Supporting Information

Structural diversity of five new bitriazole-based complexes: luminescence, sorption, and magnetic properties

Li-Yun Du, Hui Wang, Ge Liu, Dong Xie, Fu-Sheng Guo, Lei Hou* and Yao-Yu Wang

Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an *710069*, P. R. China. Email: lhou2009@nwu.edu.cn

Fig. S1 The intra- and inter-molecular intra- and inter-molecular O-H···O, O-H···N and N-H···O hydrogen-bonging interactions in **3**.

Fig. S2 a) The 6-connected triangular prism node, and b) a cage formed by seven trinuclear nodes with one triangular face and three pentagonal faces in **5**.

Fig. S3 PXRD patterns of 1-5 simulated from the X-ray single-crystal structures and assynthesized samples.

Fig. S4 TGA plots of the synthesized samples of 1-5

Calculation of sorption heat of 2 for CO₂ uptake using Virial 2 model.

$$\ln P = \ln N + 1 / T \sum_{i=0}^{m} aiN^{i} + \sum_{i=0}^{n} biN^{i} \qquad Q_{st} = -R \sum_{i=0}^{m} aiN^{i}$$

The above virial equation was used to fit the combined CO_2 isotherm data for **2** at 273 and 293 K, where *P* is the pressure, *N* is the adsorbed amount, *T* is the temperature, a_i and b_i are virial coefficients, and *m* and *n* are the number of coefficients used to describe the isotherms. Q_{st} is the coverage-dependent enthalpy of adsorption and *R* is the universal gas constant.

Fig. S5 CO₂ adsorption isotherms of 2 with fitting by Virial 2 model. Fitting results: a0 = -2869.12557, a1 = -19.77529, a2 = 2.85308, a3 = -0.1767, a4 = 0.00367, b0 = 14.278. Chi[^]2 = 0.00889, R[^]2 = 0.99605.

Fig. S6 Heat of CO₂ adsorption for 2 estimated by the virial equation.

Fig. S7 The luminescence decays of 1 a), 2 b), 3 c), H_2pzbtz d) monitored at corresponding excitation/emission maxima.

Fig. S8 The temperature dependence of the reciprocal susceptibilities (χ_M^{-1}), red line corresponds to the best fit according to Curie-Weiss law.

1								
Zn(1)-O(1)	2.0606(18)	Zn(1)-N(2)#1	2.078(2)	Zn(1)-N(1)	2.122(2)			
Zn(1)-O(1W)	2.1463(19)	Zn(1)-N(8)#2	2.223(2)	Zn(1)-N(4)	2.229(2)			
Zn(2)-O(2)	2.0261(19)	Zn(2)-O(2W)	2.0713(19)	Zn(2)-N(3)#3	2.090(2)			
Zn(2)-N(5)	2.129(2)	Zn(2)-N(7)	2.249(2) N(2)#1-Zn(1)-N(1)		98.73(8)			
O(1)-Zn(1)-N(2)#1	88.74(8)	O(1)-Zn(1)-N(1)	171.22(8)	N(1)-Zn(1)-O(1W)	91.76(8)			
O(1)-Zn(1)-O(1W)	92.74(8)	N(2)#1-Zn(1)-O(1W)	90.87(8)	N(1)-Zn(1)-N(8)#2	87.88(8)			
O(1)-Zn(1)-N(8)#2	86.76(8)	N(2)#1-Zn(1)-N(8)#2	95.91(8)	N(2)#1-Zn(1)-N(4)	174.62(8)			
O(1W)-Zn(1)-N(8)#2	173.19(8)	O(1)-Zn(1)-N(4)	96.62(8)	N(8)#2-Zn(1)-N(4)	84.88(8)			
N(1)-Zn(1)-N(4)	75.96(8)	O(1W)-Zn(1)-N(4)	88.43(8)	O(2W)-Zn(2)-N(3)#3	97.62(8)			
O(2)-Zn(2)-O(2W)	87.97(8)	O(2)-Zn(2)-N(3)#3	117.68(9)	N(3)#3-Zn(2)-N(5)	99.46(8)			
O(2)-Zn(2)-N(5)	88.84(8)	O(2W)-Zn(2)-N(5)	162.10(8)	N(3)#3-Zn(2)-N(7)	91.77(8)			
O(2)-Zn(2)-N(7)	148.81(8)	O(2W)-Zn(2)-N(7)	98.65(8)	N(5)-Zn(2)-N(7)	75.54(8)			
2								
Cd(1)-N(2)#1	2.254(4)	Cd(1)-N(6)#2	2.267(4)	Cd(1)-N(4)	2.342(4)			
Cd(1)-N(3)	2.349(4)	Cd(1)-N(8)#3	2.449(5)	Cd(1)-N(7)#2	2.485(5)			
N(2)-Cd(1)#5	2.254(4)	N(8)-Cd(1)#3	2.449(4)	N(6)-Cd(1)#4	2.267(4)			
N(2)#1-Cd(1)-N(6)#2	111.58(15)	N(2)#1-Cd(1)-N(4)	93.12(16)	N(6)#2-Cd(1)-N(4)	155.25(16)			
N(2)#1-Cd(1)-N(3)	100.57(18)	N(6)#2-Cd(1)-N(3)	104.66(16)	04.66(16) N(4)-Cd(1)-N(3)				
N(2)#1-Cd(1)-N(8)#3	88.53(18)	N(6)#2-Cd(1)-N(8)#3	86.01(16) N(4)-Cd(1)-N(8)#3		93.32(15)			
N(3)-Cd(1)-N(8)#3	161.97(17)	N(2)#1-Cd(1)-N(7)#2	169.95(17)	N(6)#2-Cd(1)-N(7)#2	73.52(15)			
N(4)-Cd(1)-N(7)#2	81.83(15)	N(3-Cd(1)-N(7)#2	86.03(17)	N(8)#3-Cd(1)-N(7)#2	83.13(17)			
3								
Zn(1)-N(4)#1	2.083(6)	Zn(1)-N(4)	2.083(6)	Zn(1)-N(3)#1	2.134(5)			
Zn(1)-N(3)	2.134(5)	Zn(1)-O(1W)#1	2.245(5)	Zn(1)-O(1W)	2.245(5)			
Zn(2)-O(1)	1.975(5)	Zn(2)-O(2W)	2.015(5)	Zn(2)-O(3W)	2.016(5)			
Zn(2)-N(6)	2.077(6)	Zn(2)-N(7)	2.234(6)	N(4)#1-Zn(1)-N(4)	180.0(3)			
N(4)#1-Zn(1)-N(3)#1	78.3(2)	N(4)-Zn(1)-N(3)#1	101.7(2)	N(4)#1-Zn(1)-N(3)	101.7(2)			

Table S1. Selected bond lengths (Å) and bond angles (°) of complexes 1-5.

N(4)-Zn(1)-N(3)	78.3(2)	N(3)#1-Zn(1)-N(3)	180.0(4)	N(4)#1-Zn(1)-O(1W)#1	89.8(2)
N(4)-Zn(1)-O(1W)#1	90.2(2)	N(3)#1-Zn(1)-O(1W)#1	91.3(2)	N(3)-Zn(1)-O(1W)#1	88.7(2)
N(4)#1-Zn(1)-O(1W)	90.2(2)	N(4)-Zn(1)-O(1W) 89.8(2)		N(3)#1-Zn(1)-O(1W)	88.7(2)
N(3)-Zn(1)-O(1W)	91.3(2)	O(1W)#1-Zn(1)-O(1W) 180.0(2) O(1)-Zn(2)-O(2W)		O(1)-Zn(2)-O(2W)	102.7(2)
O(1)-Zn(2)-O(3W)	91.2(2)	O(2W)-Zn(2)-O(3W)	94.1(2)	O(1)-Zn(2)-N(6)	133.7(2)
O(2W)-Zn(2)-N(6)	122.6(2)	O(3W)-Zn(2)-N(6)	94.2(2)	O(1)-Zn(2)-N(7)	93.2(2)
O(2W)-Zn(2)-N(7)	92.4(2)	O(3W)-Zn(2)-N(7)	171.2(2)	N(6)-Zn(2)-N(7)	77.3(2)
		4	·	·	
Co(1)-O(1W)#1	2.083(3)	Co(1)-O(1W)	2.083(3)	Co(1)-N(7)#1	2.108(3)
Co(1)-N(7)	2.108(3)	Co(1)-N(5)	2.155(3)	Co(1)-N(5)#1	2.155(3)
O(1W)#1-Co(1)-O(1W)	0.00(17))	O(1W)#1-Co(1)-N(7)#1 90.41(12)		O(1W)-Co(1)-N(7)#1	89.59(12)
O(1W)#1-Co(1)-N(7)	89.59(12)	O(1W)-Co(1)-N(7) 90.41(12)		N(7)#1-Co(1)-N(7)	180.000(1)
O(1W)#1-Co(1)-N(5)	90.76(12)	O(1W)-Co(1)-N(5)	O(1W)-Co(1)-N(5) 89.24(12)		101.84(12)
N(7)-Co(1)-N(5)	78.16(12)	O(1W)#1-Co(1)-N(5)#1	89.24(12)	O(1W)-Co(1)-N(5)#1	90.76(12)
N(7)#1-Co(1)-N(5)#1	78.16(12)	N(7)-Co(1)-N(5)#1	101.84(12)	N(5)-Co(1)-N(5)#1	180.000(1)
		5			
Co(2)- N(2)#1	2.078(3)	Co(2)- N(2)	2.078(3)	Co(2)- N(9)#1	2.127(3)
Co(2)-N(9)	2.127(3)	Co(2)-N(12)	2.145(3)	Co(2)-N(12)#1	2.145(3)
Co(1)-N(10)#2	2.072(3)	Co(1)-N(6)	2.093(3)	Co(1)-O(1W)	2.114(3)
Co(1)-N(1)#3	2.122(3)	Co(1)-N(4)#3	2.139(3)	Co(1)-N(7)	2.225(3)
Co(3)-O(2W)#4	2.087(3)	Co(3)-O(2W)	2.087(3)	Co(3)-N(14)	2.104(3)
Co(3)- N(14)#1	2.104(3)	Co(3)-N(15)	2.200(3)	Co(3)- N(15)#4	2.200(3)
N(4)-Co(1)#5	2.139(3)	N(1)-Co(1)#5	2.122(3)	N(10)-Co(1)#6	2.072(3)
N(2) #1-Co(2)-N(2)	90.84(16)	N(2) #1-Co(2)-N(9) #1	92.66(10)	N(2) -Co(2)-N(9) #1	96.83(10)
N(2) #1-Co(2)-N(9)	96.83(10)	N(2)-Co(2)-N(9)	92.66(10)	N(9) #1-Co(2)-N(9)	166.47(14)
N(2) -Co(2)-N(12)	88.83(11)	N(12)#1-Co(2)-N(2)	173.57(10)	N(9) #1-Co(2)-N(12) #1	76.77(10)
N(12)#1-Co(2)-N(9)	93.75(10)	N(12)-Co(2)-N(2)#1	173.57(10)	N(2)#1-Co(2)-N(12)#1	88.83(11)
N(12)-Co(2)-N(9)#1	93.75(10)	N(9)-Co(2)-N(12)	76.77(10)	N(12)-Co(2)-N(12)#1	92.19(16)
N(10)#2-Co(1)-N(6)	92.84(11)	N(10)#2-Co(1)-O(1W)	92.92(12)	N(6)-Co(1)-O(1W)	96.35(10)
N(10)#2-Co(1)-N(1)#3	96.57(10)	N(6)-Co(1)-N(1)#3	168.68(10)	O(1W)-Co(1)-N(1)#3	89.47(10)
N(10)#2-Co(1)-N(4)#3	171.57(12)	N(6)-Co(1)-N(4)#3	92.77(10)	O(1W)-Co(1)-N(4)#3	92.71(11)
N(10)#3-Co(1)-N(7)#3	77.21(10)	N(10)#2-Co(1)-N(7)	93.05(12)	N(6)-Co(1)-N(7)	77.18(10)
O(1W)-Co(1)-N(7)	171.40(11)	N(1)#3-Co(1)-N(7)	95.99(11)	N(4)#3-Co(1)-N(7)	82.07(11)
O(2W)#4-Co(3)-O(2W)	96.4(2)	O(2W)#4-Co(3)-N(14)	87.54(11)	O(2W)-Co(3)-N(14)	93.58(11)
O(2W)#4-Co(3)-N(14)#4	93.58(11)	O(2W)-Co(3)-N(14) #4	87.54(11)	N(14)#4-Co(3)-N(14)	178.33(16)
O(2W)#4-Co(3)-N(15)	92.08(14)	O(2W)-Co(3)-N(15)	166.65(14)	N(14)-Co(3)-N(15)	76.50(12)
N(15)-Co(3)-N(14)#4	102.20(11)	O(2W)#4-Co(3)-N(15) #4	166.66(14)	O(2W)-Co(3)-N(15) #4	166.66(13)
N(15)#4-Co(3)-N(14)	102.20(11)	N(14) #4-Co(3)-N(15) #4	76.50(12)	N(15)#4-Co(3)-N(15)	81.50(18)
N(3)-N(4)-Co(1)#5	138.1(2)	N(2)-N(1)-Co(1)#5	139.6(2)	N(9)-N(10)-Co(1)#6	121.25(19)

Symmetry codes for 1: #1 -x+2, -y+2, -z+1; #2 -x+1, y+1/2, -z+1/2; #3 x, -y+3/2, z-1/2; #4 x, -y+3/2, z+1/2; #5 -x+1, y-1/2, -z+1/2. For 2: #1 -x, y-1/2, -z+1/2; #2 x, -y+1/2, z-1/2; #3 -x+1, -y, -z+1; #4 x, -y+1/2, z+1/2; #5 -x, y+1/2, -z+1/2. For 3: #1 -x, -y, -z. For 4: #1 -x+3/2, -y+5/2, -z+1. For 5: #1 y, x, -z; #2 x-1/2, -y+3/2, -z+1/4; #3 y-1/2, -x+3/2, z+1/4; #4 -y+2, -x+2, -z+1/2; #5 - y+3/2, x+1/2, z-1/4; #6 x+1/2, -y+3/2, -z+1/4.

-									
D-H····A	D-H (Å)	Н…А	D…A	<d-h…a< td=""></d-h…a<>					
		(Å)	(Å)	(⁰)					
3									
O3W -H3W1…N1	0.85	1.93	2.753(9)	162					
O3W-	0.85	2.59	3.170(9)	126					
H3W2…O1#1									
O3W-	0.85	1.92	2.726(8)	157					
H3W2…O3#1									
N2-H2···O3#2	0.86	1.88	2.726(7)	170					
01W-	0.85	2.00	2.805(7)	157					
H1W1…O4#3									
01W-	0.85	2.00	2.852(10)	176					
H1W2…N8#2									
O2W-	0.85	1.84	2.691(8)	180					
H2W2…O2#4									
O2W-	0.85	1.90	2.745(11)	180					
H2W1…O3#3									
C6-H6…O2W#5	0.93	2.59	3.377(11)	143					
4									
01W-	0.85	2.04	2.868(4)	164					
H1W1…N6#6									
N2-H2…N4#7	0.86	2.34	3.183(5)	164					
01W-	0.85	2.28	3.100(5)	162					
H1W2…N3#8									
C1-H1…N8#9	0.93	2.33	3.117(6)	142					

Table S2. The hydrogen bond parameters in complexes **3** and **4**.

Symmetry codes: #1 x, -1/2-y, -1/2+z; #2 x, y, -1+z; #3 1+x, y, z; #4 1+x, -1/2-y, 1/2+z; #5 x, -1/2-y, 1/2+z; #6 1/2+x, 1/2+y, z; #7 3/2-x, -1/2+y, 3/2-z; #8 3/2-x, 1/2-y, 1-z; #9 1-x, -y, 1-z.