Support Information

Synthesis, Crystal Structures and Magnetic Properties of *mer*-Cyanideiron(III)-Based 1D Heterobimetallic Cyanide-Bridged Chiral Coordination Polymers

Daopeng Zhang,^{a,b} Shuping Zhuo,^{a,*} Hongyan Zhang,^a Ping Wang,^a and Jianzhuang Jiang^{b,*}

Figure S1. The MCD spectra of complex 1.

Figure S2. The MCD spectra of complex **3**.

Figure S3. Perspective view of ladder-like double infinite chains of **3** (S,S isomer, left)

and 4 (R,R isomer, right), respectively.

Figure S4. The cell packing diagram along *a* axis for complexes **3** and **4**. All the H atoms and the solvent molecules have been omitted for clarity.

Figure S5. Temperature dependence of $\chi_M T$ for complex **2**. The fitting results are $J = -7.44 \text{ cm}^{-1}$, $D = -1.51 \text{ cm}^{-1}$, g = 1.99, $R = 1.61 \times 10^{-5}$ (**2**).

Figure S6. Temperature dependence of ac magnetization of complex 1 in a zero-static field and an ac field of 2 Oe at frequencies of 11, 44, 111, 171 and 271 Hz.

Figure S7. Temperature dependence of $\chi_M T$ of K₄[Fe₂(tbbp)(CN)₆].

Figure S8. Temperature dependence of $\chi_M T$ of **4**. The magnetic fitting results are J = -

4.29 cm⁻¹, g = 2.08, $R = 2.65 \times 10^{-4}$ (4).

	1	2
Mn1-N1	2.319(3)	2.277(7)
Mn1-N9	1.996(3)	2.019(7)
Mn1-N10	2.001(3)	1.998(6)
Mn1-N15	2.263(3)	2.280(7)
Mn1- O3	1.870(2)	1.879(5)
Mn1-O4	1.888(2)	1.886(6)
Fe1-C1	1.961(3)	1.962(8)
Fe1-C2	1.958(3)	1.962(9)
Fe1-C3	1.920(3)	1.903(8)
Fe1-N4	1.940(3)	1.962(7)
Fe1-N6	1.952(3)	1.918(7)
Fe1-N8	1.944(3)	1.934(8)

Table S1. Selected bond lengths (Å) and angles (°) for complexes 1-2.

N15-Mn1-N1	169.44(11)	168.8(3)
Mn1-N1-C1	151.5(3)	153.9(7)
Mn1-N15-C64#1	157.1(3)	157.4(7)
Fe1-C1-N1	177.7(3)	178.1(7)
Fe1-C2-N2	178.5(3)	175.5(8)

#1: x+1, y, z

	3	4
Cu1-N1	2.502(12)	2.550(10)
Cu1-N17	1.943(12)	2.028(11)
Cu1-N18	1.997(9)	1.997(11)
Cu1-N19	1.976(12)	2.008(9)
Cu1-N20	1.942(13)	2.010(10)
Cu2-N5	2.572(10)	2.528(10)
Cu2-N21	1.975(14)	2.052(9)
Cu2-N22	2.040(10)	2.028(10)
Cu2-N23	2.099(11)	2.014(10)
Cu2-N24	2.036(9)	2.022(9)
Fe1-C1	1.974(15)	1.977(13)
Fe1-C2	2.005(13)	1.974(14)
Fe1-C3	1.932(11)	1.953(14)
Fe1-N7	1.939(9)	1.966(9)
Fe1-N9	1.967(9)	1.947(9)
Fe1-N11	1.948(9)	1.951(8)
Fe2-C5	1.900(14)	1.986(11)
Fe2-C4	1.934(12)	1.905(11)
Fe2-C6	1.957(13)	1.948(14)
Fe2-N12	1.935(8)	1.913(9)
Fe2-N14	1.919(9)	1.960(8)
Fe2-N16	1.956(8)	1.956(9)
C1 N1 Cu1	140 8(0)	128 2(0)
$C_5 N_5 C_{22}$	140.0(7)	130.2(9)
$C_{1} = C_{1} = C_{2}$	131.7(10) 176.2(5)	134.2(10)
C1-Fe1-C2	170.3(3)	170.9(3)
C3-Fe2-C4	1/0.0(5)	1/9.5(4)

Table S2. Selected bond lengths (Å) and angles (°) for complexes 3-4.