## Highly selective colorimetric sensing of Hg(II) ion in aqueous medium and solid state via formation novel M-C bond

C.Parthiban, R.Manivannan and Kuppanagounder P. Elango\*

## **Table of Content**

| Fig. S1.        | <sup>1</sup> H NMR spectrum of R1                                                                                                |  |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------|--|
| Fig. S2.        | <sup>13</sup> C NMR spectrum of R1                                                                                               |  |
| Fig. S3.        | LCMS spectrum of R1                                                                                                              |  |
| Fig. S4.        | Colour change of receptor in aqueous solution (DMF: $H_2O$ ; 1:9 v/v) in presence of various metal ions.                         |  |
| Fig. S5.        | UV-Vis spectral changes of the receptor upon the addition of the different cations.                                              |  |
| Fig. S6.        | Fluorescence changes of R1 (6.5 x $10^{-4}$ M) upon addition of Hg(II) (0-2.5 x $10^{-3}$ M) in DMF: H <sub>2</sub> O (1:9 v/v). |  |
| Fig. S7.        | Benesi-Hildebrand plot of the receptor with Hg(II).                                                                              |  |
| <b>Fig. S8.</b> | Job's plot of $R1(2.5 \times 10^{-4} \text{ M})$ upon addition of Hg(II).                                                        |  |
| Fig. S9.        | Detection limits plot of the receptor.                                                                                           |  |
| Table S1.       | Crystal data and structure refinement for Hg(II) complex.                                                                        |  |
| Fig. S10.       | Packing diagram of Hg(II) complex.                                                                                               |  |
| Fig. S11.       | Optimized geometry of the receptor R1.                                                                                           |  |
| Fig. S12.       | Mullikan Chagres of the receptor R1.                                                                                             |  |
| Fig. S13.       | Color changes of the test papers for detecting Hg(II) in aqueous solution with different concentrations.                         |  |



**Fig. S2.** <sup>1</sup>H NMR spectrum of R1



**Fig. S2**. <sup>13</sup>C NMR spectrum of R1



Fig. S3. LCMS spectrum of R1



R Hg(II) Na(I) K(I) Mg(II) Ca(II) Ba(II) Pb(II) Fe(III) Co(II) Ni(II) Cu(II) Zn(II) Cd(II)

**Fig. S4.** Colour change of receptor in aqueous solution (DMF: $H_2O$ ; 1:9 v/v) in presence of various metal ions.



**Fig. S5.** UV-Vis spectral changes of the receptor upon the addition of the different cations.



**Fig. S6.** Fluorescence changes of R1(6.5 x  $10^{-4}$  M) upon addition of Hg(II) (0-2.5 x  $10^{-3}$  M) in DMF: H<sub>2</sub>O (1:9 v/v).



Fig. S7. Benesi-Hildebrand plot of the R1 with Hg(II).



**Fig. S8.** Job's plot of R1 ( $2.5 \times 10^{-4}$  M) upon addition of Hg(II).



Fig. S9. Detection limits plot of the receptor.

| Empirical formula               | $C_{16}H_{13}Cl_2HgN_3O_3S$             |
|---------------------------------|-----------------------------------------|
| Formula weight                  | 598.84                                  |
| Temperature                     | 293(2) K                                |
| Wavelength                      | 0.71073 A                               |
| Crystal system, space group     | Monoclinic, P21/c                       |
| Unit cell dimensions            | a = 12.9121(5) A alpha = 90 deg.        |
|                                 | b = 7.7803(3) A beta = 94.4640(10) deg. |
|                                 | c = 18.6223(8) A gamma = 90 deg.        |
| Volume                          | 1865.12(13) A^3                         |
| Z, Calculated density           | 4, 2.133 Mg/m^3                         |
| Absorption coefficient          | 8.672 mm^-1                             |
| Crystal size                    | 0.35 x 0.30 x 0.25 mm                   |
| Theta range for data collection | 2.19 to 26.00 deg.                      |
| Limiting indices                | -15<=h<=15, -9<=k<=9, -22<=l<=22        |
| Reflections collected / unique  | 26561 / 3661 [R(int) = 0.0471]          |
| Completeness to theta = $26.00$ | 100.0 %                                 |
| Absorption correction           | Semi-empirical from equivalents         |
| Max. and min. transmission      | 0.2294 and 0.1503                       |
| Refinement method               | Full-matrix least-squares on F^2        |
| Data / restraints / parameters  | 3661 / 1 / 239                          |
| Goodness-of-fit on F^2          | 1.187                                   |
| Final R indices [I>2sigma(I)]   | R1 = 0.0336, wR2 = 0.0899               |
| R indices (all data)            | R1 = 0.0500, wR2 = 0.0970               |
| Largest diff. peak and hole     | 0.765 and -0.942 e.A^- <sup>3</sup>     |

## **Table S1.** Crystal data and structure refinement for the Hg(II) complex.



Fig. S10. Packing diagram of the Hg(II) complex.



Fig. S11. Optimized geometry of the receptor R1.



Fig. S12. Mullikan Chagres of the receptor R1.



**Fig. S13.** Color changes of the test papers for detecting Hg(II) in aqueous solution with different concentrations.