Supporting information

Unprecedented Iminobenzosemiquinone and Iminobenzoquinone Coordinated Mononuclear Cu(II) Complex Formation under Air

Manas Kumar Mondal,^{*a*} Abul Kalam Biswas,^{*b*} Biswajit Ganguly^{b^*} and Chandan Mukherjee^{a_*}

^a Department of Chemistry, Indian Institute of Technology, Guwahati,781039, Assam, India. Fax: (+) 91-361-258-2349; Tel: (+) 91-361-258-2327; E-mail: cmukherjee@iitg.ernet.in

^b Computation and Simulation Unit (Analytical Discipline and Centralized Instrument Facility), CSIR–Central Salt and Marine Chemicals Research Institute, Bhavnagar–364002, India. Fax: 00–91–278–2567562; Email:– ganguly@csmcri.org

Contents	Page
Mass spectra of B , $H_4L^{S(AP/AP)}$, and $1 \bullet 1CH_3CN$	S3-S4
A $\mu_{\rm eff}$ vs T plot for 1•1CH ₃ CN	S4
UV-Vis/NIR spectrum of 1 •1CH ₃ CN (experimental) in CH ₂ Cl ₂ , and theoretically	S5
(TDDFT) obtained spectrum of the same.	
Cyclic voltammograms of the green compound	S5
Time-dependent UV-Vis/NIR changes of the green solid $[Cu_2L_2^{S(ISQ/ISQ)}]$ obtained	S 6
initially by using $H_4L^{S(AP/AP)}$ ligand	
The optimized geometry of complex 1 and bond distance comparison	S6-S8
B3LYP/6-31G (d, p) optimized Cartesian coordinates of complex 1 and the	S8-S110
corresponding electronic energies	

Figure 1. ESI-MS (positive mode) for **B** [$C_{12}H_{13}N_2S$]. Insert: Calculated isotope distribution pattern for $C_{12}H_{13}N_2S$.

Figure 2. ESI-MS (positive mode) for $H_4L^{S(AP/AP)}$ [C₄₀H₅₃N₂O₂S]. Insert: Calculated isotope distribution pattern for [C₄₀H₅₃N₂O₂S].

Figure 3. ESI-MS (positive mode) for [**1-CI**] [{C₄₀H₄₈CuN₂O₂S}⁺]. Insert: Calculated isotope distribution pattern for C₄₀H₄₈CuN₂O₂S.

Figure 4. A μ_{eff} *vs T* plot for **1**•1CH₃CN.

Figure 5. UV-Vis/NIR spectrum of $1 \cdot 1CH_3CN$ (experimental) in CH₂Cl₂, and theoretically (TDDFT) obtained spectrum of the same.

Figure 6. Cyclic voltammograms of the green compound in CH_2Cl_2 using glassy carbon working electrode and Pt counter electrode. Showing low value for the first oxidation peak.

Figure 7. Time-dependent UV-Vis/NIR changes of the green solid $[Cu_2L_2^{S(ISQ/ISQ)}]$ obtained initially by using $H_4L^{S(AP/AP)}$ as the ligand.

Figure 8. The optimized geometry of complex 1 at the B3LYP/6-31G (d, p) level of theory (white = hydrogen, gray = carbon, blue = nitrogen, red = oxygen, lime = chlorine and coral = copper).

Bond Length	Experimental	Calculated
Cu1-01	1.967(2)	1.971
Cu1–N1	1.973(3)	2.059
Cu1–N2	2.108(2)	2.035
Cu1–Cl1	2.2193(9)	2.296
Cu1–O2	2.418(2)	2.177
S1-C13	1.774(3)	1.787
S1-C12	1.776(3)	1.795
O1–C2	1.284(4)	1.272
N1-C1	1.354(3)	1.331
N1-C7	1.405(4)	1.405
O2–C24	1.229(3)	1.250
N2-C19	1.303(4)	1.323
N2-C18	1.432(4)	1.414
C1-C6	1.415(4)	1.429
C1–C2	1.443(4)	1.474
C21-C20	1.336(4)	1.366
C21–C22	1.470(4)	1.459
C21–C33	1.529(4)	1.534
C19-C20	1.435(4)	1.437
C19–C24	1.515(4)	1.499
C23–C22	1.344(4)	1.366
C23–C24	1.470(4)	1.459
C23–C37	1.532(4)	1.537
C13-C18	1.386(5)	1.414
C13-C14	1.395(4)	1.400
C7–C8	1.395(4)	1.407
C7–C12	1.405(4)	1.412
C2–C3	1.440(4)	1.445
C6–C5	1.358(4)	1.373
C25–C3	1.531(5)	1.537
C12-C11	1.387(4)	1.396
C3–C4	1.364(5)	1.375
C5–C4	1.426(5)	1.444
C5–C29	1.537(4)	1.537
C14–C15	1.380(5)	1.394
C18–C17	1.391(4)	1.409
C15-C16	1.365(5)	1.396
C16-C17	1.381(4)	1.390
C8–C9	1.376(5)	1.393
C9–C10	1.380(5)	1.397
C11-C10	1.375(5)	1.397

Table 3. The selective bond distances (Å) and bond angles (°) of X-ray molecular structure and optimized geometry of complex **1**.

Experimental	Calculated
82.13(9)	79.57
153.57(10)	162.91
93.61(10)	96.15
98.15(7)	95.23
160.44(8)	137.54
94.40(7)	98.91
82.23(8)	87.33
84.89(10)	103.30
71.40(8)	77.50
114.59(7)	118.63
99.79(15)	109.30
113.16(19)	114.86
123.6(3)	121.46
112.6(2)	112.79
122.83(18)	121.53
107.6(2)	110.86
120.4(2)	119.61
118.79(18)	115.95
120.31(19)	122.16
	Experimental $82.13(9)$ $153.57(10)$ $93.61(10)$ $93.61(10)$ $98.15(7)$ $160.44(8)$ $94.40(7)$ $82.23(8)$ $84.89(10)$ $71.40(8)$ $114.59(7)$ $99.79(15)$ $113.16(19)$ $123.6(3)$ $112.6(2)$ $122.83(18)$ $107.6(2)$ $120.4(2)$ $118.79(18)$ $120.31(19)$

Table 4. B3LYP/6-31G (d, p) optimized Cartesian coordinates of complex 1 and the corresponding electronic energies.

E = -4311.96773 a.u

-0.22688400	-0.99707800	-1.10280100
0.27126700	-2.94592200	1.74453300
-0.22623500	-2.78918000	-2.53812400
-1.96257900	-0.28450400	-1.70596800
-1.07506900	-0.50029800	0.70686100
0.65921500	0.87570900	-1.77173000
1.68332700	-1.14327000	-0.41530900
-2.30240500	-0.00007100	0.58111500
4.36401200	1.33649600	-0.09597300
2.43420500	-0.06381400	-0.55843900
5.77174600	1.59149900	0.45784000
3.79166400	0.09679600	-0.11658100
2.32850800	2.43527600	-1.05782900
1.75759600	-3.27579300	0.80883200
-0.28696500	-0.23412500	1.83957200
-2.83165800	-0.14440900	-0.78727100
-3.14654400	0.51576300	1.61249700
1.56591800	3.67653200	-1.54691100
	-0.22688400 0.27126700 -0.22623500 -1.96257900 0.65921500 1.68332700 -2.30240500 4.36401200 2.43420500 5.77174600 3.79166400 2.32850800 1.75759600 -0.28696500 -2.83165800 -3.14654400 1.56591800	-0.22688400-0.997078000.27126700-2.94592200-0.22623500-2.78918000-1.96257900-0.28450400-1.07506900-0.500298000.659215000.875709001.68332700-1.14327000-2.30240500-0.000071004.364012001.336496002.43420500-0.063814005.771746001.591499003.791664000.096796002.328508002.435276001.75759600-3.27579300-0.28696500-0.23412500-2.83165800-0.14440900-3.146544003.67653200

С	-4.85312800	-0.31932300	-2.40359500
С	0.49330600	-1.28129100	2.37729800
С	3.60664300	2.48082600	-0.57868300
С	2.35460800	4.97151000	-1.27355400
С	1.71937900	1.11196200	-1.15399700
С	-4.25251100	-0.02510300	-1.01926000
С	-4.48221700	0.70903900	1.36251000
С	2.34450100	-4.53369600	0.99164600
С	2.29548500	-2.39027800	-0.15369000
С	3.42890700	-4.93957400	0.21531100
С	-4.99873200	0.42846700	0.04304100
С	3.95258500	-4.07733700	-0.74996800
С	-0.13730900	1.06138900	2.36764400
С	-5.46921400	1.17741600	2.44317700
С	1.32302500	3.57791600	-3.07402100
С	3.39532100	-2.81565400	-0.92425900
С	-4.47041100	-1.75613200	-2.83390400
С	0.20993200	3.77847500	-0.80624700
С	-6.39039700	-0.21930400	-2.39179600
С	0.74697800	1.30226700	3.41672800
С	6.64809500	2.21198300	-0.65941800
С	1.36389600	-1.03398800	3.44031900
С	1.49844900	0.25649100	3.95704100
С	-4.77886300	1.42566400	3.79672200
С	-6.12888200	2.50266700	1.98719700
С	-6.56308800	0.10090800	2.64752800
С	5.68440600	2.57357800	1.65239800
С	-4.31603200	0.69703700	-3.44169900
С	6.45225600	0.29863000	0.94203700
Н	4.30521700	-0.76069400	0.29196400
Η	-2.73535000	0.65209700	2.60240000
Η	4.10671600	3.43961700	-0.54146900
Η	2.56963800	5.10359600	-0.20785400
Η	3.30070900	5.00238100	-1.82381800
Н	1.75900700	5.82916800	-1.60041500
Η	1.94084300	-5.19673200	1.74980700
Η	3.86055300	-5.92371800	0.36615600
Н	-6.05743500	0.59252300	-0.10997100
Н	4.78526800	-4.38794000	-1.37235800
Н	-0.69786900	1.87878100	1.92717100
Н	2.27352200	3.51637600	-3.61456000
Н	0.79535000	4.47299700	-3.42117600
Н	0.72291900	2.70331100	-3.32757500

Н	3.77488300	-2.15717400	-1.69793300
Н	-3.38779400	-1.88573800	-2.87933000
Н	-4.88488900	-1.96869100	-3.82549500
Н	-4.87940500	-2.49309300	-2.13409000
Н	0.36334300	3.88358000	0.27322100
Н	-0.41156100	2.89977000	-0.98547200
Н	-0.33596400	4.66125000	-1.15558800
Н	-6.77489800	-0.48520400	-3.38129000
Н	-6.73698800	0.79510200	-2.16853600
Н	-6.83957800	-0.90487800	-1.66552100
Н	0.85139000	2.30889600	3.80899000
Η	7.65340300	2.40698100	-0.27184900
Η	6.73787500	1.52966900	-1.51058400
Η	6.24653000	3.16078300	-1.02643400
Η	1.93616600	-1.85385700	3.86158400
Н	2.18410100	0.44063000	4.77775100
Η	-4.00256100	2.19413900	3.72354800
Η	-5.51882100	1.77086500	4.52518400
Η	-4.32411700	0.51343400	4.19608400
Η	-6.67622300	2.39067600	1.04699000
Η	-5.37771300	3.28713800	1.84960100
Η	-6.84128500	2.84317300	2.74618300
Н	-7.12845800	-0.09353900	1.73177400
Н	-6.12236300	-0.84443800	2.98016100
Η	-7.27403500	0.43240900	3.41187100
Н	6.68733200	2.76145000	2.04970900
Н	5.07150900	2.15590000	2.45747200
Η	5.25628900	3.53878800	1.36715900
Н	-3.23093400	0.63508900	-3.53430800
Н	-4.75961300	0.49400100	-4.42287800
Н	-4.58234100	1.72070900	-3.15701000
Н	7.45561400	0.53245300	1.30997100
Η	6.55726200	-0.43299700	0.13467500
Н	5.90082600	-0.16977600	1.76348500