Supplementary Information for the paper

The peculiar behavior of Picha in the formation of metallacrown complexes with Cu(II), Ni(II) and Zn(II), in aqueous solution

L. Marchiò,^{*a*} N. Marchetti,^{*b*} C. Atzeri,^{*a*} V. Borghesani,^{*a*} M. Remelli^{*b*} and M. Tegoni^{**a*}

Page 3.	Table S1 . Logarithms of protonation and Ni(II) complex formation constants of the complexes with Picha, obtained by treating the potentiometric data with inclusion of
	the 12-MC-4 species in the speciation model.
Page 4.	Scheme S1. Synthesis of Alaha.
Page 5.	Scheme S2. Scheme of Picha.
Page 6.	Scheme S3 . Representation of the possible (<i>N</i> , <i>N</i>) and (<i>O</i> , <i>O</i>) coordination modes for Picha and Alaha.
Page 7.	Scheme S4 . Schematic drawings of the ligands ethylenediamine (en), picolinamine (Pyam) and 2,2'-bipyridine (Bipy).
Page 8.	Figure S1 . Representative speciation diagram of the system Cu(II) / Alaha.
Page 9.	Figure S2. Representative speciation diagram of the system Ni(II) / Alaha.
Page 10.	Figure S3 . Representative speciation diagram of the system Ni(II) / Alaha.
Page 11.	Figure S4. Experimental visible spectra for the system Cu(II) / Picha.
Page 12.	Figure S5. Experimental visible spectra for the system Ni(II) / Picha.
Page 13.	Figure S6. Experimental visible spectra for the system Ni(II) / Picha.
Page 14.	Figure S7. Calculated molar visible spectra for the complex species in the Ni(II) / Picha
	system, after the treatment with a speciation model which includes the 12-MC-4
	complex.
Page 15.	Figure S8. Comparison between of the optimized molecular structures (B3LYP/3-21G)
	of the 12-MC-4 $[Cu_5(LH_{-1})_4]^{2+}$ with HL = valinehydroxamic acid (Valha) (left) and HL =
	Picha (right).
Page 16.	Figure S9. Comparison between the geometry of the valinehydroxamate (Valha)
	ligand and of the ligand Picha in the optimized structures of the respective 12-MC-4 $[Cu_5(LH_{-1})_4]^{2+}$.
Page 17.	Figure S10. ESI–MS spectrum for the complex of the system Cu(II)/PicHA 5:6 mM in aqueous solution, pH = 2.3.
Page 18.	Figure S11 . ESI–MS spectrum for the complex of the system Cu(II)/PicHA 5:6 mM in aqueous solution. $pH = 6.0$.
Page 19.	Figure S12 . ESI–MS spectrum for the complex of the system Cu(II)/PicHA 5:6 mM in aqueous solution $nH = 11.3$
Page 20	Figure \$13 FSI-MS spectrum for the complex of the system Ni(II)/PicHA 5:6 mM in
1 460 20.	aqueous solution, $pH = 6.9$.
Page 21.	Figure S14. ESI–MS spectrum for the complex of the system Ni(II)/PicHA 5:6 mM in
	aqueous solution, $pH = 10.3$.
Page 22.	Figure S15 . Positive-ion ESI–MS spectrum for the complex of the system $Zn(II)/PicHA$ 5:6 mM in aqueous solution. pH = 6.0.

Page 23.	Figure S16. Negative-ion ESI-MS spectrum for the complex of the system Zn(II)/PicHA
	5:6 mM in aqueous solution, pH = 6.0.
Page 24.	Figure S17. Positive-ion ESI–MS spectrum for the complex of the system Zn(II)/PicHA
	5:8 mM in aqueous solution, $pH = 7.0$.
Page 25.	Figure S18. Negative-ion ESI-MS spectrum for the complex of the system Zn(II)/PicHA
	5:8 mM in aqueous solution, pH = 7.0.
Page 26.	Figure S19. Positive-ion ESI–MS spectrum for the complex of the system Zn(II)/PicHA
	8:8 mM in aqueous solution, $pH = 6.3$.
Page 27.	Figure S20. Positive-ion ESI–MS spectrum for the complex of the system Zn(II)/Alaha
	5:6 mM in aqueous solution, $pH = 7.2$.

Table S1. Logarithms of protonation and Ni(II) complex formation constants of the complexes with Picha, obtained by treating the potentiometric data with inclusion of the 12-MC-4 species in the speciation model. T = 298.2 K, $I = 0.1 \text{ mol L}^{-1}$ (KCl)

Species ^[a]	Picha (HL)
$[NiL]^+$	7.16(1)
[NiL ₂]	13.95(1)
[NiL ₃]-	19.39(2)
[NiL(LH.1)]	4.24(3)
$[Ni_5(LH_{-1})_4]^{2+}$	15.77(9)
[Ni ₅ (LH ₋₁) ₅]	13.96(13)
<i>σ; n</i>	1.31; 207

Scheme S1. Synthesis of Alaha (**3**). (a) CbzCl, NaOH (aq). (b) Ethylchloroformate, *N*-methylmorpholine, dichloromethane. (c) $H_{2(g)}$, Pd/C (10 %).

Scheme S2. Scheme of Picha and potential intramolecular hydrogen bond.

Scheme S3. Representation of the possible (*N*,*N*) and (*O*,*O*) coordination modes for Picha (above) and Alaha (below).

H₂N NH₂ NH₂

Scheme S4. Schematic drawings of the ligands ethylenediamine (en, left), picolinamine (Pyam, center) and 2,2'-bipyridine (Bipy, right).

Figure S1. Representative speciation diagram of the system Cu(II) / Alaha (HL). Cu:L = 1:2.2, $C_{Cu} = 2.8 \times 10^{-3}$ mol L⁻¹, I = 0.1 mol L⁻¹ (KCI), T = 298.2 K.

Figure S2. Representative speciation diagram of the system Ni(II) / Alaha (HL). Ni:L = 1:2.2, $C_{Ni} = 2.8 \times 10^{-3}$ mol L^{-1} , I = 0.1 mol L^{-1} (KCl), T = 298.2 K.

Figure S3. Representative speciation diagram of the system Ni(II) / Alaha (HL). Ni:L = 1:1.5, $C_{Ni} = 2.8 \times 10^{-3}$ mol L⁻¹, I = 0.1 mol L⁻¹ (KCl), T = 298.2 K.

Figure S4. Experimental visible spectra for the system Cu(II) / Picha 1:2.17 ($C_{Cu} = 2.31 \times 10^{-3}$ mol L⁻¹, I = 0.1 M KCl) at different pH (see values in the inset).

Figure S5. Experimental visible spectra for the system Ni(II) / Picha 1:2.73 ($C_{Ni} = 3.67 \times 10^{-3} \text{ mol } L^{-1}$, I = 0.1 M KCI) at different pH (see values in the inset).

Figure S6. Experimental visible spectra for the system Ni(II) / Picha 1:1.45 ($C_{Ni} = 3.67 \times 10^{-3} \text{ mol } L^{-1}$, I = 0.1 M KCI) at different pH (see values in the inset).

Figure S7. Calculated molar visible spectra for the complex species in the Ni(II) / Picha (HL) system, after the treatment with a speciation model which includes the 12-MC-4 complex. $I = 0.1 \text{ mol } L^{-1}$ (KCl), T = 298.2 K.

Figure S8. Comparison between of the optimized molecular structures (B3LYP/3-21G) of the 12-MC-4 [Cu₅(LH₁)₄]²⁺ with HL = valinehydroxamic acid (Valha) (left) and HL = Picha (right).

Figure S9. Comparison between the geometry of the valinehydroxamate (Valha) ligand (left) and of the ligand Picha (right) in the optimized structures of the respective 12-MC-4 $[Cu_5(LH_{-1})_4]^{2+}$. Bond distances (Å) in green and bond angles (°) in red.

Figure S10. Positive ion ESI–MS spectrum for the complex of the system Cu(II)/PicHA 5:6 mM in aqueous solution, pH = 2.3.

Figure S11. Positive ion ESI–MS spectrum for the complex of the system Cu(II)/PicHA 5:6 mM in aqueous solution, pH = 6.0.

Figure S12. Positive ion ESI–MS spectrum for the complex of the system Cu(II)/PicHA 5:6 mM in aqueous solution, pH = 11.3.

Figure S13. Positive ion ESI–MS spectrum for the complex of the system Ni(II)/PicHA 5:6 mM in aqueous solution, pH = 6.9.

Figure S14. Positive ion ESI–MS spectrum for the complex of the system Ni(II)/PicHA 5:6 mM in aqueous solution, pH = 10.3.

Figure S15. Positive-ion ESI–MS spectrum for the complex of the system Zn(II)/PicHA 5:6 mM in aqueous solution, pH = 6.0.

Figure S16. Negative-ion ESI–MS spectrum for the complex of the system Zn(II)/PicHA 5:6 mM in aqueous solution, pH = 6.0.

Figure S17. Positive-ion ESI–MS spectrum for the complex of the system Zn(II)/PicHA 5:8 mM in aqueous solution, pH = 7.0.

Figure S18. Negative-ion ESI–MS spectrum for the complex of the system Zn(II)/PicHA 5:8 mM in aqueous solution, pH = 7.0.

Figure S19. Positive-ion ESI–MS spectrum for the complex of the system Zn(II)/PicHA 8:8 mM in aqueous solution, pH = 6.3.

Figure S20. Positive-ion ESI–MS spectrum for the complex of the system Zn(II)/Alaha 5:6 mM in aqueous solution, pH = 7.2.