Electronic Supporting Information

Unprecedented Silicon(II)→Calcium Complexes with N-Heterocyclic Silylenes

Burgert Blom,^{a*} Günter Klatt,^b Daniel Gallego,^a Gengwen Tan,^a and Matthias Driess^{a*}

^aDepartment of Chemistry: Metalorganics and Inorganic Materials, Sekr. C2 Technische Universität Berlin Strasse des 17. Juni 135, 10623 Berlin (Germany) Fax: (+49)30-314-29732; and ^bPhysikalisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg (Germany). E-mail: <u>burgert.blom@tu-berlin.de; matthias.driess@tu-berlin.de</u>

Electronic Supplementary Information

Contents:

1.	Selected NMR and ESI-MS spectra	S2
2.	Crystal data and refinement of compounds 3, 6, 7 and 10.	S9
3.	Computational Details (DFT) for compounds 6 and 7.	S35
4.	Z-Matrices and optimized structures of 6 and 7	S36
5.	Bader Atoms in Molecules (AIM) Analysis	S41
6.	References	S44

1. Selected NMR and ESI-MS spectra.

Fig. S1 ¹H NMR spectrum of the free NHSi 5 in C_6D_6 at 298 K.

Fig. S2 ${}^{13}C{}^{1H}$ NMR spectrum of the free NHSi 5 in C₆D₆ at 298 K.

Fig. S3 29 Si{ 1 H} NMR spectrum of the free NHSi 5 in C₆D₆ at 298 K.

Fig. S4 ¹H NMR spectrum of the mixture of $[(\eta^5-C_5Me_5)CaCl(thf-d_8)_2]_2$ and $:Si(Cp^*)(PhC(N^tBu)_2)$ in THF-d₈ resulting from the reaction of compound **2** with chlorosilylene **1**.

Fig. S5 ¹³C{¹H} NMR spectrum of the mixture of $[(\eta^5-C_5Me_5)CaCl(thf-d_8)_2]_2$ and :Si(Cp*)(PhC(N^tBu)_2) in THF-*d*₈ resulting from the reaction of compound **2** with chlorosilylene **1**. The expansion on the right shows the HSQC spectrum where the Cp* in coordinated to Si in a η^5 fashion due to only one cross peak for the CH₃ groups.

Fig. S6 ²⁹Si{¹H} NMR spectrum of :Si(Cp*)(PhC(N^tBu)₂) in THF- d_8 at 298 K. The resonance signal is at $\delta = 52.4$ ppm.

Fig. S7 ¹H NMR spectrum of $[(\eta^5-C_5Me_5)_2Ca \leftarrow :Si(O-C_6H_4-2-^tBu)\{(N^tBu)_2CPh\}]$ (6) in C₆D₆ at 298 K.

Fig. S8 ¹³C{¹H} (with partial assignment shown) and ²⁹Si NMR spectrum of $[(\eta^5 - C_5Me_5)_2Ca \leftarrow :Si(O-C_6H_4-2-^tBu)\{(N^tBu)_2CPh\}]$ (6) in C₆D₆ at 298 K. The resonance signal of the Si is only shifted by 4.3 ppm downfield relative to the free ligand.

Fig. S9 ${}^{1}H^{,13}C{}^{1}H$ (with full assignment shown), ${}^{29}Si$ NMR spectrum; and ESI-MS of $[M+H]^{+}$ of compound (7) in C₆D₆ at 298 K.

Fig. S10 ²⁹Si-MAS-NMR of compound 7 in the solid state. $\delta = 81.4$ ppm (corresponds to chemical shift in solution).

Fig. S11 Comparison of an authentic sample of NHSi **8** (top) and the NMR spectrum of compound **7** dissolved in THF, then dried *in vacuo* (both recorded in C_6D_6) (below) clearly showing free NHSi (8) and concomitant formation of **2**·thf₂. (The shifts match those reported in the literature. See: M. J. McCormick, S. C. Stockwell, C. E. H. Davies, T. P. Hanusa, J. C. Huffmann, *Organometallics* 1989, **8**, 2044.)

Fig. S12 ¹H NMR spectrum of isolated **10** in C₆D₆ at 298 K (left) and ¹³C{¹H} NMR spectrum of **10** at 298 K (right) showing partial assignment.

Fig. S13 Comparative ¹H NMR (in C_6D_6) spectra of the reaction solution of compound 7 with benzophenone (bottom); an authentic sample of NHSi 8 (middle) and isolated 10 (top).

2. Crystal data and refinement of compounds 3-5.

Fig. S14 Ortep representation of the molecular structure of dimer **3** in the solid state. Thermal ellipsoids are set at the 50 % probability interval and H atoms are omitted for clarity.

Fig. S15 Ortep representation of the molecular structure of compound 7 in the solid state. Thermal ellipsoids are set at the 50 % probability interval and H atoms are omitted for clarity. The crystal data is only of medium quality but the structural motif is definite.

	1/2·3	6	2.7	10 .0.5 toluene
formula	C ₁₈ H ₃₁ CaClO ₂	C45H66CaN2OSi	$C_{60}H_{100}Ca_2N_4Si_2$	C _{36.50} H ₄₄ CaO
formula weight	354.96	719.17	1013.78	538.80
crystal system	Triclinic	Orthorhombic	Monoclinic	Monoclinic
space group	<i>P</i> -1	P212121	$P2_{1}/n$	$P2_{1}/c$
a/Å	9.0963(6)	10.74110(10)	19.1465(8)	9.91840(10)
b/Å	13.5005(9)	14.40170(10)	15.7739(9)	14.12280(10)
c/Å	17.6543(13)	27.9573(2)	21.0187(12)	23.6163(3)
a/deg	80.412(6)			
β /deg	76.114(6)		93.404(5)	101.9090(10)
γ/deg	70.938(6)			
$V/Å^3$	1980.1(2)	4324.72(6)	6336.8(6)	3236.87(6)
Ζ	4	4	4	4
$ ho_{ m calcd}/ m g{\cdot} m cm^{-3}$	1.191	1.105	1.063	1.106
μ/mm^{-1}	3.997	1.758	2.190	1.843
<i>F</i> (000)	768	1568	2224	1164
crystal size/mm ³	0.15 x 0.09 x 0.08	0.43 x 0.25 x 0.12	0.21 x 0.16 x 0.13	0.39 x 0.32 x 0.11
θ range/deg	2.59-67.48	3.16-67.48	3.03-67.48	3.67-67.48
collected data	13210	27936	24037	21947
unique data	7128 ($R_{\rm int} = 0.0376$)	7792 ($R_{\rm int} = 0.0304$)	11406 ($R_{int} = 0.0708$)	5811 ($R_{int} = 0.0226$)
completeness to θ	100.0%	100.0%	100.0%	100.0%
data/restraints/para meters	7128 / 54 / 425	7792 / 0 / 470	11406 / 18 / 670	5811 / 92 / 390
GOF on F^2	1.094	1.034	1.923	1.128
final <i>R</i> indices	$R_1 = 0.0497$	$R_1 = 0.0309$	$R_1 = 0.1855$	$R_1 = 0.0513$
[<i>I</i> >2 <i>σ</i> (<i>I</i>)]	$wR_2 = 0.1248$	$wR_2 = 0.0853$	$wR_2 = 0.5168$	$wR_2 = 0.1442$
R indices (all data)	$R_1 = 0.0648$	$R_1 = 0.0314$	$R_1 = 0.2158$	$R_1 = 0.0521$
	$wR_2 = 0.1365$	$wR_2 = 0.0857$	$wR_2 = 0.5336$	$wR_2 = 0.1445$
Largest diff peak/hole (e·Å ⁻³)	0.598/-0.371	0.350/-0.274	2.262/-0.608	0.490/-0.372

Table 1s. Crystal Data and Structure Refinement for 3, 6, 7 and 10. ^{*a*}

^{*a*} All data were collected at 173(2) K using Mo K_a ($\lambda = 0.71073$ Å) radiation. $R_1 = \sum(||F_o| - |F_c||)/\sum |F_o|$, $wR_2 = \{\sum [w(F_o^2 - F_c^2)^2/\sum [w(F_o^2)^2]\}^2\}^{1/2}$, GOF = $\{\sum [w(F_o^2 - F_c^2)^2]/(N_o - N_p)\}^{1/2}$.

Cl(2)-Ca(2)#1	2.7346(9)
Cl(2)-Ca(2)	2.7393(10)
Ca(2)-O(4)	2.417(2)
Ca(2)-O(3)	2.418(2)
Ca(2)-C(23)	2.664(3)
Ca(2)-C(19)	2.673(3)
Ca(2)-C(22)	2.678(3)
Ca(2)-C(21)	2.694(3)
Ca(2)-C(20)	2.700(3)
Ca(2)-Cl(2)#1	2.7346(9)
Ca(2)-Ca(2)#1	4.1570(12)
Cl(1)-Ca(1)	2.7298(10)
Cl(1)-Ca(1)#2	2.7545(9)
Ca(1)-O(2)	2.404(2)
Ca(1)-O(1)	2.435(2)
Ca(1)-C(5)	2.654(3)
Ca(1)-C(4)	2.666(3)
Ca(1)-C(1)	2.683(3)
Ca(1)-C(2)	2.693(3)
Ca(1)-C(3)	2.694(3)
Ca(1)-Cl(1)#2	2.7545(9)
Ca(1)-Ca(1)#2	4.1894(12)
O(1)-C(14)	1.437(5)
O(1)-C(11)	1.443(4)
O(2)-C(15)	1.445(4)
O(2)-C(18)	1.470(4)
C(1)-C(5)	1.410(5)
C(1)-C(2)	1.417(5)

Table 2s. Selected bond (Å) and angles (°) for **3**.

C(1)-C(6)	1.502(5)
C(2)-C(3)	1.404(5)
C(2)-C(7)	1.516(5)
C(3)-C(4)	1.416(5)
C(3)-C(8)	1.511(5)
C(4)-C(5)	1.409(5)
C(4)-C(9)	1.512(5)
C(5)-C(10)	1.511(5)
C(11)-C(12A)	1.459(12)
C(11)-C(12)	1.538(11)
C(12)-C(13)	1.55(2)
C(13)-C(14)	1.395(17)
C(12A)-C(13A)	1.60(2)
C(13A)-C(14)	1.477(15)
C(15)-C(16)	1.511(5)
C(16)-C(17)	1.525(5)
C(17)-C(18)	1.497(5)
O(3)-C(29)	1.444(4)
O(3)-C(32)	1.454(4)
O(4)-C(33)	1.441(4)
O(4)-C(36)	1.443(4)
C(19)-C(20)	1.408(5)
C(19)-C(23)	1.414(5)
C(19)-C(24)	1.502(5)
C(20)-C(21)	1.418(5)
C(20)-C(25)	1.503(5)
C(21)-C(22)	1.407(5)
C(21)-C(26)	1.508(5)
C(22)-C(23)	1.411(5)
C(22)-C(27)	1.505(5)

C(23)-C(28)	1.505(5)
C(29)-C(30)	1.525(6)
C(30)-C(31)	1.481(6)
C(31)-C(32)	1.513(5)
C(33)-C(34)	1.525(5)
C(34)-C(35)	1.519(6)
C(35)-C(36)	1.513(5)

Ca(2)#1-Cl(2)-Ca(2)	98.83(3)
O(4)-Ca(2)-O(3)	74.46(8)
O(4)-Ca(2)-C(23)	109.16(10)
O(3)-Ca(2)-C(23)	139.76(10)
O(4)-Ca(2)-C(19)	87.46(9)
O(3)-Ca(2)-C(19)	114.01(10)
C(23)-Ca(2)-C(19)	30.72(11)
O(4)-Ca(2)-C(22)	137.44(9)
O(3)-Ca(2)-C(22)	123.85(10)
C(23)-Ca(2)-C(22)	30.62(10)
C(19)-Ca(2)-C(22)	50.44(10)
O(4)-Ca(2)-C(21)	128.01(10)
O(3)-Ca(2)-C(21)	94.65(10)
C(23)-Ca(2)-C(21)	50.44(11)
C(19)-Ca(2)-C(21)	50.27(10)
C(22)-Ca(2)-C(21)	30.38(11)
O(4)-Ca(2)-C(20)	97.69(10)
O(3)-Ca(2)-C(20)	89.30(9)
C(23)-Ca(2)-C(20)	50.53(11)
C(19)-Ca(2)-C(20)	30.38(11)
C(22)-Ca(2)-C(20)	50.34(10)
C(21)-Ca(2)-C(20)	30.48(11)

O(4)-Ca(2)-Cl(2)#1	130.52(6)
O(3)-Ca(2)-Cl(2)#1	80.44(6)
C(23)-Ca(2)-Cl(2)#1	117.42(8)
C(19)-Ca(2)-Cl(2)#1	141.98(8)
C(22)-Ca(2)-Cl(2)#1	91.89(7)
C(21)-Ca(2)-Cl(2)#1	95.53(8)
C(20)-Ca(2)-Cl(2)#1	124.17(8)
O(4)-Ca(2)-Cl(2)	84.13(6)
O(3)-Ca(2)-Cl(2)	130.93(6)
C(23)-Ca(2)-Cl(2)	88.80(8)
C(19)-Ca(2)-Cl(2)	108.40(9)
C(22)-Ca(2)-Cl(2)	101.81(8)
C(21)-Ca(2)-Cl(2)	132.18(8)
C(20)-Ca(2)-Cl(2)	137.75(8)
Cl(2)#1-Ca(2)-Cl(2)	81.17(3)
O(4)-Ca(2)-Ca(2)#1	111.10(6)
O(3)-Ca(2)-Ca(2)#1	108.81(6)
C(23)-Ca(2)-Ca(2)#1	106.81(8)
C(19)-Ca(2)-Ca(2)#1	136.57(9)
C(22)-Ca(2)-Ca(2)#1	99.01(7)
C(21)-Ca(2)-Ca(2)#1	120.39(8)
C(20)-Ca(2)-Ca(2)#1	149.01(8)
Cl(2)#1-Ca(2)-Ca(2)#1	40.630(19)
Cl(2)-Ca(2)-Ca(2)#1	40.544(19)
Ca(1)-Cl(1)-Ca(1)#2	99.61(3)
O(2)-Ca(1)-O(1)	74.71(8)
O(2)-Ca(1)-C(5)	126.31(10)
O(1)-Ca(1)-C(5)	134.71(10)
O(2)-Ca(1)-C(4)	96.84(10)
O(1)-Ca(1)-C(4)	125.82(10)

C(5)-Ca(1)-C(4)	30.71(11)
O(2)-Ca(1)-C(1)	141.86(9)
O(1)-Ca(1)-C(1)	106.42(10)
C(5)-Ca(1)-C(1)	30.63(11)
C(4)-Ca(1)-C(1)	50.60(11)
O(2)-Ca(1)-C(2)	115.72(10)
O(1)-Ca(1)-C(2)	84.79(10)
C(5)-Ca(1)-C(2)	50.42(10)
C(4)-Ca(1)-C(2)	50.30(10)
C(1)-Ca(1)-C(2)	30.56(11)
O(2)-Ca(1)-C(3)	91.49(9)
O(1)-Ca(1)-C(3)	95.29(10)
C(5)-Ca(1)-C(3)	50.55(10)
C(4)-Ca(1)-C(3)	30.62(11)
C(1)-Ca(1)-C(3)	50.40(10)
C(2)-Ca(1)-C(3)	30.21(11)
O(2)-Ca(1)-Cl(1)	127.95(6)
O(1)-Ca(1)-Cl(1)	85.14(6)
C(5)-Ca(1)-Cl(1)	101.99(8)
C(4)-Ca(1)-Cl(1)	132.68(9)
C(1)-Ca(1)-Cl(1)	89.61(8)
C(2)-Ca(1)-Cl(1)	109.37(8)
C(3)-Ca(1)-Cl(1)	138.53(8)
O(2)-Ca(1)-Cl(1)#2	80.90(6)
O(1)-Ca(1)-Cl(1)#2	134.49(7)
C(5)-Ca(1)-Cl(1)#2	90.62(7)
C(4)-Ca(1)-Cl(1)#2	94.47(8)
C(1)-Ca(1)-Cl(1)#2	116.31(8)
C(2)-Ca(1)-Cl(1)#2	140.70(8)
C(3)-Ca(1)-Cl(1)#2	123.49(8)

Cl(1)-Ca(1)-Cl(1)#2	80.39(3)
O(2)-Ca(1)-Ca(1)#2	107.26(6)
O(1)-Ca(1)-Ca(1)#2	113.93(6)
C(5)-Ca(1)-Ca(1)#2	98.19(7)
C(4)-Ca(1)-Ca(1)#2	119.53(8)
C(1)-Ca(1)-Ca(1)#2	106.68(8)
C(2)-Ca(1)-Ca(1)#2	136.46(8)
C(3)-Ca(1)-Ca(1)#2	148.33(8)
Cl(1)-Ca(1)-Ca(1)#2	40.410(19)
Cl(1)#2-Ca(1)-Ca(1)#2	39.975(19)
C(14)-O(1)-C(11)	108.3(3)
C(14)-O(1)-Ca(1)	125.2(2)
C(11)-O(1)-Ca(1)	126.5(2)
C(15)-O(2)-C(18)	108.2(3)
C(15)-O(2)-Ca(1)	128.1(2)
C(18)-O(2)-Ca(1)	110.54(19)
C(5)-C(1)-C(2)	107.4(3)
C(5)-C(1)-C(6)	127.2(3)
C(2)-C(1)-C(6)	125.4(3)
C(5)-C(1)-Ca(1)	73.57(18)
C(2)-C(1)-Ca(1)	75.13(19)
C(6)-C(1)-Ca(1)	118.5(2)
C(3)-C(2)-C(1)	108.5(3)
C(3)-C(2)-C(7)	126.0(3)
C(1)-C(2)-C(7)	125.4(3)
C(3)-C(2)-Ca(1)	74.91(18)
C(1)-C(2)-Ca(1)	74.31(18)
C(7)-C(2)-Ca(1)	119.8(2)
C(2)-C(3)-C(4)	107.8(3)
C(2)-C(3)-C(8)	126.6(3)

C(4)-C(3)-C(8)	125.4(4)
C(2)-C(3)-Ca(1)	74.88(18)
C(4)-C(3)-Ca(1)	73.60(18)
C(8)-C(3)-Ca(1)	122.0(2)
C(5)-C(4)-C(3)	107.9(3)
C(5)-C(4)-C(9)	125.5(4)
C(3)-C(4)-C(9)	126.5(4)
C(5)-C(4)-Ca(1)	74.19(19)
C(3)-C(4)-Ca(1)	75.77(19)
C(9)-C(4)-Ca(1)	118.7(2)
C(4)-C(5)-C(1)	108.4(3)
C(4)-C(5)-C(10)	125.0(3)
C(1)-C(5)-C(10)	126.6(4)
C(4)-C(5)-Ca(1)	75.10(19)
C(1)-C(5)-Ca(1)	75.80(19)
C(10)-C(5)-Ca(1)	116.6(2)
O(1)-C(11)-C(12A)	105.6(5)
O(1)-C(11)-C(12)	105.7(5)
C(12A)-C(11)-C(12)	29.9(7)
C(11)-C(12)-C(13)	95.2(8)
C(14)-C(13)-C(12)	106.1(13)
C(11)-C(12A)-C(13A)	106.7(11)
C(14)-C(13A)-C(12A)	97.3(9)
C(13)-C(14)-O(1)	105.6(7)
C(13)-C(14)-C(13A)	19.2(11)
O(1)-C(14)-C(13A)	112.0(7)
O(2)-C(15)-C(16)	106.4(3)
C(15)-C(16)-C(17)	101.5(3)
C(18)-C(17)-C(16)	102.2(3)
O(2)-C(18)-C(17)	105.8(3)

C(29)-O(3)-C(32)	109.1(3)
C(29)-O(3)-Ca(2)	127.6(2)
C(32)-O(3)-Ca(2)	110.2(2)
C(33)-O(4)-C(36)	104.3(2)
C(33)-O(4)-Ca(2)	124.6(2)
C(36)-O(4)-Ca(2)	131.0(2)
C(20)-C(19)-C(23)	108.5(3)
C(20)-C(19)-C(24)	127.1(4)
C(23)-C(19)-C(24)	124.0(4)
C(20)-C(19)-Ca(2)	75.86(19)
C(23)-C(19)-Ca(2)	74.31(19)
C(24)-C(19)-Ca(2)	121.6(2)
C(19)-C(20)-C(21)	107.5(3)
C(19)-C(20)-C(25)	126.5(4)
C(21)-C(20)-C(25)	125.8(4)
C(19)-C(20)-Ca(2)	73.75(19)
C(21)-C(20)-Ca(2)	74.53(19)
C(25)-C(20)-Ca(2)	121.1(2)
C(22)-C(21)-C(20)	108.1(3)
C(22)-C(21)-C(26)	125.5(4)
C(20)-C(21)-C(26)	126.2(4)
C(22)-C(21)-Ca(2)	74.19(19)
C(20)-C(21)-Ca(2)	74.99(19)
C(26)-C(21)-Ca(2)	120.7(3)
C(21)-C(22)-C(23)	108.2(3)
C(21)-C(22)-C(27)	125.1(4)
C(23)-C(22)-C(27)	126.5(4)
C(21)-C(22)-Ca(2)	75.43(19)
C(23)-C(22)-Ca(2)	74.17(19)
C(27)-C(22)-Ca(2)	119.9(2)

107.6(3)
126.8(4)
125.4(4)
75.21(19)
74.97(19)
119.4(2)
104.3(3)
102.4(4)
103.5(3)
105.9(3)
105.5(3)
104.3(3)
104.0(3)
103.5(3)

Symmetry transformations used to generate equivalent atoms:

#1 -x,-y+2,-z #2 -x+1,-y+1,-z+1

Table 3s. Selected bond lengths (Å) and angles (°) for $\mathbf{6}$.

Ca(1)-C(19)	2.6466(15)
Ca(1)-C(18)	2.6538(15)
Ca(1)-C(30)	2.6621(16)
Ca(1)-C(29)	2.6674(16)
Ca(1)-C(26)	2.6673(17)
Ca(1)-C(28)	2.6828(15)
Ca(1)-C(20)	2.6859(15)
Ca(1)-C(17)	2.6889(16)
Ca(1)-C(27)	2.6920(16)
Ca(1)-C(16)	2.7022(16)

Ca(1)-Si(1)	3.2732(5)
Si(1)-O(1)	1.6893(12)
Si(1)-N(1)	1.8632(13)
Si(1)-N(2)	1.8831(14)
Si(1)-C(1)	2.3310(16)
N(1)-C(1)	1.334(2)
N(1)-C(12)	1.484(2)
N(2)-C(1)	1.334(2)
N(2)-C(8)	1.487(2)
O(1)-C(36)	1.3715(19)
C(1)-C(2)	1.490(2)
C(2)-C(7)	1.384(2)
C(2)-C(3)	1.387(2)
C(3)-C(4)	1.387(3)
C(4)-C(5)	1.383(3)
C(5)-C(6)	1.378(3)
C(6)-C(7)	1.388(2)
C(8)-C(10)	1.510(3)
C(8)-C(9)	1.516(2)
C(8)-C(11)	1.545(3)
C(12)-C(14)	1.517(3)
C(12)-C(13)	1.529(3)
C(12)-C(15)	1.529(2)
C(16)-C(17)	1.409(2)
C(16)-C(20)	1.421(2)
C(16)-C(21)	1.505(2)
C(17)-C(18)	1.416(2)
C(17)-C(22)	1.504(3)
C(18)-C(19)	1.420(2)
C(18)-C(23)	1.504(2)

C(19)-C(20)	1.421(2)
C(19)-C(24)	1.508(2)
C(20)-C(25)	1.505(2)
C(26)-C(30)	1.409(3)
C(26)-C(27)	1.414(3)
C(26)-C(31)	1.508(3)
C(27)-C(28)	1.414(2)
C(27)-C(32)	1.501(3)
C(28)-C(29)	1.413(2)
C(28)-C(33)	1.497(2)
C(29)-C(30)	1.409(2)
C(29)-C(34)	1.500(3)
C(30)-C(35)	1.508(3)
C(36)-C(37)	1.387(2)
C(36)-C(41)	1.407(2)
C(37)-C(38)	1.384(2)
C(38)-C(39)	1.374(3)
C(39)-C(40)	1.384(3)
C(40)-C(41)	1.399(2)
C(41)-C(42)	1.535(3)
C(42)-C(45)	1.536(3)
C(42)-C(43)	1.536(3)
C(42)-C(44)	1.542(3)
C(19)-Ca(1)-C(18)	31.07(5)
C(19)-Ca(1)-C(30)	165.16(5)
C(18)-Ca(1)-C(30)	145.39(5)
C(19)-Ca(1)-C(29)	134.50(5)

C(18)-Ca(1)-C(29) 125.32(5) C(30)-Ca(1)-C(29) 30.67(5)

C(19)-Ca(1)-C(26)	152.67(6)
C(18)-Ca(1)-C(26)	121.61(6)
C(30)-Ca(1)-C(26)	30.66(6)
C(29)-Ca(1)-C(26)	50.63(5)
C(19)-Ca(1)-C(28)	117.36(5)
C(18)-Ca(1)-C(28)	97.42(5)
C(30)-Ca(1)-C(28)	50.60(5)
C(29)-Ca(1)-C(28)	30.62(5)
C(26)-Ca(1)-C(28)	50.56(5)
C(19)-Ca(1)-C(20)	30.89(5)
C(18)-Ca(1)-C(20)	50.88(5)
C(30)-Ca(1)-C(20)	162.23(5)
C(29)-Ca(1)-C(20)	161.13(5)
C(26)-Ca(1)-C(20)	148.17(5)
C(28)-Ca(1)-C(20)	147.17(5)
C(19)-Ca(1)-C(17)	50.95(5)
C(18)-Ca(1)-C(17)	30.73(5)
C(30)-Ca(1)-C(17)	136.29(5)
C(29)-Ca(1)-C(17)	138.41(5)
C(26)-Ca(1)-C(17)	105.66(6)
C(28)-Ca(1)-C(17)	108.12(5)
C(20)-Ca(1)-C(17)	50.48(5)
C(19)-Ca(1)-C(27)	125.16(5)
C(18)-Ca(1)-C(27)	95.56(5)
C(30)-Ca(1)-C(27)	50.53(5)
C(29)-Ca(1)-C(27)	50.49(5)
C(26)-Ca(1)-C(27)	30.59(6)
C(28)-Ca(1)-C(27)	30.51(5)
C(20)-Ca(1)-C(27)	141.39(5)
C(17)-Ca(1)-C(27)	91.02(5)

C(19)-Ca(1)-C(16)	50.85(5)
C(18)-Ca(1)-C(16)	50.59(5)
C(30)-Ca(1)-C(16)	143.28(6)
C(29)-Ca(1)-C(16)	166.25(5)
C(26)-Ca(1)-C(16)	117.96(6)
C(28)-Ca(1)-C(16)	138.03(5)
C(20)-Ca(1)-C(16)	30.58(5)
C(17)-Ca(1)-C(16)	30.31(5)
C(27)-Ca(1)-C(16)	115.78(5)
C(19)-Ca(1)-Si(1)	97.09(4)
C(18)-Ca(1)-Si(1)	128.16(4)
C(30)-Ca(1)-Si(1)	83.88(4)
C(29)-Ca(1)-Si(1)	88.01(4)
C(26)-Ca(1)-Si(1)	110.22(4)
C(28)-Ca(1)-Si(1)	117.45(4)
C(20)-Ca(1)-Si(1)	84.25(4)
C(17)-Ca(1)-Si(1)	133.39(4)
C(27)-Ca(1)-Si(1)	133.99(4)
C(16)-Ca(1)-Si(1)	104.43(4)
O(1)-Si(1)-N(1)	96.54(6)
O(1)-Si(1)-N(2)	98.79(6)
N(1)-Si(1)-N(2)	69.77(6)
O(1)-Si(1)-C(1)	100.20(6)
N(1)-Si(1)-C(1)	34.88(6)
N(2)-Si(1)-C(1)	34.91(6)
O(1)-Si(1)-Ca(1)	125.94(4)
N(1)-Si(1)-Ca(1)	110.44(4)
N(2)-Si(1)-Ca(1)	133.95(5)
C(1)-Si(1)-Ca(1)	128.71(4)
C(1)-N(1)-C(12)	132.02(14)

C(1)-N(1)-Si(1)	92.11(9)
C(12)-N(1)-Si(1)	134.42(11)
C(1)-N(2)-C(8)	130.13(14)
C(1)-N(2)-Si(1)	91.22(10)
C(8)-N(2)-Si(1)	138.06(11)
C(36)-O(1)-Si(1)	130.56(11)
N(2)-C(1)-N(1)	106.85(13)
N(2)-C(1)-C(2)	127.31(15)
N(1)-C(1)-C(2)	125.82(14)
N(2)-C(1)-Si(1)	53.87(8)
N(1)-C(1)-Si(1)	53.01(8)
C(2)-C(1)-Si(1)	178.78(12)
C(7)-C(2)-C(3)	120.50(16)
C(7)-C(2)-C(1)	121.54(15)
C(3)-C(2)-C(1)	117.93(16)
C(2)-C(3)-C(4)	119.26(19)
C(5)-C(4)-C(3)	120.40(19)
C(6)-C(5)-C(4)	120.03(18)
C(5)-C(6)-C(7)	120.17(19)
C(2)-C(7)-C(6)	119.64(17)
N(2)-C(8)-C(10)	112.07(16)
N(2)-C(8)-C(9)	106.42(13)
C(10)-C(8)-C(9)	110.14(18)
N(2)-C(8)-C(11)	109.92(15)
C(10)-C(8)-C(11)	110.8(2)
C(9)-C(8)-C(11)	107.29(16)
N(1)-C(12)-C(14)	108.71(14)
N(1)-C(12)-C(13)	106.15(14)
C(14)-C(12)-C(13)	109.19(18)
N(1)-C(12)-C(15)	114.38(14)

C(14)-C(12)-C(15)	110.21(17)
C(13)-C(12)-C(15)	108.03(15)
C(17)-C(16)-C(20)	108.13(15)
C(17)-C(16)-C(21)	124.85(16)
C(20)-C(16)-C(21)	126.42(16)
C(17)-C(16)-Ca(1)	74.32(9)
C(20)-C(16)-Ca(1)	74.07(9)
C(21)-C(16)-Ca(1)	124.55(11)
C(16)-C(17)-C(18)	108.20(15)
C(16)-C(17)-C(22)	124.48(16)
C(18)-C(17)-C(22)	126.41(16)
C(16)-C(17)-Ca(1)	75.37(9)
C(18)-C(17)-Ca(1)	73.26(9)
C(22)-C(17)-Ca(1)	125.97(12)
C(17)-C(18)-C(19)	108.08(14)
C(17)-C(18)-C(23)	126.34(16)
C(19)-C(18)-C(23)	125.37(16)
C(17)-C(18)-Ca(1)	76.01(9)
C(19)-C(18)-Ca(1)	74.19(9)
C(23)-C(18)-Ca(1)	120.07(11)
C(18)-C(19)-C(20)	107.74(14)
C(18)-C(19)-C(24)	125.60(15)
C(20)-C(19)-C(24)	126.58(15)
C(18)-C(19)-Ca(1)	74.74(9)
C(20)-C(19)-Ca(1)	76.08(8)
C(24)-C(19)-Ca(1)	117.86(10)
C(19)-C(20)-C(16)	107.85(14)
C(19)-C(20)-C(25)	126.58(16)
C(16)-C(20)-C(25)	124.93(15)
C(19)-C(20)-Ca(1)	73.03(8)

C(16)-C(20)-Ca(1)	75.34(9)
C(25)-C(20)-Ca(1)	124.71(10)
C(30)-C(26)-C(27)	108.13(15)
C(30)-C(26)-C(31)	125.9(2)
C(27)-C(26)-C(31)	125.7(2)
C(30)-C(26)-Ca(1)	74.47(9)
C(27)-C(26)-Ca(1)	75.67(10)
C(31)-C(26)-Ca(1)	120.31(13)
C(28)-C(27)-C(26)	107.78(15)
C(28)-C(27)-C(32)	126.03(19)
C(26)-C(27)-C(32)	125.4(2)
C(28)-C(27)-Ca(1)	74.39(9)
C(26)-C(27)-Ca(1)	73.74(9)
C(32)-C(27)-Ca(1)	125.48(13)
C(29)-C(28)-C(27)	107.93(15)
C(29)-C(28)-C(33)	125.69(17)
C(27)-C(28)-C(33)	125.82(17)
C(29)-C(28)-Ca(1)	74.09(9)
C(27)-C(28)-Ca(1)	75.10(9)
C(33)-C(28)-Ca(1)	123.49(11)
C(30)-C(29)-C(28)	108.08(15)
C(30)-C(29)-C(34)	127.09(17)
C(28)-C(29)-C(34)	124.76(16)
C(30)-C(29)-Ca(1)	74.46(9)
C(28)-C(29)-Ca(1)	75.30(9)
C(34)-C(29)-Ca(1)	118.74(11)
C(26)-C(30)-C(29)	108.07(15)
C(26)-C(30)-C(35)	126.75(19)
C(29)-C(30)-C(35)	124.92(19)
C(26)-C(30)-Ca(1)	74.87(10)

74.87(9)
120.96(11)
120.21(15)
118.66(15)
121.13(15)
121.14(17)
119.02(18)
119.91(17)
122.91(19)
115.88(17)
121.66(17)
122.44(15)
110.79(17)
109.86(18)
109.27(16)
106.99(19)
112.02(17)
107.8(2)

Symmetry transformations used to generate equivalent atoms:

Table 4s. Selected bond lengths (Å) and angles (°) for 10.

_

Ca(1)-O(1)	2.2925(19)
Ca(1)-C(2)	2.632(3)
Ca(1)-C(3)	2.633(3)
Ca(1)-C(9)	2.634(3)
Ca(1)-C(10)	2.641(3)
Ca(1)-C(4)	2.644(3)
Ca(1)-C(1)	2.646(3)
Ca(1)-C(8)	2.652(3)

Ca(1)-C(5)	2.668(3)
Ca(1)-C(6)	2.670(3)
Ca(1)-C(7)	2.680(3)
O(1)-C(33)	1.238(3)
C(1)-C(2)	1.410(4)
C(1)-C(5)	1.415(4)
C(1)-C(11)	1.505(4)
C(2)-C(3)	1.413(4)
C(2)-C(12)	1.511(4)
C(3)-C(4)	1.418(4)
C(3)-C(13)	1.509(4)
C(4)-C(5)	1.418(4)
C(4)-C(14)	1.503(4)
C(5)-C(15)	1.511(4)
C(6)-C(7)	1.410(4)
C(6)-C(10)	1.417(4)
C(6)-C(19)	1.508(4)
C(7)-C(8)	1.418(4)
C(7)-C(18)	1.506(4)
C(8)-C(9)	1.413(4)
C(8)-C(17)	1.506(4)
C(9)-C(10)	1.406(4)
C(9)-C(16)	1.508(4)
C(10)-C(20)	1.511(4)
C(21)-C(22)	1.390(4)
C(21)-C(26)	1.391(4)
C(21)-C(33)	1.481(4)
C(22)-C(23)	1.375(5)
C(23)-C(24)	1.378(5)
C(24)-C(25)	1.388(5)

C(25)-C(26)	1.383(4)
C(27)-C(32)	1.389(4)
C(27)-C(28)	1.397(4)
C(27)-C(33)	1.477(4)
C(28)-C(29)	1.372(5)
C(29)-C(30)	1.381(5)
C(30)-C(31)	1.378(5)
C(31)-C(32)	1.387(4)
C(34)-C(39)	1.369(9)
C(34)-C(35)	1.380(10)
C(34)-C(40)	1.494(12)
C(35)-C(36)	1.359(10)
C(36)-C(37)	1.329(10)
C(37)-C(38)	1.388(11)
C(38)-C(39)	1.391(10)

O(1)-Ca(1)-C(2)	125.69(8)
O(1)-Ca(1)-C(3)	130.05(8)
C(2)-Ca(1)-C(3)	31.13(9)
O(1)-Ca(1)-C(9)	84.77(8)
C(2)-Ca(1)-C(9)	130.89(9)
C(3)-Ca(1)-C(9)	145.09(9)
O(1)-Ca(1)-C(10)	84.30(8)
C(2)-Ca(1)-C(10)	148.37(8)
C(3)-Ca(1)-C(10)	137.17(9)
C(9)-Ca(1)-C(10)	30.90(9)
O(1)-Ca(1)-C(4)	100.19(8)
C(2)-Ca(1)-C(4)	51.45(9)
C(3)-Ca(1)-C(4)	31.17(8)
C(9)-Ca(1)-C(4)	171.09(9)

C(10)-Ca(1)-C(4)	141.61(9)
O(1)-Ca(1)-C(1)	94.78(8)
C(2)-Ca(1)-C(1)	30.98(8)
C(3)-Ca(1)-C(1)	51.37(9)
C(9)-Ca(1)-C(1)	136.04(9)
C(10)-Ca(1)-C(1)	166.93(9)
C(4)-Ca(1)-C(1)	51.40(9)
O(1)-Ca(1)-C(8)	113.46(9)
C(2)-Ca(1)-C(8)	101.86(9)
C(3)-Ca(1)-C(8)	115.03(9)
C(9)-Ca(1)-C(8)	31.01(9)
C(10)-Ca(1)-C(8)	51.18(9)
C(4)-Ca(1)-C(8)	146.05(9)
C(1)-Ca(1)-C(8)	118.38(9)
O(1)-Ca(1)-C(5)	80.57(8)
C(2)-Ca(1)-C(5)	51.06(8)
C(3)-Ca(1)-C(5)	51.17(8)
C(9)-Ca(1)-C(5)	157.89(9)
C(10)-Ca(1)-C(5)	159.13(9)
C(4)-Ca(1)-C(5)	30.97(9)
C(1)-Ca(1)-C(5)	30.89(9)
C(8)-Ca(1)-C(5)	149.22(9)
O(1)-Ca(1)-C(6)	112.69(8)
C(2)-Ca(1)-C(6)	121.59(9)
C(3)-Ca(1)-C(6)	106.50(9)
C(9)-Ca(1)-C(6)	50.98(8)
C(10)-Ca(1)-C(6)	30.95(8)
C(4)-Ca(1)-C(6)	120.11(9)
C(1)-Ca(1)-C(6)	152.52(9)
C(8)-Ca(1)-C(6)	50.92(8)

C(5)-Ca(1)-C(6)	150.91(9)
O(1)-Ca(1)-C(7)	133.49(8)
C(2)-Ca(1)-C(7)	97.49(9)
C(3)-Ca(1)-C(7)	95.51(8)
C(9)-Ca(1)-C(7)	50.94(8)
C(10)-Ca(1)-C(7)	50.92(8)
C(4)-Ca(1)-C(7)	122.06(9)
C(1)-Ca(1)-C(7)	125.67(9)
C(8)-Ca(1)-C(7)	30.84(9)
C(5)-Ca(1)-C(7)	145.94(8)
C(6)-Ca(1)-C(7)	30.57(9)
C(33)-O(1)-Ca(1)	174.4(2)
C(2)-C(1)-C(5)	107.9(2)
C(2)-C(1)-C(11)	125.6(3)
C(5)-C(1)-C(11)	126.5(3)
C(2)-C(1)-Ca(1)	73.95(15)
C(5)-C(1)-Ca(1)	75.41(15)
C(11)-C(1)-Ca(1)	116.41(19)
C(1)-C(2)-C(3)	108.3(2)
C(1)-C(2)-C(12)	125.0(3)
C(3)-C(2)-C(12)	126.5(3)
C(1)-C(2)-Ca(1)	75.06(15)
C(3)-C(2)-Ca(1)	74.47(15)
C(12)-C(2)-Ca(1)	120.06(19)
C(2)-C(3)-C(4)	108.0(2)
C(2)-C(3)-C(13)	126.2(3)
C(4)-C(3)-C(13)	125.5(3)
C(2)-C(3)-Ca(1)	74.40(15)
C(4)-C(3)-Ca(1)	74.84(15)
C(13)-C(3)-Ca(1)	121.97(19)

C(3)-C(4)-C(5)	107.6(2)
C(3)-C(4)-C(14)	125.2(3)
C(5)-C(4)-C(14)	127.0(3)
C(3)-C(4)-Ca(1)	73.99(15)
C(5)-C(4)-Ca(1)	75.46(16)
C(14)-C(4)-Ca(1)	119.89(19)
C(1)-C(5)-C(4)	108.1(2)
C(1)-C(5)-C(15)	125.8(3)
C(4)-C(5)-C(15)	125.9(3)
C(1)-C(5)-Ca(1)	73.70(15)
C(4)-C(5)-Ca(1)	73.56(15)
C(15)-C(5)-Ca(1)	123.09(18)
C(7)-C(6)-C(10)	108.0(2)
C(7)-C(6)-C(19)	125.0(3)
C(10)-C(6)-C(19)	126.8(3)
C(7)-C(6)-Ca(1)	75.11(16)
C(10)-C(6)-Ca(1)	73.42(15)
C(19)-C(6)-Ca(1)	121.26(19)
C(6)-C(7)-C(8)	108.0(2)
C(6)-C(7)-C(18)	125.1(3)
C(8)-C(7)-C(18)	126.3(3)
C(6)-C(7)-Ca(1)	74.32(15)
C(8)-C(7)-Ca(1)	73.49(15)
C(18)-C(7)-Ca(1)	125.2(2)
C(9)-C(8)-C(7)	107.7(2)
C(9)-C(8)-C(17)	126.2(3)
C(7)-C(8)-C(17)	125.8(3)
C(9)-C(8)-Ca(1)	73.82(15)
C(7)-C(8)-Ca(1)	75.67(15)
C(17)-C(8)-Ca(1)	121.7(2)

C(10)-C(9)-C(8)	108.4(2)
C(10)-C(9)-C(16)	126.5(3)
C(8)-C(9)-C(16)	125.0(3)
C(10)-C(9)-Ca(1)	74.82(15)
C(8)-C(9)-Ca(1)	75.17(16)
C(16)-C(9)-Ca(1)	119.60(18)
C(9)-C(10)-C(6)	107.9(2)
C(9)-C(10)-C(20)	125.9(3)
C(6)-C(10)-C(20)	126.2(3)
C(9)-C(10)-Ca(1)	74.28(15)
C(6)-C(10)-Ca(1)	75.62(15)
C(20)-C(10)-Ca(1)	116.81(18)
C(22)-C(21)-C(26)	119.1(3)
C(22)-C(21)-C(33)	120.2(3)
C(26)-C(21)-C(33)	120.4(3)
C(23)-C(22)-C(21)	121.0(3)
C(22)-C(23)-C(24)	119.7(3)
C(23)-C(24)-C(25)	120.2(3)
C(26)-C(25)-C(24)	120.1(3)
C(25)-C(26)-C(21)	119.9(3)
C(32)-C(27)-C(28)	118.8(3)
C(32)-C(27)-C(33)	121.0(3)
C(28)-C(27)-C(33)	120.1(2)
C(29)-C(28)-C(27)	121.1(3)
C(28)-C(29)-C(30)	119.3(3)
C(31)-C(30)-C(29)	120.8(3)
C(30)-C(31)-C(32)	119.9(3)
C(31)-C(32)-C(27)	120.0(3)
O(1)-C(33)-C(27)	119.4(3)
O(1)-C(33)-C(21)	119.4(3)

C(27)-C(33)-C(21)	121.1(2)
C(39)-C(34)-C(35)	118.9(7)
C(39)-C(34)-C(40)	123.5(8)
C(35)-C(34)-C(40)	117.6(7)
C(36)-C(35)-C(34)	119.3(7)
C(37)-C(36)-C(35)	123.0(8)
C(36)-C(37)-C(38)	119.1(8)
C(37)-C(38)-C(39)	118.9(7)
C(34)-C(39)-C(38)	120.7(8)

Symmetry transformations used to generate equivalent atoms:

3. Computational Details

We have used density functional theory in the Kohn–Sham formulation as implemented in the Turbomole 6.4 program ¹ to locate minima on the potential energy surface of the systems studied. A recent implementation of Grimme's D3 dispersion parameters ² in Turbomole has paved the way for calculations on large organometallic systems that include dispersive interactions. To account for these forces we optimised all stationary points at the BP86-D3 level of theory, which contains Grimme's D3 dispersion parameters. The double ζ -quality basis set DZP ³ as well as the multipole-accelerated resolution of the identity approximation MARI-J with suitable fitting basis sets ⁴ were used in these computations. All stationary points were fully optimised. Molecular orbitals were drawn with Molden 4.8 ⁵ using ± 0.03 au isosurfaces for the orbital plots. A natural population analysis (NPA)⁶ and resulting Wiberg bond indices (WBI)⁷ were used for a detailed study of the electronic structure and bonding in some cases. Instead of the distances, WBIs describe the bond strengths, allowing the limitation of looking only at bond lengths to be overcome. The Gaussian 09 software package⁸ was used at this stage.

4. Z-Matrices and optimized structures

Structure 6

116			
FINAL	HEAT OF FO	ORMATION = -2905	.301420
Ca	-0.346715	-0.163854	-2.563001
0	0.747484	-1.232751	1.540727
Si	-0.249758	-0.232405	0.526279
Ν	0.460978	1.411368	1.176401
Ν	-1.358048	0.494390	1.925614
С	1.833041	-1.713366	-2.381196
С	-2.451616	0.011520	2.798653
С	0.673141	-2.558418	1.834038
С	-0.549111	1.561337	2.049309
С	0.789294	-2.498188	-2.979247
С	-1.619776	3.747929	2.719442
Н	-2.236657	3.709094	1.810550
С	-0.322934	-4.763836	1.450631
Н	-1.029022	-5.399954	0.895494
С	-1.859503	1.176156	-4.284708
С	1.373886	-0.831538	-4.481748
С	0.100978	2.757270	4.140560
Н	0.802976	1.934400	4.342605
С	-2.725322	0.225117	-3.651202
С	1.525259	-3.085597	2.852328
С	-0.231570	-3.399091	1.148728
Н	-0.855585	-2.960407	0.354733
С	-0.902347	4.889245	4.747558
Н	-0.976527	5.745889	5.434556
С	0.508543	-1.955498	-4.276807
С	-0.710856	2.706021	2.988502

С	-2.874088	0.606915	-2.280326
C	2 185092	-0 678929	-3 312145
C a	2.103092	0.070929	0.760011
C	1.5/5201	2.289365	0.769211
С	0.131345	-3.728153	-2.406956
Н	0.550595	-3.996864	-1,418737
ц	0 263327	-1 609323	-3 072359
п	0.203527	-4.009525	-3.072339
Н	-0.969131	-3.609986	-2.270320
С	2.581340	-2.031828	-1.113271
н	3 549643	-2 537284	-1 327932
	0.000000	2.337204	1.527552
Н	2.008659	-2.700053	-0.442562
Η	2.828294	-1.125820	-0.521478
С	-1.710065	4.838448	3.598108
11	2 112011	5 656069	2 201227
п	-2.413914	5.050000	3.301337
С	1.575201	-0.045039	-5.748128
Н	2.555949	-0.286658	-6.217214
н	1 575902	1 052223	-5 571880
	1.070002	1.052225	5.571000
Н	0./93534	-0.255855	-6.501806
С	2.576170	-2.202223	3.559959
С	1.394113	-4.461398	3,135676
U U	2 025291	_1 000200	3 014660
п	2.025201	-4.909200	5.914009
С	-2.102700	1.796271	-2.060857
С	0.490545	-5.298482	2.458499
н	0 430878	-6 365671	2 719304
 	1 400055	0.000071	2.719901
C	-1.460955	2.13/3/6	-3.298243
С	1.831065	1.991891	-0.721253
Н	2.014664	0.910029	-0.883166
ц	2 724632	2 533063	-1 085564
11	2.724052	2.555005	1.000004
Н	0.96/062	2.305290	-1.344030
С	3.348824	0.273227	-3.215419
н	4 142557	0 014533	-3 952521
TT	2 022677	0.011000	2 214060
п	3.023077	0.233032	-2.214000
Н	3.061988	1.326489	-3.427110
С	-0.437234	-2.564658	-5.276533
ц	-0 774622	_1 828279	-6 033017
11	1.247226	1.020279	0.033017
Н	-1.34/336	-2.9/5865	-4./93945
Η	0.036356	-3.405935	-5.832036
С	-3.764617	-0.090493	-1.289307
U U	-3 610905	_1 103506	_1 202061
11	5.019095	1.195590	1.292001
Н	-4.844453	0.082458	-1.498969
Η	-3.571846	0.258189	-0.256249
С	1 278722	3 793968	0 935482
11	0 226259	4 074152	0 444541
п	0.320230	4.074132	0.444341
Н	2.093949	4.373132	0.458067
Н	1.224534	4.100847	1.996047
C	-2 123503	2 642877	-0 816818
	2.125505	2.042077	0.010010
Н	-1.125209	3.048862	-0.55/5/5
Н	-2.469710	2.062873	0.060882
н	-2 804908	3 517526	-0 923612
 	2.001900	1 72(207	0.525012
C	3.609977	-1./3639/	2.504132
Н	4.135104	-2.606354	2.061212
Н	4.368501	-1.069668	2.965633
н	3 115502	-1 188623	1 6819/1
 	J. 150050	1.100023	1 200000
C	-3.459950	-0.912209	-4.309900
Н	-3.062952	-1.131809	-5.319207
Н	-4.544639	-0.688844	-4.424946
ц	-3 306705	_1 054400	_3 700640
п ~	-3.390/23	-1.034490	-3.122049
C	-2.864428	-1.375130	2.268910
Н	-3.147968	-1.327551	1.198988
Н	-3.736610	-1,754269	2.836510

Η	-2.042583	-2.108703	2.384465
С	1.909370	-0.972872	4.232341
Н	1.383332	-0.344359	3.491608
Н	2.679475	-0.352009	4.737218
Н	1.178855	-1.297422	5.001643
С	-0.609956	3.354981	-3.557806
Н	-1.143720	4.119169	-4.166485
Н	0.323482	3.110255	-4.110629
Н	-0.308651	3.854437	-2.614362
С	-3.664382	0.965097	2.745588
Н	-3.418629	1.957142	3.168760
Н	-4.503447	0.544446	3.335584
Н	-4.012234	1.103576	1.702789
С	3.335865	-2.973455	4.660031
Н	2.654992	-3.340019	5.455584
Н	4.076635	-2.300737	5.138432
Н	3.895041	-3.840380	4.253528
С	-1.579807	1.275563	-5.758524
Н	-2.390977	1.827251	-6.285530
Н	-1.502693	0.280831	-6.241117
Н	-0.635953	1.814967	-5.967717
С	0.000108	3.846158	5.019863
Н	0.630925	3.881344	5.920856
С	-1.947849	-0.140933	4.250301
Н	-1.040483	-0.775477	4.273990
Н	-2.727822	-0.620040	4.875634
Н	-1.705185	0.839266	4.704066
С	2.818463	1.904225	1.599230
Н	2.639443	2.096098	2.675825
Н	3.701464	2.494600	1.281537
Н	3.049605	0.829186	1.481149

Structure 7

84										
FINAL	HEAT OF	FORMA	TIO	N =	= -	-2249.	201	89	0	
Ca	-0.94264	2	0.	592	291	L3	-0.	54	47	30
Si	1.46231	.1	-0.	644	123	33	Ο.	79	37	73
С	-3.52050	2	0.	364	144	11	-0.	12	42	12
С	-2.27908	81	-1.	491	135	56	Ο.	50	37	95
С	-3.08583	80	-0.	938	303	30	-0.	54	46	89
Ν	2.43690)5	-0.	701	66	57	2.	29	04	89
С	-0.87558	37	3.	000)22	29	-1.	56	65	87
С	-0.16360	0	1.	315	573	30	-2.	99	79	38
С	-1.27977	6	2.	144	182	24	-2.	64	54	09
С	2.36809	95	1.	210)58	33	-2.	29	09	12
Н	2.80941	.5	0.	876	511	L4	-1.	32	60	87
Н	3.01966	54	2.	026	519	96	-2.	67	57	89
Н	2.46584	5	Ο.	364	164	15	-3.	00	08	36
С	-2.96137	4	0.	623	356	59	1.	17	20	81
С	0.93884	8	1.	669	951	L 8	-2.	15	30	20
С	-1.77077	2	-2.	905	515	55	Ο.	60	90	09
Н	-0.74127	7	-2.	953	368	33	1.	02	49	21
Н	-1.75950)5	-3.	423	312	28	-0.	37	14	37
Н	-2.41309	7	-3.	516	598	38	1.	28	22	82
С	3.27913	37	-1.	810	00	37	2.	33	13	95
Н	3.94740	1	-1.	991	87	72	3.	18	27	29
С	-0.17582	21	Ο.	327	723	33	-4.	13	55	02
Н	-0.37343	5	Ο.	825	568	37	-5.	11	04	07
Н	-0.96710	19	-0.	446	585	53	-4.	01	73	99
Н	0.78956	52	-0.	207	744	16	-4.	23	45	15
С	3.18189	8	-2.	615	572	29	1.	22	47	28
Н	3.76351	.0	-3.	532	226	50	1.	06	46	12
С	-1.69905	8	4.	082	233	34	-0.	91	87	71
Н	-1.50662	.9	5.	082	247	77	-1.	36	83	06
Н	-1.48371	.3	4.	176	588	38	Ο.	16	66	47
Н	-2.78653	81	3.	889	951	12	-1.	01	66	93
N	2.25886	55	-2.	163	385	56	Ο.	28	68	30
С	1.97063	3	-0.	403	309	96	4.	70	59	56
Н	0.95582	27	-0.	829	962	25	4.	58	16	98
Н	1.94493	80	0.	324	104	14	5.	54	22	45
Н	2.65767	4	-1.	223	383	30	4.	99	32	05
С	2.42566	57	0.	291	L 0 2	20	3.	40	45	54
С	3.36804	8	-2.	786	599	90	-1.	83	16	39
Н	3.62393	80	-1.	725	525	57	-2.	01	98	46
Н	3.24875	5	-3.	298	379	90	-2.	80	77	31
Н	4.21985	5	-3.	258	319	98	-1.	30	19	64
С	0.92203	6	-2.	216	502	28	-1.	79	09	40
Н	-0.03829	94	-2.	283	376	58	-1.	24	16	52
Н	0.78383	37	-2.	720)59	93	-2.	76	65	91
Н	1.14495	57	-1.	151	48	39	-2.	00	32	03
С	-2.56371	.0	2.	197	724	18	-3.	42	74	20
H	-2.39745	52	2.	630)21	19	-4.	43	97	44
H	-3.33224	6	2.	818	343	31	-2.	93	07	52
H	-3.00554	5	1.	190	167	12	-3.	58	/5	57
С	-2.20586	0	-0.	527	/31	L 1	1.	56	51	32
C	3.83851	.9	0.	890	124	± /	3.	57	18	83
H	4.58260	12	0.	120	127	/5	3.	85	12	08
H	3.83612	:3	1.	665	000	L⊂	4.	36	45	45
H	4.17287	9	1.	358	342	2/	2.	62	43	/6
C	1.69973	5 <u>1</u>	-4.	357	183	5⊥ ⊂⊐	-0.	/3	68	09
H	2.51335	5	-4.	900	106	o /	-0.	21	59	62
Н	1.50855	0	-4.	883	341	L3	-1.	69	36	32

Н	0.785817	-4.421237	-0.114482
С	2.067153	-2.883612	-1.005792
С	1.439683	1.421781	3.056903
Н	1.752189	1.966783	2.144068
Н	1.396345	2.151807	3.888899
Н	0.414656	1.031160	2.896539
С	0.491107	2.697785	-1.256476
С	1.357773	3.424936	-0.263007
Н	2.209875	2.797121	0.071337
Н	0.794761	3.732883	0.643792
Н	1.796006	4.355607	-0.690716
С	-1.628705	-0.804027	2.927630
Н	-0.643905	-1.315747	2.874822
Н	-2.298933	-1.464986	3.523063
Н	-1.490820	0.122259	3.521129
С	-4.539369	1.232480	-0.810371
Н	-5.539544	1.128010	-0.332619
Н	-4.662330	0.968856	-1.877718
Н	-4.279280	2.310144	-0.764406
С	-3.458558	-1.621362	-1.835489
Н	-2.694590	-2.365218	-2.144358
Н	-3.560236	-0.898379	-2.671926
Н	-4.426878	-2.166045	-1.765756
С	-3.218438	1.856684	1.998962
Н	-4.172117	1.789245	2.569945
Н	-3.289874	2.767873	1.369393
Н	-2.412703	2.035291	2.741223

5. Bader Atoms in Molecules (AIM) Analysis

The Bader atoms in molecules (AIM) analysis was conducted on the geometry optimized complex 7, using the freely available computer program Multiwfn.⁹ Only the relevant parameters at the (3, -1) bond critical point (BCP) for the Ca-Si bond are shown below.

Position (Bohr): 0.21424610794047 0.12062972200135 0.10406095133013

Density of all electrons: 0.1746582940E-01

Density of Alpha electrons: 0.8732914700E-02

Density of Beta electrons: 0.8732914700E-02

Spin density of electrons: 0.000000000E+00

Lagrangian kinetic energy G(r): 0.1406783355E-01

Hamiltonian kinetic energy K(r): -0.2345620396E-02

Potential energy density V(r): -0.1172221315E-01

Energy density (H): 0.2345620396E-02

Laplacian of electron density: 0.6565381578E-01

Electron localization function (ELF): 0.5437688397E-01

Localized orbital locator (LOL): 0.1935287937E+00

Local information entropy: 0.6078567283E-03

Reduced density gradient (RDG): 0.4225128518E-15

Sign(lambda2)*rho: -0.1746582940E-01

Corr. hole for alpha, ref.: 0.00000 0.00000 0.00000 : -0.8305892971E-02

Source function, ref.: 0.00000 0.00000 0.00000 : -0.1956867271E-01

Wavefunction value for orbital 1 : 0.2667098916E-04

Average local ionization energy: 0.5483134849E+00

User defined real space function: 0.100000000E+01

ESP from nuclear charges: 0.4605267389E+02

ESP from electrons: -0.4579494080E+02

Total ESP: 0.2577330870E+00 a.u. (0.7013274E+01 J/C, 0.1617172E+03 kcal/mol)

Note: Below information are for electron density Components of gradient in x/y/z are: -0.1153997687E-16 0.2281906760E-17 0.1401839528E-17 Norm of gradient is: 0.1184665855E-16 Components of Laplacian in x/y/z are: 0.5317552493E-01 0.3885135376E-02 0.8593155482E-02 Total: 0.6565381578E-01 Hessian matrix: 0.5317552493E-01 -0.3225423983E-01 0.3679313903E-01 -0.3225423983E-01 0.3885135376E-02 -0.1903850472E-01 0.3679313903E-01 -0.1903850472E-01 0.8593155482E-02 Eigenvalues of Hessian: $\lambda_3 = 0.9015781911E-01$ $\lambda_2 = -0.1295523378E-01$ $\lambda_1 = -0.1154876955E-01$ Eigenvectors(columns) of Hessian: 0.7977608581E+00 -0.5369751486E-01 -0.6005782131E+00 -0.3981780537E+00 0.7010536496E+00 -0.5915893997E+00

0.4528044288E+00 0.7110839312E+00 0.5378919892E+00

Determinant of Hessian: 0.1348914326D-04

Ellipticity of electron density: 0.121785

eta index: 0.143695

Fig. S18 Graphical representation of the (3,-1) BCP between the calcium and Si centres in compound 7. (All other BCPs in the molecule have been removed for clarity)

6. References

1 TURBOMOLE V6.4 2012, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007; TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com

2 S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.

3 A. Schaefer, H. Horn, R. Ahlrichs, J. Chem. Phys. 1992, 97, 2571.

4 (a) M. Sierka, A. Hogekamp, R. Ahlrichs, J. Chem. Phys. 2003, **118**, 9136-9148; (b) K. Eichkorn, F. Weigend, O. Treutler, R. Ahlrichs, *Theor. Chem. Acc.* 1997, **97**, 119-124; (c) F. Weigend, *Phys. Chem. Chem. Phys.* 2006, **8**, 1057-1065; (d) A. Hellweg, C. Hättig, S.

Höfener, W. Klopper, Theor. Chem. Acc. 2007, 117, 587-597.

5 J. H. Schaftenaar, J. Noordik, J. Comp.-Aided Mol. Des. 2000, 14, 123.

6 J. E. Carpenter, F. Weinhold, J. Mol. Struct. (Theochem) 1988, 169, 41-62.

7 K. B. Wiberg, Tetrahedron 1968, 24, 1083-1096.

8 Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M.

A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H.

Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L.

Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima,

Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M.

Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J.

Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N.

Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R.

Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski,

R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S.

Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J.

Fox, Gaussian, Inc., Wallingford CT, 2010.

9 T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580.