Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2014

Supplementary Material for:

Abrupt two-step and symmetry breaking spin crossover in an iron(III) complex: an exceptionally wide [LS-HS] plateau

David J. Harding, *^a Wasinee Phonsri,^a Phimphaka Harding,^a Keith S. Murray,^b Boujemaa Moubaraki,^b and Guy N. L. Jameson^c

^aMolecular Technology Research Unit, Walailak University, Thasala, Nakhon Si Thammarat, 80161, Thailand

^bSchool of Chemistry, Monash University, Melbourne, Victoria, 3800, Australia

^cDepartment of Chemistry & MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Otago, PO Box 56, Dunedin, 9054, New Zealand.

hdavid@wu.ac.th

1. General Remarks

All reactions were carried out at room temperature in air. With the exception of Hqsal-Br,¹ all chemicals were purchased from Aldrich Chemical Company and used as received. Infrared spectra (as KBr discs) were recorded on a Perkin-Elmer Spectrum One infrared spectrophotometer in the range 400-4000 cm⁻¹. Elemental analyses were carried out by using a Eurovector EA3000 analyser. ESI-MS were recorded by using a Bruker Daltonics 7.0T Apex 4 FTICR Mass Spectrometer at the National University of Singapore.

Synthesis of [Fe(qsal-Br)₂]NO₃·2MeOH: Hqsal-Br (131 mg, 0.4 mmol) was dissolved in CH₂Cl₂ (2 ml) giving an orange solution. NEt₃ (56 μ l, 0.4 mmol) was added resulting in a change to dark orange. CH₃OH (3 ml) was layered on top of the Hqsal-Br solution. In a separate flask, Fe(NO₃)₃·9H₂O (83 mg, 0.2 mmol) was dissolved in CH₃OH (5 ml) giving a yellow solution. The yellow solution was then layered on top of the blank CH₃OH and left for 4 days. The black crystals formed were washed with hexane (2 x 1 ml) and air dried (41 mg, 24%). IR (KBr): v_{max} = 3052 (u_{Ar-H}), 1597 (u_{C=N}), 1365 (u_{N-O}), cm⁻¹. (ESI): m/z = 707.8 [Fe(qsal-Br)₂]⁺. Anal. Calc. for C₃₄H₂₈Br₂FeN₅O₇: C, 48.95; H, 3.38; N, 8.39. Found: C, 48.31; H, 2.68; N, 8.66%.

Magnetic susceptibility, Mössbauer spectroscopic and DSC studies

Data were collected using a Quantum Design MPMS 5 SQUID magnetometer under an applied field of 1 T over the temperature range 300–4 K. The polycrystalline samples were placed in gel capsules and care was taken to allow long thermal equilibration times at each temperature point.

The Mössbauer spectroscopic sample was enclosed in Vaseline and rapidly frozen in liquid nitrogen. The sample was then placed in the spectrometer running at 5.1 K. This rapidly quenched sample was then warmed slowly to 100 K, 170K and 294 K. A small magnetic field of 47 mT was applied parallel to the γ -ray. Spectra were calibrated with α -Fe and isomer shifts are quoted relative to α -Fe at room temperature.

DSC measurements were recorded on a TA Instruments Q100 differential scanning calorimeter between 275 and 125 K.

2. X-ray Crystallography

Crystal data and data processing parameters for the structures of $[Fe(qsal-Br)_2]NO_3 \cdot 2MeOH$ are given in Table S1. X-ray quality crystals of the complex were grown by layering a solution of $Fe(NO_3)_3 \cdot 9H_2O$ in MeOH over a solution of Hqsal-Br and NEt₃ in CH₂Cl₂. Crystals were mounted on a glass fibre using perfluoropolyether oil and cooled rapidly in a stream of cold nitrogen. The diffraction data were collected initially at 123 K on a Bruker APEXII area detector with graphite monochromated MoK α (λ = 0.71073 Å).² The sample was then warmed to 175, 220 and 280 K collecting data at each of these temperatures. The sample was then cooled to 175 and 123 K and data again collected. Finally, the sample was cooled to 100 K and then warmed again to 150 K with data collected at these two temperatures to confirm the reducibility of the spin crossover. After data collection, in each case an empirical absorption correction (SADABS) was applied,³ and the structures were then solved by direct methods and refined on all F^2 data using the SHELX suite of programs.⁴ In all cases non-hydrogen atoms were refined with anisotropic thermal parameters; hydrogen atoms were included in calculated positions and refined with isotropic thermal parameters which were *ca*. 1.2 × (aromatic CH) or $1.5 \times$ (CH₃, OH) the equivalent isotropic thermal parameters of their parent carbon or oxygen atoms. Pictures were generated using DIAMOND or OLEX-2.^{5,6}

References

- 1. J. Sirirak, W. Phonsri, D. J. Harding, P. Harding, P. Phommon, W. Chaoprasa, R. M. Hendry, T. M. Roseveare, and H. Adams, *J. Mol. Struct.*, 2013, **1036**, 439–446.
- 2. Bruker, APEXII, Bruker AXS Inc., Madison, WI, USA, 2005.
- 3. SADABS and SAINT, *Bruker AXS Inc.*, Madison, WI, USA, 2003.
- 4. G. M. Sheldrick, Acta Cryst., 2008, A64, 112–122.
- 5. K. Brandenberg and H. Putz, DIAMOND, Crystal Impact, Bonn, Germany, 2006.
- 6. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann, *J. Appl. Cryst.*, 2009, **42**, 339–342.

Table S1 Crystallographic data and structure refinement for 1.

150 K/1LS-1HS 17801, 0.0558 9.9247 (11) 0.8161 and 12.5767 (6) 13.6774 (8) 107.363 (3) 100.947 (3) 90.818 (3) 3202.5 (3) Triclinic 0.5829 1029072 0.0549, 3.026 38082 0/891 0.1242 P1 4 Warm cycle 2 12.0805 (10) 12.1194 (10) 12.4856 (11) 8704, .0358 0.7928 and 100 K/1LS 83.110 (5) 68.622 (5) 1591.6 (2) 69.235 (4) 0.5166Triclinic 0.0424, 17210 0/446 1029071 3.044 0.0951 7 P1 8849, 0.0409 1593.75 (16) 0.8154 and 123 K/1LS (2.0359 (7) 12.1457 (7) (2.4988 (7) 83.175 (3) 59.400 (3) 58.733 (3) Triclinic 3.040 0.5815 1029069 20130 0.0462, 0.1075 0/446 2 P_1 Cool cycle 1 **175 K/1LS-1HS** 14599, 0.0515 0.8170 and 12.5977 (5) 13.7134 (6) 19.9391 (9) 107.328 (2) 100.883 (2) 90.838 (2) 3219.9 (2) 0.5844 1029070 Triclinic 0.1119 33875 0.0504, 3.009 0/891 P1 4 $C_{34}H_{28}Br_2FeN_5O_7$ 334.28 8939, 0.0391 280 K/1HS .651.88 (12) 0.6674 and 12.0223 (5) 80.991 (2) 12.3163 (6) 12.7577 (5) 69.414 (2) 69.182 (2) 1029075 Triclinic 0.0499, 17423 0.4267 0.1292 0/446 2.933 2 P1 220 K/1LS-1HS 14822, 0.0405 12.6135 (11) 13.7534 (13) 19.9632 (15) 0.7542 and 107.339 (4) 100.541 (4) 90.999 (4) 3240.5 (5) Triclinic 26902 0.5862 0.1230 1029074 0.0544, 2.990 0/891 P1 4 Warm cycle 1 175 K/1LS-1HS 14749, 0.0410 0.7526 and 12.5838 (6) 19.9499 (9) 107.360 (2) 100.806 (2) 13.7010 (7) 90.858 (2) 3215.4 (3) 1029073 Triclinic 0.5840 0.0493, 0.1128 26994 0/891 3.013 P_1 7208, 0.0273 1607.60 (17) 0.7137 and 12.5189 (8) (2.1319 (6) 12.1588 (8) 82.798 (2) 69.275 (2) 68.558 (2) 123 K/LS Triclinic 0.5840 1029068 0.0481, 3.014 0.1227 0/446 12104 7 P_1 Molecular weight/ gmol⁻¹ Absorption coefficient / **Restraints/parameters** Final R indices [/>20(I)]: **Reflections collected** Empirical Formula Cell volume / Å³ reflections, R_{int} Independent **Crystal system** Max. and min. transmission Space group mm⁻¹ CCDC No. *b* / Å R_1 , WR_2 , / γ $\alpha / ^{\circ}$ β/° a/ằ c/Å N

٩

.

Table S2 Fe-N/O bond length and octahedral distortion at various temperatures for 1.

		Warm (cycle 1		Cool c	ycle 1	Warm c	ycle 2
	123 K	175 K	220 K	280 K	175 K	123 K	100 K	150 K
Fe1-01/Å	1.888(3)	1.906(2)	1.905(2)	1.905(2)	1.908(3)	1.879(2)	1.8792(19)	1.905(2)
Fe1-O2/Å	1.881(3)	1.907(3)	1.910(3)	1.905(2)	1.912(3)	1.874(2)	1.8718(18)	1.906(3)
Fe1-O _{av} /Å	1.885	1.907	1.908	1.905	1.910	1.877	1.876	1.906
Fe1-N1/Å	1.951(3)	2.101(3)	2.097(3)	2.102(2)	2.103(3)	1.943(2)	1.944(2)	2.094(3)
Fe1-N2/Å	1.990(3)	2.142(3)	2.147(3)	2.140(3)	2.145(3)	1.978(2)	1.981(2)	2.140(3)
Fe1-N3/Å	1.951(3)	2.103(3)	2.099(3)	2.104(2)	2.099(3)	1.943(2)	1.944(2)	2.094(3)
Fe1-N4/Å	1.983(3)	2.132(3)	2.137(3)	2.134(3)	2.136(3)	1.976(2)	1.972(2)	2.134(3)
Fe1-N _{av} /Å	1.969	2.120	2.120	2.120	2.121	1.960	1.960	2.120
Fe2-O3/Å		1.874(3)	1.878(3)		1.880(3)			1.875(2)
Fe2-04/Å		1.874(2)	1.872(3)		1.874(2)			1.872(2)
Fe2-O _{av} /Å		1.874	1.875		1.877			1.874
Fe2-N5/Å		1.942(3)	1.962(3)		1.939(3)			1.935(3)
Fe2-N6/Å		1.976(3)	1.998(4)		1.980(3)			1.979(3)
Fe2-N7/Å		1.939(3)	1.959(3)		1.940(3)			1.936(3)
Fe2-N8/Å		1.976(3)	2.004(3)		1.982(3)			1.978(3)
Fe2-N _{av} /Å		1.958	1.981		1.960			1.957
Σ-Fe1, Fe2	44, -	66, 44	66, 42	63, -	65, 44	44, -	44, -	64, 45
⊖-Fe1, Fe2	65, -	189, 65	191, 73	183, -	190, 65	66, -	65, -	187, 64

Interactions	100 K	123 K	123C K	280 K	150 K	175 K	175C K	220 K
		1D chain al	ong c axis			1D chain a	along a axis	
π - π interactions								
<i>π</i> -π (Type A)	3.205	3.213	3.208	3.286	3.226	3.234	3.232	3.247
π - π (Type B)	3.302	3.309	3.296	3.391	3.363	3.363	3.370	3.373
C-H···O interactions								
01…H21	2.664(2)	2.662(2)	2.679(2)	2.729(3)	2.656(3)	2.663(3)	2.660(3)	2.679(3)
01…C21	3.491(3)	3.492(5)	3.503(4)	3.555(5)	3.500(5)	3.505(5)	3.504(5)	3.513(6)
∠ 01…H21-C21	145.7(2)	146.2(2)	145.6(2)	148.6(2)	148.3(3)	147.9(2)	148.3(3)	148.0(3)
02…Н9	2.638(2)	2.676(3)	2.628(3)	2.594(3)	2.491(3)	2.495(3)	2.493(3)	2.523(3)
02…C9	3.484(5)	3.517(5)	3.470(5)	3.432(5)	3.336(5)	3.344(5)	3.339(5)	3.361(6)
∠ о2…н9-с9	148.5(2)	147.9(2)	148.0(2)	150.1(3)	148.0(2)	149.0(2)	148.4(2)	148.5(3)
02…H7	2.612(2)	2.622(3)	2.604(2)	2.808(3)	2.687(3)	2.691(3)	2.699(3)	2.722(3)
02…C7	3.475(4)	3.480(5)	3.471(5)	3.627(5)	3.536(5)	3.536(5)	3.548(5)	3.557(5)
∠ 02…H7-C7	151.2(2)	150.3(2)	151.9(2)	147.7(2)	149.1(2)	148.6(2)	149.2(3)	148.3(3)

Table S3 π - π and C-H...O interactions in [Fe(qsal-Br)₂]·NO₃·2MeOH which form the 1D chains at multiple temperatures.

Interactions	100 K	123 K 1D chain	123C K along c axis	280 K	150 K	175 K 1D chain a	175C K along a axis	220 K
π - π interactions								
π-π (Type A, LS)					3.218	3.230	3.232	3.242
π-π (Type B, LS)					3.295	3.300	3.302	3.311
C-H…O interactions								
04…H37					2.701(3)	2.706(3)	2.711(3)	2.729(3)
04…C37					3.527(5)	3.525(5)	3.536(5)	3.537(6)
∠ 04…H37-C37					145.7(2)	144.8(2)	145.6(3)	144.5(3)
03…H57					2.689(3)	2.691(3)	2.694(3)	2.673(3)
03…C57					3.543(5)	3.547(5)	3.544(5)	3.527(6)
∠ 03…H57-C57					149.8(2)	150.0(2)	149.5(2)	151.4(3)
03…H55					2.638(3)	2.649(3)	2.656(3)	2.681(3)
03…C55					3.306(5)	3.517(5)	3.525(5)	3.542(5)
∠ 03…H55-C55					152.4(2)	152.2(2)	152.5(3)	152.5(3)

and C-H...O interactions in [Ee/asal-Br)-].NO..3MeOH which form the 1D chains at multinle temperatures (Continued) Table S3 π

	;			- -				
Interactions	100 K	123 K	123C K	280 K	150 K	175 K	175C K	220 K
P4AE								
С-H…π	2.596	2.604	2.600	2.679	2.592	2.608	2.611	2.622
С-H…π	2.596	2.604	2.600	2.679	2.641	2.656	2.649	2.674
π-π	3.586	3.604	3.585	3.710	3.626	3.641	3.635	3.655

Table S4 P4AE interactions within [Fe(qsal-Br)₂]·NO₃·2MeOH at multiple temperatures.

Table S5 Bond lengths of the NO₃ anions and MeOH solvent molecules in 1.

		Warm c	ycle 1		Cool	ycle 1	Warm	cycle 2
	123 K	175 K	220 K	280 K	175 K	123 K	100 K	150 K
N9—05	1.242(4)	1.243(4)	1.236(5)	1.240(4)	1.241(4)	1.242(3)	1.242(3)	1.237(4)
90—6N	1.251(5)	1.238(4)	1.235(5)	1.234(4)	1.237(4)	1.242(3)	1.245(3)	1.236(4)
10—01	1.272(4)	1.263(4)	1.252(5)	1.243(4)	1.257(4)	1.269(3)	1.267(3)	1.267(4)
011—C65	1.408(5)	1.396(5)	1.386(6)	1.370(6)	1.399(5)	1.414(4)	1.415(3)	1.398(5)
012—C66	1.421(6)	1.397(6)	1.398(7)	1.388(6)	1.401(5)	1.414(5)	1.404(4)	1.398(5)
N10-08		1.245(4)	1.247(5)		1.248(4)			1.246(4)
N10-010		1.239(4)	1.228(5)		1.238(4)			1.243(4)
N10—09		1.253(4)	1.250(5)		1.258(4)			1.257(4)
013—C67		1.409(5)	1.397(6)		1.412(5)			1.411(5)
014—C68		1.415(5)	1.407(6)		1.412(5)			1.418(5)

Interactions	100 K	123 K	123C K	280 K	150 K	175 K	175C K	220 K
H11A…012	1.868(3)	1.895(4)	1.887(2)	1.929(4)	1.851(33)	1.853(4)	1.858(3)	1.859(4)
011…012	2.680(3)	2.689(5)	2.683(3)	2.707(6)	2.676(5)	2.678(5)	2.675(5)	2.676(6)
∠ 011-H11A…012	162.1(2)	157.2(3)	157.7(2)	158.1(3)	167.1(2)	166.9(2)	163.8(3)	167.8(3)
H12…07	1.896(2)	1.903(3)	1.895(2)	1.950(2)				
012…07	2.727(3)	2.731(4)	2.725(3)	2.769(4)				
∠ 012-H12…07	170.1(2)	167.8(3)	169.3(2)	176.2(3)				
H12…09					1.904(2)	1.911(3)	1.898(3)	1.916(3)
012…09					2.735(4)	2.741(4)	2.736(4)	2.732(4)
∠ 012-H12…09					169.6(2)	169.2(3)	176.0(3)	167.4(3)
H13A…014					1.923(3)	1.898(3)	1.894(3)	1.900(4)
013…014					2.705(4)	2.704(5)	2.704(4)	2.712(5)
∠ 013-H13A…014					154.5(2)	160.6(2)	161.7(2)	165.3(3)
H14A…O7					1.921(2)	1.912(2)	1.916(2)	1.936(3)
014…07					2.742(4)	2.750(4)	2.745(4)	2.760(4)
∠ 014-H14A…07					165.5(2)	175.5(2)	168.1(2)	172.0(3)

Table S6 H bonding interactions within [Fe(qsal-Br)₂]·NO₃·2MeOH at multiple temperatures.

s.
0,
- A \
Ψ
1
5
Ē
Ľ
Ū
õ
7
≽
ā
Ť
<u>_</u>
0
÷E
Ξ
Ξ
╘
ப
Ъ.
T
$\overline{\mathbf{O}}$
Š
<u> </u>
\leq
\leq
2
'n
Ô
\leq
Z
÷
5]
$\hat{}$
~
ц.
<u> </u>
а
S
Ъ
$\underline{}$
Ū.
цш.
.=
_
5
.≌
Ē
.0
e
÷
σ
5
.=
<i></i>
ē
he
the
g the
ng the
'ing the
lving the
olving the
olving the
nvolving the
involving the
s involving the
ns involving the
ons involving the
ions involving the
tions involving the
ctions involving the
actions involving the
ractions involving the
eractions involving the
iteractions involving the
interactions involving the
interactions involving the
O interactions involving the
·O interactions involving the
···O interactions involving the
H…O interactions involving the
-H…O interactions involving the
C-H…O interactions involving the
' C-H…O interactions involving the
7 C-H…O interactions involving the
S7 C-H…O interactions involving the
S7 C-H…O interactions involving the
le S7 C-H…O interactions involving the
ble S7 C-H…O interactions involving the
able S7 C-H…O interactions involving the
Table S7 C-H…O interactions involving the

Interactions	100 K	123 K	123C K	280 K	150 K	175 K	175C K	220 K
05…H7	2.849(2)	2.842(3)	2.855(2)	2.671(3)	2.649(3)	2.656(3)	2.663(3)	2.671(4)
05…C7	3.093(3)	3.100(4)	3.096(3)	2.989(4)	2.934(5)	2.946(5)	2.950(5)	2.671(5)
∠ 05…H7-C7	95.8(2)	96.7(2)	95.6(2)	100.9(2)	97.9(3)	98.3(3)	98.0(3)	99.0(3)
05…H18	2.439(3)	2.444(4)	2.432(3)	2.621(4)	2.532(3)	2.538(4)	2.547(4)	2.570(4)
O5…C18	3.299(4)	3.3071(7)	3.294(5)	3.520(7)	3.456(5)	3.458(6)	3.469(6)	3.479(7)
∠ 05…H18-C18	150.2(2)	151.1(3)	151.0(2)	162.9(3)	164.2(2)	163.3(3)	98.0(3)	162.6(3)
05…H31	2.358(3)	2.382(4)	2.369(3)	2.560(4)	2.493(3)	2.512(4)	2.504(4)	2.520(4)
05…C31	3.257(4)	3.282(6)	3.268(5)	3.447(6)	3.398(5)	3.413(6)	3.408(6)	3.413(7)
∠ 05…H31-C31	157.8(2)	158.2(2)	157.8(2)	159.4(3)	159.0(2)	158.5(254)	158.9(3)	158.7(3)
06…H26	2.436(2)	2.432(4)	2.438(3)	2.470(4)	2.390(4)	2.392(4)	2.395(4)	2.424(4)
06…C26	3.268(5)	3.265(6)	3.272(5)	3.309(6)	3.232(6)	3.236(7)	3.240(6)	3.263(7)
∠ 06…H26-C26	146.2(2)	146.2(3)	146.1(2)	150.2(3)	147.6(3)	147.8(3)	148.2(3)	148.5(3)
07…H31	2.577(2)	2.601(3)	2.593(2)	2.626(3)	2.577(2)	2.600(3)	2.581(2)	2.594(3)
07…C31	3.104(3)	3.119(5)	3.120(4)	3.199(5)	3.111(4)	3.125(5)	3.122(4)	3.137(6)
∠ 07…H31-C31	115.3(2)	114.7(2)	115.4(2)	120.4(2)	147.6(3)	115.3(3)	116.4(3)	117.2(3)

Interactions	100 K	123 K	123C K	280 K	150 K	175 K	175C K	220 K
08…H55					2.871(3)	2.878(3)	2.879(3)	2.865(4)
08…C55					3.115(5)	3.126(5)	3.128(5)	3.117(5)
∠ 08…H55-C55					95.9(2)	96.2(3)	96.2(3)	96.7(3)
08…H34					2.446(3)	2.377(4)	2.475(3)	2.499(4)
08…C34					3.311(5)	3.276(6)	3.336(6)	3.360(7)
∠ 08…H34-C34					151.3(2)	151.2(3)	150.9(3)	152.6(3)
08…H47					2.367(3)	2.377(4)	2.382(3)	2.416(4)
08…C47					3.266(5)	3.276(6)	3.281(5)	3.306(7)
∠ 08…H47-C47					157.7(2)	157.8(3)	157.8(3)	157.8(3)
010…H42					2.445(3)	2.449(4)	2.463(4)	2.478(4)
010…C42					3.292(5)	3.293(7)	3.306(6)	3.315(7)
\angle 010 \cdots H42-C42					148.4(3)	147.9(3)	147.9(3)	148.4(3)
09…H47					2.601(2)	2.606(3)	2.618(3)	2.631(3)
09…C47					3.148(4)	3.156(5)	3.164(5)	3.178(6)
∠ 09…H47-C47					117.0(2)	117.2(3)	117.0(3)	117.6(3)

Table S7 C-H···O interactions involving the nitrate anion in [Fe(qsal-Br)₂]·NO₃·2MeOH at multiple temperatures (Continued).

Interactions	100 K	123 K	123C K	280 K	150 K	175 K	175C K	220 K
011…H2	2.562(2)	2.572(3)	2.558(2)	2.751(4)	2.675(4)	2.679(4)	2.697(4)	2.718(4)
011…C2	3.377(3)	3.392(5)	3.374(4)	3.587(6)	3.518(5)	3.525(5)	3.540(5)	3.552(6)
∠ 011…H2-C2	143.8(1)	144.6(3)	144.2(2)	150.2(2)	148.1(3)	148.5(3)	148.3(3)	148.3(3)
011…H15	2.484(2)	2.514(4)	2.504(3)	2.904(6)	2.861(3)	2.862(4)	2.854(4)	2.872(5)
011C15	3.390(4)	3.420(6)	3.409(5)	3.802(7)	3.389(5)	3.784(6)	3.775(7)	3.782(7)
∠ 011…H15-C15	159.1(2)	159.3(2)	159.2(2)	162.9(2)	145.5(3)	164.1(3)	163.7(3)	163.2(3)
011…H23	2.580(3)	2.588(4)	2.575(3)	2.507(3)	2.452(3)	2.470(3)	2.471(3)	2.485(3)
011…C23	2.889(4)	2.898(6)	2.879(5)	2.861(7)	2.833(5)	2.848(5)	2.844(5)	2.855(6)
∠ 011…H23-C23	98.7(2)	99.3(3)	98.9(2)	102.9(3)	103.8(3)	103.6(2)	103.3(2)	103.5(2)
013…H50					2.562(3)	2.575(3)	2.579(3)	2.602(3)
013…C50					3.389(5)	3.404(5)	3.402(5)	3.422(6)
∠ 013…H50-C50					145.5(3)	145.9(3)	145.1(3)	146.0(3)
013…H63					2.512(4)	2.522(4)	2.528(4)	2.599(4)
013…C63					3.409(5)	3.421(5)	3.425(6)	3.490(6)
∠ 063…H63-C63					157.6(3)	157.9(3)	157.6(3)	158.5(3)
013…H39					2.577(3)	2.579(3)	2.570(3)	2.569(3)
013…C39					2.863(5)	2.868(5)	2.865(5)	2.873(5)
∠ 013…H39-C39					97.6(2)	97.9(2)	98.3(2)	99.2(2)

Table S8 C-H···O interactions involving MeOH in [Fe(qsal-Br)₂]·NO₃·2MeOH at multiple temperatures.

Interactions	100 K	123 K	123C K	280 K	150 K	175 K	175C K	220 K
NO ₃ and MeOH int	teractions							
Br2…H3	3.0237(4)	3.0251(5)	3.0345(4)	3.1670(5)				
Br2C3	3.904(3)	3.905(4)	3.908(4)	3.925(4)				
∠ Br2…H3-C3	154.7(2)	154.6(2)	153.6(2)	139.9(2)				
Br2…012	3.138(3)	3.157(4)	3.144(3)	3.163(5)				
Br2…014					2.974(4)	2.989(4)	2.990(3)	3.026(4)
Br3…012					3.223(4)	3.236(4)	3.227(4)	3.236(4)
Br3…H3					3.0296(4)	3.0358(5)	3.0402(5)	3.0660(5)
Br3C3					3.851(4)	3.855(4)	3.863(4)	3.863(4)
∠ Br3…H3-C3					145.6(2)	145.3(2)	145.9(3)	144.7(3)
06…H29	2.720(3)	2.715(4)	2.7120(3)	2.691(5)	2.638(4)	2.660(4)	2.665(4)	2.668(4)
06…C29	3.342(4)	3.348(6)	3.351(4)	3.327(7)	3.294(6)	3.304(6)	3.311(6)	3.312(6)
∠ 06…H29-C29	123.7(2)	125.7(3)	124.5(2)	126.3(3)	126.5(3)	125.5(3)	125.7(3)	126.2(3)

Table S9 Additional interactions involving nitrate and MeOH in [Fe(qsal-Br)₂]·NO₃·2MeOH at multiple temperatures.

Interactions	100 K	123 K	123C K	280 K	150 K	175 K	175C K	220 K
NO ₃ and MeOH ini	teractions							
07…H30	2.815(2)	2.726(4)	2.692(3)	2.764(4)	2.632(3)	2.654(3)	2.628(3)	2.678(4)
07C30	3.218(3)	3.337(6)	3.311(5)	3.470(6)	3.316(5)	3.336(5)	3.327(5)	3.373(6)
∠ 07…H30-C30	106.6(2)	122.8(3)	123.4(2)	133.5(3)	129.3(2)	129.3(2)	130.8(2)	131.3(3)
N9H30	3.576(3)	2.788(3)	2.780(2)	2.751(3)	2.704(4)	2.726(4)	2.702(4)	2.732(4)
N9C30	3.979(4)	3.297(6)	3.290(4)	3.362(6)	3.261(6)	3.283(6)	3.274(6)	3.308(6)
∠ N9…H30-C30	108.4(2)	114.5(3)	114.5(2)	124.1(3)	118.1(3)	118.2(3)	119.3(3)	120.4(3)
010…H45						2.687(3)	2.699(4)	2.709(4)
010…C45						3.323(5)	3.334(6)	3.341(6)
∠ 010…H45-C45						124.9(2)	124.8(3)	125.3(3)
09…H46						2.749(3)	2.760(4)	2.787(4)
09…C46						3.387(5)	3.403(6)	3.437(6)
∠ 09…H46-C46						125.2(2)	125.8(3)	127.1(3)
N10…H46						2.775(4)	2.785(4)	2.807(4)
N10…C46						3.322(6)	3.336(6)	3.363(7)
∠ N10…H46-C46						117.5(3)	117.9(3)	118.8(3)

	123 K	175 K	220K	280 K	175 K	123 K	100 K	150 K
Fe1-Fe2	8.8551(9)	8.9598(8)	8.9943(10)	9.1222(9)	8.9589(8)	8.8114(8)	8.8116(9)	8.9417(9)
(P4AE)								
Fe1-Fe2	12.159(1)	12.298(1)	12.316(1)	12.316(1)	12.295(1)	12.146(1)	12.119(1)	12.253(1)
(Br···H-C)		12.076(1)	12.127(1)		12.0743(9)			11.754(1)

Table S10 Fe-Fe distance from P4AE and Br···H-C linking along b axis at 123 and bc plane at other temperatures.

Table S11 ⁵⁷Fe Mössbauer parameters for 1.

Temperature (K)	Species	δ (mm/s)	ΔE _Q (mm/s)	Γ _L (mm/s)	Γ _R (mm/s)	I (%)
5.1	SJ	0.21	2.77	0.27	0.28	100
100	SJ	0.21	2.77	0.27	0.28	100
170	SJ	0.18	2.72	0.28	0.27	78
	HS	0.44	0.69	0.42	0.62	22
294	SJ	0.12	2.52	0.37	0.35	61
	HS	0.33	0.53	0.44	0.63	39

Supporting Figures

Figure S1 SQUID magnetic susceptibility studies of **1** between 2 and 400 K at scan rates of 1, 2, and 5 Kmin⁻¹.

Figure S2 Partial packing diagram of the LS (top) and [LS-HS] (bottom) phases in **1** where blue and orange represent LS and HS centres, respectively. The light blue box represents the unit cell (or *pseudo*-unit cell in the [LS-HS] phase). The *pseudo*-unit cell of the intermediate [LS-HS] is deliberately divided in two to show its relationship with the unit cell of the simple LS structure and the clear doubling of the unit cell.

Figure S3 The perpendicular π - π interactions that form the 1D chains in **1** at 123 K.

Figure S4 The supplementary C-H···O interactions between the qsal-Br C-H groups and the phenoxide O atoms at 123 K.

Figure S5 The C-H···O interactions forming the a) solvent (Type A) and b) anionic (Type B) embraces above and below the π - π interactions at 123 K.

Figure S6 The P4AE interactions that link the 1D chains in 1 at 123 K.

Figure S7 The C-H…Br and Br…O interactions that link the 1D chains in 1.

Figure S8 Thermal variation of $\chi_M T$ versus T plot for dried 1.

Figure S9 DSC measurements for 1.

Figure S10 VT-IR spectroscopic measurements of 1.