Supplementary Information

Gold Nanoparticles Functionalised with Fast Water Exchanging Gd³⁺ Chelates: Linker Effects on the Relaxivity

Miguel F. Ferreira,^{*a*} Janaina Gonçalves,^{*a*} B. Mousavi,^{*b*} M. I. M. Prata,^{*c*} S. P. J. Rodrigues,^{*d*} Daniel Calle,^{*e*} Pilar López-Larrubia,^{*e*} Sebastian Cerdan,^{*e*} Tiago B. Rodrigues,^{*f*,*g*} Paula M. Ferreira,^{*a*} L. Helm,^{*b**} José A. Martins^{*a**} and Carlos F. G. C. Geraldes.^{*h*}

*^a*Centro de Química, Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal. E-mail: jmartins@química.uminho.pt

^bLaboratoire de Chimie Inorganique et Bioinorganique, Ecole Polytechnique Fédérale

de Lausanne, EPFL-BCH CH-1015 Lausanne, Switzerland. E-mail:

lothar.helm@epfl.ch; Fax: +41 (0)21 693 98 95;Tel: +41 (0)21 693 98 76

^cIBILI and ICNAS, Universidade de Coimbra, Coimbra, Portugal.

^dCenter of Chemistry and Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal.

^eInstituto de Investigaciones Biomédicas "Alberto Sols", CSIC-UAM, Madrid, Spain ^fCancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Cambridge CB2 0RE, United Kingdom.

^gDepartment of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom.

^hDepartment of Life Sciences, Faculty of Science and Technology, University of Coimbra, P.O. Box 3046, 3001-401 Coimbra, Portugal.

Corresponding authors:

José A. Martins, Centro de Química, Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal.

Lothar Helm, Ecole Polytechnique Féderale de Lausanne, EPFL-BCH CH-1015 Lausanne, Switzerland.

Figure SI1. Temperature dependence of the water proton longitudinal relaxation rate for GdL_1 (20 MHz, 1.0 mM pH 7.0 (**a**)) and for GdL_2 (20 MHz, 1.13 mM, pH 7.1(\diamond))

Figura SI2. Size distribution (%Volume) for GdL₂ (5.67 mM, pH 7.1, 25 °C).

Figure SI3. pH dependence of the water proton longitudinal relaxation rate for GdL_1 (20 MHz, 1.0 mM, 25 °C (\blacksquare)) and for GdL_2 (20 MHz, 1.13 mM, 25 °C (\blacklozenge)).

Figure SI4. Time evolution of the relative water proton relaxation rate R1p(t)/R1p(0) (20 MHz, 37 °C) for a solution of GdL₂ (1.13 mM in PBS 2.5 mM, pH 7.1) (•) and following addition of ZnCl₂ 0.75 mM (\blacksquare).

Figure SI5. Typical chelate length estimates from several Au...O and Au...H top-bottom distances measured over the optimized conformations of (A) GdL_1 , (B) GdL_2 and (C) GdL_3 obtained from PM6 semi-empirical calculations. Structures visualized with Jmol code [4].

Figure SI6. UV-Vis spectrum of GdL₁@AuNPs.

Figure SI7. UV-Vis spectrum of GdL₂@NPs.

Figure SI8. Zeta potential distribution, expressed as total counts, for GdL_1 @AuNPs (green line) and GdL_2 @AuNPs (red line).

Table SI1. Zeta potence	al for the GdL1@Au	NPs and GdL2@AuNPs.
1		

AuNPs	Zeta potential (mV)	
GdL ₁ @AuNPs	-6.3	
GdL ₂ @AuNPs	-13.7	

Figure SI9. Concentration dependence of the paramagnetic water proton relaxation rate R_{1p} ($R_{1p} = R_{1obs}$ - R_{1d}) for GdL₁@NPs (\blacksquare) and GdL₂@NPs (\blacklozenge) (20 MHz, 25 °C, pH 7.1).

Figure SI10. pH dependence of the paramagnetic water proton relaxation rate for $GdL_1@AuNPs$ (20 MHz, 25 °C, 0.53 mM, (\blacksquare)) and for $GdL_2@AuNPs$ (20 MHz, 25 °C, 1.30 mM (\diamond)).

Figure SI11. Time evolution of the relative water proton paramagnetic relaxation rate R1p(t)/R1p(0) (20 MHz, 25 °C) for a solution of GdL₁@NPs (0.53 mM in PBS 2.5 mM, pH 7.1) (•) and following addition of 0.75 mM ZnCl₂ (•).

Figure SI12. Time evolution of the relative water proton paramagnetic relaxation rate R1p(t)/R1p(0) (20 MHz, 25 °C) for a solution of GdL₂@AuNPs (1.30 mM in PBS 10 mM, pH 7.1) (**■**) and following addition of 0.75 mM ZnCl₂ (**♦**).

	GdL ₁ @AuNPs ^a	GdL ₂ @AuPs ^a	GdL ₃ @AuNPs ^b
[Gd] (mM) ([Au]/[Gd]) ^c	0.57 (1.4)	1.30 (0.87)	1.24 (3.0)
HD $(nm)^d$	4.8	5.9	3.9
Chelate length (nm) ^e	1.9	2.5	1.6 ^f
Au core diam (nm) ^g	1.0	0.9	0.7 ^f
Zeta potential (mV)	-6.3	-13.7	-12.3
N _{Au} core ^h	31	23	11 ^f
N _{Chel} /NP ⁱ	22 ^j	26 ^j	4 ^f
<i>r</i> ₁ (mM ⁻¹ s ⁻¹ ; 20 MHz, 25 °C)	27	38	28
r_{Ivol} (mM ⁻¹ s ⁻¹ nm ⁻³ ; 20 MHz, 25 °C) ^k	-	-	13

Table SI2. Characterization of GdL₁@AuNPs and GdL₂@AuNPs

^{*a*}The synthesis and characterization of L_1 , L_2 , GdL_1 , GdL_2 and GdL_1 @AuNPs and GdL_2 @AuNPs is described in this work.

^bThe synthesis and characterization of L₃ and GdL₃@AuNPs was described before [1].

^cThe concentration of Gd and Au on the NPs solutions was determined by ICP-OES following digestion of the NPs with *aqua regia*.

^dThe hydrodynamic diameter (HD, nm) of the NPs was measured by DLS.

^{*e*}The length of GdL_1 and GdL_2 was estimated by PM6 semi-empirical calculations for the most provable distended conformations (Figure SI5).

^fThe length of GdL₃ was estimated by PM6 semi-empirical calculations for the most provable distended conformation, affording a revised value of 1.6 nm comparing to previous estimates of 1 nm [1].

^gThe diameter of the gold core was estimated by taking into account the hydrodynamic diameter of the NPs measured by DLS, and the thickness of the chelate monolayer: $Au_{core} = HD-2xChel_{lenght}$

^{*h*}The number of Au atoms in the NPs core (N_{Au} = 30.9 D^3) was calculated from the diameter of the metal core (D, nm) [2].

^{*i*} The number of immobilized complexes was calculated from the number of Au atoms in the core and the ratio Au/Gd obtained by ICP-OES.

^{*j*}A low ratio Au/Gd has obtained by ICP-OES for GdL₁@AuNPs (1.40) and especially for GdL₂@AuNPs (0.87) comparing to GdL₃@AuNPs (3.0) [1]. The number of immobilized chelates (22 and 26 chelates for GdL₁@AuNPs and GdL₂@AuNPs, respectively), calculated from the number of Au atoms in the metal core and the ratio Au/Gd), suggests the formation of a loosely bound second chelate layer around the NPs. This possibility deserves future investigation. ^{*k*}The volumetric density of relaxivity was calculated using the relaxivity per NP and the HD diameter of the naoparticles: $r_{1vol} = (N_{chel} \ge r_1)/4/3\pi (HD/2)^3$ [3]

References:

- 1. Ferreira, M. F.; Mousavi, B.; Ferreira, P. M.; Martins, C. I. O.; Helm, L.; Martins, J. A.; Geraldes, C. F. G. C., Gold nanoparticles functionalised with stable, fast water exchanging Gd3+ chelates as high relaxivity contrast agents for MRI. *Dalton Trans.* **2012**, *41* (18), 5472-5475.
- 2. Liu, X.; Atwater, M.; Wang, J.; Huo, Q., Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. *Colloids Surf. B* **2007**, *58* (1), 3-7.
- 3. Bruckman, M. A.; Yu, X.; Steinmetz, N. F., Engineering Gd-loaded nanoparticles to enhance MRI sensitivity via T(1) shortening. *Nanotechnology* **2013**, *24* (46), 462001.