Electronic Supplementary Information

Breaking aggregation in a tetrathiafulvalene-fused zinc porphyrin by metal-ligand coodination to form a donor-acceptor hybrid for ultrafast charge separation and charge stabilization

Atanu Jana,^a Habtom B. Gobeze,^b Masatoshi Ishida,^c Toshiyuki Mori,^d Katsuhiko Ariga,^{ae} Jonathan P. Hill^{*ae} and Francis D'Souza,^{*b}

^aSupermolecules Group, WPI center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 3050044, Japan. E-mail: jonathan.hill@nims.go.jp ^bDepartment of Chemistry, University of North Texas, 1155 Union Circle, 305070, Denton, Texas 76203-5017, United States. E-mail: <u>Francis.DSouza@UNT.edu</u> ^cEducation Center for Global Leaders in Molecular Systems for Devices, Kyushu University, Fukuoka 819-0395, Japan. ^dFuel Cell Materials Group, National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 3050044, Japan.

^e JST-CREST, Gobancho, Chiyoda-ku, Tokyo 102-0075, Japan

Contents

- 1.0 Supplementary Figures
 - Fig. S1. Absorption spectral changes during increased addition of NOSbF₆
 - Fig. S2. Femtosecond transient absorption spectrum of (TTF)₄PZn
- 2.0 Characterization data for TTF-porphyrins
 - Fig. S3. HPLC-GPC traces
 - Fig. S4. ¹H NMR spectrum of (TTF)₄PH₂
 - Fig. S5. ¹³C NMR spectrum of (TTF)₄PH₂
 - Fig. S6. MALDI-TOF-MS spectrum of (TTF)₄PH₂
 - Fig. 7. ¹H NMR spectrum of (TTF)₄PZn
 - Fig. 8. ¹³C NMR spectrum of (TTF)₄PZn
 - Fig. 9. MALDI-TOF-MS spectrum of (TTF)₄PZn
 - Fig. S10. Optimized geometry of the (TTF)₄PZn and (TTF)₄PZn:C₆₀Im
 - Fig. S11. Molecular Orbital (MO) energy diagram for (TTF)₄PZn
 - Fig. S12. Molecular Orbital (MO) energy diagram for C₆₀Im
 - Fig. S13. Molecular Orbital (MO) energy diagram for dyad (TTF)₄PZn:C₆₀Im

1. Supplementary Figures

Fig. S1. Absorption spectral changes observed during increased addition of nitrosonium hexafluoroantimonate (0.2 equivalent each addition) to a solution of (TTF)₄PZn in DCB.

Fig. S2. Femtosecond transient absorption spectrum of (TTF)₄PZn at the indicated time intervals in DCB.

2.0 Characterization data for (TTF)₄PH₂ and (TTF)₄PZn

Fig. S3. Partial HPLC-GPC traces for the free base (TTF)₄PH₂, (a); and its corresponding Zn(II)-complex, (TTF)₄PZn, (b) used in this study.

Fig. S4. ¹H NMR spectrum (300 MHz) of (TTF)₄PH₂ recorded in CDCl₃ at 298 K.

Fig. S5. ¹³C NMR spectrum (75 MHz) of (TTF)₄PH₂ recorded in CDCl₃ at 298K.

Fig. S6. MALDI-TOF mass spectrum of (TTF)₄PH₂.

Fig. S7. ¹H NMR spectrum (300 MHz) of (TTF)₄PZn recorded in CDCl₃ at 298 K.

Fig. S8. ¹³C NMR spectrum (75 MHz) of (TTF)₄PZn recorded in CDCl₃ at 298 K.

Fig. S9. MALDI-TOF mass spectrum of (TTF)₄PZn.

Fig. S10. Optimized geometry of the $(TTF)_4PZn$, (a) top view, (b) side view along with its supramolecular dyad $(TTF)_4PZn:C_{60}Im$; (c) top view, (d) side view, respectively.

Fig. S11. Molecular Orbital (MO) energy diagram for $(TTF)_4PZn$.

Fig. S12. Molecular Orbital (MO) energy diagram for C_{60} Im.

Fig. S13. Molecular Orbital (MO) energy diagram for the supramolecular dyad (TTF)₄PZn:C₆₀Im used in this study.