table S1 Fluorescence maxima for compounds 1-6 in various solvents

 Table S2 Oxidation and Reduction Potentials of compounds, 1–6

Table S3 Crystal data and structure refinement for compound 6

Table S4 Important bond lengths (Å), angle (°) and torsion angles (°) for crystal 6

Table S5 Selected oscillator strength and calculated electronic transitions of complexes

Fig. S1 Energy levels and isodensity plots for selected occupied and unoccupied molecular orbitals of the complexes

Fig. S2 Absorption and excitation spectra of compounds 5-6 in CH₂Cl₂ at room temperature

Fig. S3 ¹H-NMR spectrum of compound 5

Fig. S4 ¹³C-NMR spectrum of compound **5**

Fig. S5¹¹B-NMR spectrum of compound 5

Fig. S6 ¹⁹F-NMR spectrum of compound 5

Fig. S7 ¹H-NMR spectrum of compound 6

Fig. S8¹³C-NMR spectrum of compound **6**

Fig. S9 ¹¹B-NMR spectrum of compound 6

Fig. S10 ¹⁹F-NMR spectrum of compound 6

Fig. S11 Simulated absorption spectra of references (1 and 2) and dyads (5 and 6) calculated by TD-DFT

Fig. S12 SEC spectra of Bodipys (1, 2 and 3) and dyad (6)

Table S1. Fluorescence maxima for compounds 1-6 in various solvents

Compounds —	Solvent							
Compounds –	acetonitrile (nm)	methylene chloride (nm)	tetrahydrofuran (nm)	<i>n</i> -hexane (nm)				
1	537	542	541	540				
2	537	540	539	538				
3	538	543	541	539				
4	538	543	540	540				
5	536	544	542	541				
6	539	544	542	542				

Excitation wavelength is 380 nm.

Table S2. Oxidation and Reduction Potentials of compounds, 1-6

Compounds	Ox	idation peak	s (V) ^a	Reduction peaks (V) ^a			HOMO (eV) ^c	LUMO (eV) ^c
	$E_{\rm pa}{}^{\rm b}$	$E_{\rm pc}{}^{\rm b}$	$E_{\rm ox}$	$E_{\rm pa}{}^{\rm b}$	$E_{\rm pc}{}^{\rm b}$	$E_{\rm red}$		
1	0.67	0.59	0.63	-1.69	-1.76	-1.73	-5.43	-3.07
2	0.66	0.58	0.62	-1.68	-1.75	-1.72	-5.42	-3.08
3	0.65	0.59	0.62	-1.68	-1.75	-1.72	-5.42	-3.08
4	0.65	0.59	0.62	-1.66	-1.73	-1.70	-5.42	-3.10
5	0.67	0.62	0.65	-1.60, -1.75	-1.70, -1.82	-1.65, -1.79	-5.45	-3.15
6	0.66	0.61	0.64	-1.50, -1.74	-1.70, -1.87	-1.60, -1.81	-5.44	-3.20

^a Potentials calibrated with an internal ferrocene redox reference (Fc⁺|Fc) using 0.1 M tetrabutylammonium perchlorate electrolyte in CH₂Cl₂. ^b E_{pa} = anodic peak potentials. E_{pc} = cathodic peak potentials. E_{ox} = half-wave oxidation potential between anodic and cathodic peaks. E_{red} = half-wave reduction potential between anodic and cathodic peaks. ^c HOMO (eV) = $-e(E_{ox} + 4.8)$ and LUMO (eV) = $-e(E_{red} + 4.8)$.

Table S3. Crystal data and structure refinement for compound 6

Identification code	k120401
Empirical formula	$C_{51} H_{59} B_{12} Cl_2 F_4 N_4$
Formula weight	1004.64
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system, space group	Monoclinic, $P2_1/n$
Unit cell dimensions	a = 12.955(2) Å
	$b = 16.894(3)$ Å, $\beta = 100.016(4)^{\circ}$
	c = 25.673(5) Å
Volume	5533.0(17) Å ³
Z, D _{calc}	4, 1.206 g/cm ³
μ	0.169 mm ⁻¹
<i>F</i> (000)	2092
Crystal size	$0.3 \times 0.15 \times 0.15 \text{ mm}$
θ range for data collection	1.61 to 28.41°
Limiting indices	$-17 \le h \le 17, -22 \le k \le 22, -34 \le l \le 33$
Reflections collected / unique	$56353 / 13834 [R_{int} = 0.0439]$
Completeness to $\theta = 28.41$	99.4 %
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	13834 / 0 / 686
Goodness-of-fit on F^2	1.005
Final <i>R</i> indices $[I \ge 2\sigma(I)]$	$R_1 = 0.0814, wR_2 = 0.2338$
<i>R</i> indices (all data)	$R_1 = 0.1441, wR_2 = 0.2927$
Largest diff. peak and hole	1.161 and -0.789 e.Å ⁻³

 $\overline{{}^{a}R_{1} = \sum ||F_{o}| - |F_{c}||} \text{ (based on reflections with } F_{o}^{2} > 2\sigma F^{2}\text{), } {}^{b}wR_{2} = [\sum [w(F_{o}^{2} - F_{c}^{2})^{2}]/\sum [w(F_{o}^{2})^{2}]]^{1/2}; w = 1/[\sigma^{2}(F_{o}^{2}) + (0.095P)^{2}]; , P_{o}^{2} = 1/[\sigma^{2}(F_{o}^{2}) + (0.095P)^{2}]; W_{o}^{2} =$

= $[\max(F_o^2, 0)+2F_c^2]/3$ (also with $F_o^2 > 2\sigma F^2$)

Atom1-Atom2	Distance	A1-A2-A3	Angle	A1-A2-A3-A4	Angle
C(1)-C(13)	1.428(4)	C(1)-B(3)-C(2)	59.4(2)	C(13)-C(1)-C(2)-C(39)	-3.0(4)
C(1)-C(2)	1.714(4)	C(1)-B(3)-B(9)	104.8(3)	C(2)-C(1)-C(13)-C(14)	-29(4)
C(2)-C(39)	1.504(4)	C(2)-B(3)-B(9)	105.8(2)	C(1)-C(13)-C(14)-C(15)	-18(8)
C(13)-C(14)	1.185(4)	C(1)-B(6)-C(2)	59.4(2)	C(13)-C(14)-C(15)-C(16)	143(4)
C(14)-C(15)	1.435(4)	C(13)-C(1)-C(2)	116.7(2)	C(14)-C(15)-C(16)-C(17)	-177.9(3)
		C(39)-C(2)-C(1)	117.4(2)	C(17)-C(18)-C(21)-C(30)	89.6(4)
				C(1)-C(2)-C(39)-C(40)	-125.8(3)
				C(1)-C(2)-C(39)-C(44)	51.2(4)
				C(44)-C(39)-C(40)-C(41)	-1.2(4)
				C(2)-C(39)-C(40)-C(41)	175.9(3)
				C(41)-C(42)-C(45)-C(46)	-90.9(4)
				C(43)-C(42)-C(45)-C(46)	88.9(4)

Table S4. Important bond lengths [Å], angle [°] and torsion angles [°] for 6. Numbering is for below crystal.

1					
N	lo.	Wavelength (nm)	Osc. Strength	Symmetry	Major contributors
	1	430	0.4745	Singlet	HOMO→LUMO (89%), H-1→LUMO (12%)
	2	372	0.1826	Singlet	H-1→LUMO (88%), HOMO→LUMO (12%)
	3	355	0.0332	Singlet	H-2→LUMO (99%)
	4	300	0.0059	Singlet	HOMO→L+2 (99%)
	5	292	0.0021	Singlet	H-4→LUMO (100%)
	6	258	0.1740	Singlet	H-5→LUMO (89%)
	7	240	0.0073	Singlet	H-1→L+2 (99%)
	8	211	0.0569	Singlet	H-7→LUMO (64%), HOMO→L+3 (32%)
	9	210	0.2272	Singlet	HOMO→L+3 (48%), H-7→LUMO (35%)
1	10	205	0.0015	Singlet	H-5→L+1 (95%)
1	11	204	0.0691	Singlet	HOMO→L+4 (79%)
1	12	202	0.0035	Singlet	H-3→L+1 (50%), H-4→L+2 (37%)
1	13	199	0.0016	Singlet	H-12→LUMO (48%), H-11→LUMO (34%)
1	14	197	0.0022	Singlet	H-11→LUMO (48%), H-12→LUMO (36%), HOMO→L+4 (10%)
1	15	194	0.0019	Singlet	H-13→LUMO (94%)
1	16	193	0.0134	Singlet	HOMO→L+5 (69%), H-1→L+3 (28%)
1	17	187	0.0154	Singlet	H-15→LUMO (79%)
1	18	184	0.0023	Singlet	H-17→LUMO (85%)
1	19	184	0.0036	Singlet	H-14→LUMO (87%)
2	20	183	0.0848	Singlet	H-18->LUMO (78%)
2	21	181	0.0026	Singlet	H-1→L+3 (36%), HOMO→L+8 (18%), HOMO→L+5 (15%), HOMO→L+6 (15%)
2	22	180	0.2100	Singlet	H-2→L+3 (76%), H-18→LUMO (10%)
2	23	178	0.2233	Singlet	H-4→L+1 (40%), H-3→L+2 (38%)
2	24	177	0.5860	Singlet	H-4→L+2 (45%), H-3→L+1 (27%)
2	25	176	0.0081	Singlet	H-19→LUMO (76%), H-20→LUMO (15%)
2	26	176	0.0308	Singlet	HOMO→L+7 (60%), H-1→L+4 (23%)
2	27	175	0.3002	Singlet	H-1→L+4 (60%), HOMO→L+7 (32%)

 Table S5. Selected oscillator strength (> 0.001) and calculated electronic transitions of complexes.

2				
No.	Wavelength (nm)	Osc. Strength	Symmetr y	Major contributors
1	431	0.4709	Singlet	HOMO→LUMO (89%), H-1→LUMO (12%)
2	373	0.1830	Singlet	H-1→LUMO (87%), HOMO→LUMO (-13%)
3	361	0.0024	Singlet	HOMO→L+1 (99%)
4	356	0.0350	Singlet	H-2→LUMO (99%)
5	307	0.0078	Singlet	HOMO→L+2 (99%)
6	284	0.0017	Singlet	H-4→LUMO (100%)
7	260	0.3764	Singlet	H-5→LUMO (83%)
8	251	0.0133	Singlet	H-6→LUMO (95%)
9	242	0.3313	Singlet	H-3→L+1 (74%)
10	212	0.0111	Singlet	H-9→LUMO (82%), HOMO→L+3 (-16%)
11	209	0.1891	Singlet	HOMO→L+3 (69%), H-9→LUMO (17%)
12	204	0.0332	Singlet	HOMO→L+4 (50%), HOMO→L+5 (35%)
13	204	0.0252	Singlet	HOMO→L+4 (48%), HOMO→L+5 (-30%), H-5→L+2 (-13%)
14	203	0.1253	Singlet	H-4→L+1 (41%), H-3→L+2 (32%)
15	203	0.0170	Singlet	H-5→L+2 (74%)
16	199	0.0027	Singlet	H-6→L+2 (38%), H-14→LUMO (-36%), H-13→LUMO (15%)
17	198	0.0016	Singlet	H-6→L+2 (60%), H-14→LUMO (26%)
18	197	0.0025	Singlet	H-13→LUMO (63%), H-14→LUMO (19%), HOMO→L+5 (-11%)
19	193	0.0819	Singlet	H-7→L+1 (28%), H-4→L+2 (-27%), H-8→L+1 (21%), HOMO→L+6 (-15%)
20	185	0.0015	Singlet	H-16→LUMO (89%)
21	185	0.0014	Singlet	HOMO→L+7 (95%)
22	184	0.0445	Singlet	H-7→L+1 (61%), H-8→L+1 (-23%), H-4→L+2 (12%)
23	183	0.0486	Singlet	H-17→LUMO (78%)

3				
No.	Wavelength (nm)	Osc. Strength	Symmetr y	Major contributors
1	457	0.0014	Singlet	H-1→LUMO (55%), H-1→L+1 (39%)
2	434	0.0264	Singlet	H-1→L+1 (31%), HOMO→LUMO (23%), HOMO→L+1 (19%), H-1→LUMO (-14%)
3	433	0.8155	Singlet	HOMO→L+1 (31%), H-1→LUMO (23%), H-1→L+1 (-19%), HOMO→LUMO (14%)
4	408	0.0016	Singlet	HOMO→L+2 (60%), H-1→L+2 (-34%)
5	408	0.0589	Singlet	H-1→L+2 (59%), HOMO→L+2 (33%)
6	381	0.0711	Singlet	H-2→LUMO (98%)
7	374	0.0075	Singlet	H-3→LUMO (42%), H-4→L+1 (-40%)
8	373	0.3730	Singlet	H-4→LUMO (41%), H-3→L+1 (-39%)
9	357	0.0945	Singlet	H-6→LUMO (50%), H-5→L+1 (48%)
10	314	1.8056	Singlet	H-2→L+2 (90%)
11	307	0.0152	Singlet	H-1→L+4 (29%), HOMO→L+3 (29%), H-1→L+3 (-19%), HOMO→L+4 (18%)
12	306	0.0027	Singlet	H-4→L+2 (96%)
13	292	0.0048	Singlet	H-6→L+2 (98%)
14	283	0.0023	Singlet	H-9→LUMO (51%), H-8→L+1 (48%)
15	266	0.0271	Singlet	H-7→L+1 (55%), H-11→L+1 (33%)
16	257	0.1212	Singlet	H-10→LUMO (62%), H-11→L+1 (11%)
17	253	0.0069	Singlet	H-12→L+1 (54%), H-10→LUMO (21%), H-7→L+1 (20%)

No.	Wavelength (nm)	Osc. Strength	ymmetry	Major contributors
1	435	0.1814	Singlet	H-1→LUMO (20%), HOMO→LUMO (20%), HOMO→L+1 (16%), H-1→L+1 (-15%), HOMO→L+2 (-11%), H-1→L+2 (10%)
2	435	0.4681	Singlet	H-1→LUMO (20%), HOMO→LUMO (-19%), H-1→L+1 (-16%), HOMO→L+1 (-15%), H-1→L+2 (12%), HOMO→ +2 (11%)
3	424	0.0699	Singlet	H-1→L+2 (38%), HOMO→L+2 (-36%)
4	424	0.2011	Singlet	HOMO→L+2 (37%), H-1→L+2 (36%)
5	379	0.0568	Singlet	H-2→L+1 (95%)
6	374	0.0879	Singlet	H-4→LUMO (22%), H-3→LUMO (-22%), H-3→L+1 (22%), H-4→L+1 (21%)
7	373	0.2751	Single	H-4→L+1 (23%), H-3→LUMO (22%), H-4→LUMO (21%), H-3→L+1 (-21%)
8	357	0.1558	Singlet	H-5→LUMO (49%), H-6→L+1 (-48%)
9	347	0.8194	Singlet	H-2→L+2 (80%), H-7→L+3 (-10%)
10	346	0.0032	Singlet	HOMO→L+3 (74%), H-1→L+3 (22%)
11	346	0.0076	Singlet	H-1→L+3 (74%), HOMO→L+3 (-22%)
12	323	0.1383	Singlet	H-7→LUMO (92%)
13	316	0.001	Singlet	H-3→L+2 (92%)
14	316	0.001	Singlet	H-4→L+2 (92%)
15	310	0.024	Singlet	H-1→L+4 (34%), HOMO→L+5 (-33%), H-1→L+5 (-17%), HOMO→L+4 (-16%)
16	280	0.0015	Singlet	H-10→LUMO (44%), H-11→L+1 (43%)
17	280	0.0016	Singlet	H-11→LUMO (44%), H-10→L+1 (43%)
18	269	2.1968	Singlet	H-7→L+3 (54%), H-8→L+1 (18%), H-9→LUMO (-17%)

_

5				
No.	Wavelength (nm)	Osc. Strength	Symmetry	Major contributors
1	442	0.6849	Singlet	H-1→LUMO (-44%), HOMO→L+1 (47%)
2	437	0.1411	Singlet	H-1→L+1 (46%), HOMO→LUMO (-41%)
3	376	0.3052	Singlet	H-2→L+1 (35%), H-3→LUMO (32%), H-1→L+2 (-22%)
4	374	0.0688	Singlet	H-2→LUMO (35%), H-3→L+1 (31%), HOMO→L+2 (21%)
5	361	0.0284	Singlet	H-4→L+1 (52%), H-5→LUMO (-45%)
6	360	0.0391	Singlet	H-4→LUMO (54%), H-5→L+1 (-42%)
7	348	0.0074	Singlet	HOMO→L+3 (88%)
8	347	0.0112	Singlet	H-1→L+3 (89%)
9	322	0.0072	Singlet	HOMO→L+4 (41%), H-1→L+4 (-35%), HOMO→L+5 (10%)
10	322	0.0072	Singlet	H-1→L+4 (41%), HOMO→L+4 (36%), H-1→L+5 (-10%)
11	303	0.0011	Singlet	HOMO→L+5 (78%), H-1→L+4 (19%)
12	297	0.0716	Singlet	H-6→LUMO (50%), H-7→L+1 (40%)
13	296	0.0779	Singlet	H-6→L+1 (46%), H-7→LUMO (40%)
14	295	0.0052	Singlet	H-2→L+2 (93%)
15	294	0.0028	Singlet	H-3→L+2 (92%)
16	280	0.0014	Singlet	H-7→L+1 (32%), H-6→LUMO (-28%), H-11→LUMO (10%), H-8→LUMO (-10%)
17	279	0.0019	Singlet	H-7 \rightarrow LUMO (32%), H-6 \rightarrow L+1 (-29%), H-10 \rightarrow LUMO (11%), H-8 \rightarrow L+1 (-10%)
18	273	0.0049	Singlet	$H-10 \rightarrow L+1 (25\%), H-7 \rightarrow L+1 (-19\%),$ $H-6 \rightarrow LUMO (18\%), H-8 \rightarrow LUMO (-17\%),$ $H-11 \rightarrow LUMO (16\%)$
19	272	0.0055	Singlet	H-2→L+3 (89%)
20	262	0.0125	Singlet	HOMO→L+6 (92%)
21	262	0.2042	Singlet	H-9→L+1 (37%), H-8→LUMO (28%)
22	261	0.0003	Singlet	H-4→L+3 (87%)
23	260	0.0451	Singlet	H-5→L+3 (50%), H-8→L+1 (-21%), H-9→LUMO (-12%)
24	260	0.056	Singlet	H-5→L+3 (37%), H-8→L+1 (28%), H-9→LUMO (14%)
25	259	0.0129	Singlet	H-10 \rightarrow L+1 (57%), H-11 \rightarrow LUMO (-20%), H-8 \rightarrow LUMO (18%)
26	259	0.165	Singlet	H-10→LUMO (46%), H-9→LUMO (-23%), H-11→L+1 (-14%)

6				
No.	Wavelength (nm)	Osc. Strength	Symmetr y	Major contributors
1	452	0.1157	Singlet	HOMO→L+2 (64%), HOMO→L+1 (32%)
2	443	0.4286	Singlet	H-1→LUMO (88%)
3	431	0.2825	Singlet	HOMO→L+1 (57%), HOMO→L+2 (-31%), H-2→L+1 (-12%)
4	397	0.0065	Singlet	H-1→L+2 (91%)
5	387	0.0268	Singlet	H-2→LUMO (82%)
6	380	0.1401	Singlet	H-4→LUMO (72%)
7	377	0.1311	Singlet	H-2→L+1 (82%), HOMO→L+1 (12%)
8	361	0.0182	Singlet	H-5→LUMO (90%)
9	360	0.0518	Singlet	H-3→L+1 (88%)
10	355	0.0024	Singlet	HOMO→L+3 (97%)
11	349	0.0512	Singlet	H-1→L+3 (95%)
12	331	0.0129	Singlet	HOMO→L+5 (79%), HOMO→L+4 (-18%)
13	328	0.0021	Singlet	H-2→L+2 (97%)
14	320	0.0034	Singlet	H-6→LUMO (99%)
15	314	0.0298	Singlet	H-6→L+1 (96%)
16	307	0.1075	Singlet	H-7→LUMO (82%)
17	301	0.0012	Singlet	H-4→L+2 (94%)
18	286	0.0018	Singlet	H-9→LUMO (92%)
19	278	0.685	Singlet	H-6→L+2 (80%)
20	278	0.0032	Singlet	H-2→L+3 (93%)
21	277	0.0032	Singlet	H-8→LUMO (97%)
22	273	0.0065	Singlet	H-4→L+3 (90%)
23	269	0.0013	Singlet	H-10→LUMO (95%)
24	268	0.0013	Singlet	H-10→L+1 (91%)
25	268	0.0114	Singlet	H-7→L+1 (94%)
26	261	0.0063	Singlet	H-5→L+3 (80%)
27	261	0.0375	Singlet	H-12→L+2 (38%), H-5→L+3 (-17%), H-7→L+2 (11%)

Fig. S1 Energy levels and isodensity plots for selected occupied and unoccupied molecular orbitals of the complexes.

Fig. S2 Absorption (black lines) and excitation (red lines) spectra of 1–6 in CH₂Cl₂ at room temperature.

Fig. S4 ¹³C-NMR spectrum of compound 5.

Fig. S6 ¹⁹F-NMR spectrum of compound 5.

Fig. S8 ¹³C-NMR spectrum of compound 6.

Fig. S10 ¹⁹F-NMR spectrum of compound 6.

Fig. S11 Simulated absorption spectra of references (1 and 2) and dyads (5 and 6) calculated by TD-DFT.

Fig. S12 Spectroelectrochemical spectra for 1, 2, 3 and 6 under various voltages.