Electronic supplementary information

StrategytoEnhanceSolid-StateFluorescenceandAggregation-InducedEmissionEnhancementEffect inPyrimidineBoronComplexes

Yasuhiro Kubota,* Kouhei Kasatani, Hiroki Takai, Kazumasa Funabiki and Masaki Matsui*

Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan

kubota@gifu-u.ac.jp (Y. Kubota), matsuim@gifu-u.ac.jp (M. Matsui)

Contents

- 1. UV-vis absorption and fluorescence spectra (Figure S1–S6)
- 2. AIEE check (Figure S7–S12)
- 3. UV-vis absorption and fluorescence properties (Table S1–S6)
- 4. X ray crystal data (Table S7–S36)
- 5. Cartesian coordinates of the optimized structures
- 6. ¹H and ¹³C NMR spectra (Figure S13–Figure S30)

Figure S1. (a) UV-vis absorption and (b) fluorescence spectra of **8** in various solvents $(1.0 \times 10^{-5} \text{ M})$. The solubility of **8** in *n*-hexane was poor.

Figure S2. (a) UV-vis absorption and (b) fluorescence spectra of 9 in various solvents $(1.0 \times 10^{-5} \text{ M})$.

Figure S3. (a) UV-vis absorption and (b) fluorescence spectra of 11 in various solvents $(1.0 \times 10^{-5}$

M).

Figure S4. (a) UV-vis absorption and (b) fluorescence spectra of 12 in various solvents $(1.0 \times 10^{-5} \text{ M})$.

Figure S5. (a) UV-vis absorption and (b) fluorescence spectra of 13 in various solvents $(1.0 \times 10^{-5} M)$.

Figure S6. (a) UV-vis absorption and (b) fluorescence spectra of 14 in various solvents (1.0×10⁻⁵ M).

Figure S7. Fluorescence quantum yields of **6** and **12** in THF–water mixtures with different volume fractions of water (10^{-4} M) .

Figure S8. Check of Tyndall phenomenon of 6.

Figure S9. UV-vis absorption spectra of 6 in THF–water mixtures with different volume fractions of water (10^{-4} M) .

Figure S10. Check of Tyndall phenomenon of 12.

Figure S11. UV-vis absorption spectra of 12 in THF–water mixtures with different volume fractions of water (10^{-4} M) .

Figure S12. UV-vis absorption spectra of (a) **6** and (b) **12** in methanol–ethylene glycol mixtures with different volume fractions of ethylene glycol.

Table S1. Absorption and fluorescence properties of **8** in various solvents^a

solvent	$\lambda_{\max}\left(arepsilon ight)$ (nm)	F_{\max}^{b} (nm)	Stokes shift (cm ⁻¹)	$\phi_{\mathrm{f}}{}^c$	$\tau_{\rm s}^{\ d}$ (ns)	$k_{\rm f}^{e}$ (10 ⁹ s ⁻¹)	$k_{\rm nr}^{\ f}$ (10 ⁹ s ⁻¹)
Hexane	376, 392 ^g	411, 430	3,340	< 0.01	h		
Toluene	381 (32,200) 398 (21,100)	446	3,830	0.01	h		
CHCl ₃	378 (31,900) 395 (20,100)	413, 433	3,360	0.01	h		
THF	378 (36,000) 395 (22,400)	435	3,470	0.01	h		—
CH ₂ Cl ₂	377 (36,800) 393 (23,300)	414, 433	3,430	0.01	h		—
MeCN	374 (35,000) 391 (21,300)	434	3,700	0.01	h	—	—

^{*a*}Measured at a concentration of 1.0 x 10⁻⁵ mol dm⁻³. ^{*b*} The excitation wavelengths (λ_{ex}) were as follows: hexane (371 nm), toluene (381 nm), chloroform (378 nm), THF (378 nm), dichloromethane (378 nm) and acetonitrile (354 nm). ^{*c*}Measured using an integrating sphere method. ^{*d*}Measured using a single-photon-counting method. ^{*e*}Radiative rate constant ($k_{f} = \Phi_{f}/\tau_{s}$). ^{*f*}Non-radiative rate constant ($k_{nr} = (1 - \Phi_{f}/\tau_{s})$). ^{*f*}Poor solubility. ^{*h*}Too short to be measured ($\tau_{s} < 0.1$ ns).

Table S2. Absorption and fluorescence properties of 9 in various solvents^a

^{*a*}Measured at a concentration of 1.0 x 10⁻⁵ mol dm⁻³. ^{*b*} The excitation wavelengths (λ_{ex}) were as follows: hexane (390 nm), toluene (390 nm), chloroform (390 nm), THF (390 nm), dichloromethane (390 nm) and acetonitrile (390 nm). ^cMeasured using an integrating sphere method. ^dMeasured using a single-photon-counting method. ^eRadiative rate constant ($k_{\rm f} = \Phi_{\rm f}/\tau_{\rm s}$). ^fNon-radiative rate constant ($k_{\rm nr} = (1 - 1)^{-1}$ $\Phi_{\rm f}$) $/\tau_{\rm s}$).

.OMe

$\begin{array}{c} CI \\ N \\ N \\ Ph \\ Ph \\ 11 \end{array}$							
solvent	$\lambda_{\max}\left(arepsilon ight)$ (nm)	$F_{\max}^{\ b}$ (nm)	Stokes shift (cm ⁻¹)	$\phi_{\mathrm{f}}{}^{c}$	$ au_{ m s}^{d}$ (ns)	$k_{\rm f}^{e}$ (10 ⁹ s ⁻¹)	$k_{\rm nr}^{f}$ (10 ⁹ s ⁻¹)
Hexane	397 (22,200)	445, 466	2,720	0.03	0.41	0.07	2.37
Toluene	401 (21,400)	456, 470	3,010	0.10	1.03	0.10	0.87
CHCl ₃	399 (23,000)	451, 470	2,890	0.05	0.65	0.08	1.46
THF	399 (22,600)	452, 467	2,940	0.08	0.91	0.09	1.01
CH ₂ Cl ₂	398 (23,300)	452, 469	3,000	0.05	0.67	0.07	1.42
MeCN	395 (22,500)	456	3,390	0.04	0.62	0.06	1.55

Table S3. Absorption and fluorescence properties of 11 in various solvents^{*a*}

^{*a*}Measured at a concentration of 1.0 x 10⁻⁵ mol dm⁻³. ^{*b*} The excitation wavelengths (λ_{ex}) were as follows: hexane (397 nm), toluene (401 nm), toluene (399 nm), chloroform (400 nm), THF (399 nm), dichloromethane (400 nm) and acetonitrile (396 nm). ^{*c*}Measured using an integrating sphere method. ^{*d*}Measured using a single-photon-counting method. ^{*e*}Radiative rate constant ($k_f = \Phi_f/\tau_s$). ^{*f*}Non-radiative rate constant ($k_{nr} = (1 - \Phi_f)/\tau_s$).

Table S4. Absorption and fluorescence properties of 12 in various solvents^a

solvent	$\lambda_{\max}(\varepsilon)$ (nm)	$F_{\max}^{\ b}$ (nm)	Stokes shift (cm ⁻¹)	${\pmb \phi_{\mathrm{f}}}^{\scriptscriptstyle C}$	$\tau_{\rm s}^{\ d}$ (ns)	$k_{\rm f}^{\ e}$ (10 ⁹ s ⁻¹)	$k_{\rm nr}^{f}$ (10 ⁹ s ⁻¹)
Hexane	396 (21,500)	449, 474	4,160	<0.01	g	g	g
Toluene	400 (20,000)	459, 477	4,040	0.02	0.40	0.05	2.45
CHCl ₃	397 (21,900)	455, 477	4,230	0.01	0.37	0.03	2.68
THF	397 (21,600)	459, 477	4,230	0.01	0.33	0.03	3.00
CH ₂ Cl ₂	397 (22,100)	457, 473	4,230	0.01	0.30	0.03	3.30
MeCN	393 (21,600)	469	4,120	0.01	0.30	0.03	3.30

^{*a*}Measured at a concentration of 1.0 x 10⁻⁵ mol dm⁻³. ^{*b*} The excitation wavelengths (λ_{ex}) were as follows: hexane (397 nm), toluene (401 nm), chloroform (406 nm), THF (399 nm), dichloromethane (399 nm) and acetonitrile (396 nm). ^{*c*}Measured using an integrating sphere method. ^{*d*}Measured using a single-photon-counting method. ^{*e*}Radiative rate constant ($k_f = \Phi_f/\tau_s$). ^{*f*}Non-radiative rate constant ($k_{nr} = (1 - \Phi_f)/\tau_s$). ^{*g*}Too short to be measured ($\tau_s < 0.1$ ns).

Table S5. Absorption and fluorescence properties of 13 in various solvents^a

solvent	$\lambda_{\max}(\varepsilon)$ (nm)	F_{\max}^{b} (nm)	Stokes shift (cm ⁻¹)	${\phi_{\mathrm{f}}}^c$	$ au_{ m s}^{d}$ (ns)	$k_{\rm f}^{\ e}$ (10 ⁹ s ⁻¹)	$k_{\rm nr}^{f}$ (10 ⁹ s ⁻¹)
Hexane	401 (18,600)	456, 480	4,100	<0.01	h		
Toluene	405 (19,200)	489	4,240	0.01	h	—	_
CHCl ₃	404 (20,200)	486	4,180	<0.01	h		—
THF	404 (19,300)	485	4,130	0.01	h		
CH_2Cl_2	403 (20,000)	466, 486	4,240	<0.01	h	—	
MeCN	398 (20,500)	480	4,290	<0.01	h	—	—

^{*a*}Measured at a concentration of 1.0 x 10⁻⁵ mol dm⁻³. ^{*b*} The excitation wavelengths (λ_{ex}) were as follows: hexane (401 nm), toluene (405 nm), chloroform (400 nm), THF (404 nm), dichloromethane (404 nm) and acetonitrile (381 nm). ^{*c*}Measured using an integrating sphere method. ^{*d*}Measured using a single-photon-counting method. ^{*e*}Radiative rate constant ($k_f = \Phi_f / \tau_s$). ^{*f*}Non-radiative rate constant ($k_{nr} = (1 - \Phi_f)/\tau_s$).

Table S6	Absorption	and fluore	scence pro	perties of	14 in	various	solvents ^a
I abic 50.	Ausorption	and muore	seence pro	perfies or	14 111	various	sorvenus

solvent	$\lambda_{\max}\left(arepsilon ight)$ (nm)	$F_{\max}^{\ \ b}$ (nm)	Stokes shift (cm ⁻¹)	$\phi_{\mathrm{f}}{}^{c}$	τ_{s}^{d} (ns)	$k_{\rm f}^{e}$ (10 ⁹ s ⁻¹)	$k_{\rm nr}^{\ f}$ (10 ⁹ s ⁻¹)
Hexane	404 (29,800) 421 (27,300)	445, 468	2,280	0.35	1.89	0.19	0.34
Toluene	409 (27,800) 425 (25,800)	456, 469	2,520	0.58	2.70	0.22	0.16
CHCl ₃	408 (30,300) 422 (28,400)	453, 469	2,440	0.48	2.30	0.21	0.23
THF	409(29,400)	455	2,470	0.53	2.76	0.19	0.17
CH ₂ Cl ₂	408 (30,900)	455, 474	2,530	0.53	2.49	0.21	0.19
MeCN	404 (28,900)	457	2,870	0.46	2.51	0.18	0.22

^{*a*}Measured at a concentration of 1.0 x 10⁻⁵ mol dm⁻³. ^{*b*} The excitation wavelengths (λ_{ex}) were as follows: hexane (409 nm), toluene (409 nm), 1,4-dioxane (409 nm), chloroform (409 nm), THF (409 nm), dichloromethane (409 nm) and acetonitrile (409 nm). ^{*c*}Measured using an integrating sphere method. ^{*d*}Measured using a single-photon-counting method. ^{*e*}Radiative rate constant ($k_{f} = \Phi_{f}/\tau_{s}$). ^{*f*}Non-radiative rate constant ($k_{nr} = (1 - \Phi_{f})/\tau_{s}$).

Identification code	11	
Empirical formula	C24 H18 B Cl N2 O	
Formula weight	396.66	
Temperature	293(2) K	
Wavelength	0.71075 Å	
Crystal system	Monoclinic	
Space group	P 21/c	
Unit cell dimensions	a = 9.467(3) Å	α= 90°.
	b = 20.563(7) Å	β=96.812(10)°.
	c = 10.445(3) Å	$\gamma = 90^{\circ}$.
Volume	2019.0(11) Å ³	
Z	4	
Density (calculated)	1.305 Mg/m ³	

Table S7.	Crystal	data	and	structure	refinement	for	11.
						-	

Absorption coefficient	0.207 mm ⁻¹
F(000)	824
Crystal size	0.20 x 0.20 x 0.20 mm ³
Theta range for data collection	2.17 to 27.58°.
Index ranges	-12<=h<=12, -26<=k<=26, -13<=l<=13
Reflections collected	19713
Independent reflections	4594 [R(int) = 0.0825]
Completeness to theta = 27.58°	98.1 %
Absorption correction	Integration
Max. and min. transmission	0.9598 and 0.9598
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4594 / 0 / 262
Goodness-of-fit on F ²	1.026
Final R indices [I>2sigma(I)]	R1 = 0.0501, $wR2 = 0.1300$
R indices (all data)	R1 = 0.0618, $wR2 = 0.1408$
Largest diff. peak and hole	0.192 and -0.237 e.Å ⁻³

Table S8. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³)for 11. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	х	у	Z	U(eq)
C(1)	4892(2)	-640(1)	7645(2)	43(1)
C(2)	4466(2)	-165(1)	6767(2)	48(1)
C(3)	3309(2)	-263(1)	5803(2)	42(1)
C(4)	2655(2)	240(1)	5040(2)	50(1)
C(5)	1637(2)	-965(1)	4737(2)	49(1)
C(6)	5972(2)	-556(1)	8768(2)	48(1)
C(7)	6380(2)	-1090(1)	9533(2)	70(1)
C(8)	7412(3)	-1033(1)	10569(3)	92(1)
C(9)	8057(3)	-443(1)	10871(2)	86(1)
C(10)	7660(3)	80(1)	10133(3)	90(1)
C(11)	6623(3)	37(1)	9086(2)	73(1)
C(12)	1552(2)	79(1)	4144(2)	49(1)
C(13)	4856(2)	-1677(1)	5380(2)	44(1)
C(14)	6230(2)	-1850(1)	5909(2)	50(1)
C(15)	7262(2)	-2044(1)	5145(2)	60(1)

C(16)	6950(2)	-2067(1)	3829(2)	65(1)
C(17)	5613(2)	-1901(1)	3272(2)	65(1)
C(18)	4586(2)	-1708(1)	4039(2)	55(1)
C(19)	2558(2)	-2051(1)	6591(2)	44(1)
C(20)	2460(2)	-2645(1)	5955(2)	59(1)
C(21)	1478(3)	-3116(1)	6261(2)	74(1)
C(22)	599(2)	-3001(1)	7183(2)	69(1)
C(23)	677(2)	-2423(1)	7833(2)	65(1)
C(24)	1646(2)	-1956(1)	7530(2)	53(1)
B(1)	3651(2)	-1482(1)	6293(2)	41(1)
N(1)	2768(1)	-878(1)	5606(1)	41(1)
N(2)	995(2)	-518(1)	3979(1)	53(1)
O(1)	4306(1)	-1225(1)	7560(1)	46(1)
Cl(1)	754(1)	671(1)	3133(1)	69(1)

$\label{eq:solution} Table \ S9. \qquad \mbox{Bond lengths [Å] and angles [°] for 11.}$

C(1)-O(1)	1.3244(18)
C(1)-C(2)	1.366(2)
C(1)-C(6)	1.472(2)
C(2)-C(3)	1.412(2)
C(3)-N(1)	1.3705(19)
C(3)-C(4)	1.404(2)
C(4)-C(12)	1.358(2)
C(5)-N(2)	1.315(2)
C(5)-N(1)	1.331(2)
C(6)-C(7)	1.385(3)
C(6)-C(11)	1.388(2)
C(7)-C(8)	1.374(3)
C(8)-C(9)	1.378(4)
C(9)-C(10)	1.350(4)
C(10)-C(11)	1.383(3)
C(12)-N(2)	1.339(2)
C(12)-Cl(1)	1.7247(17)
C(13)-C(18)	1.395(2)
C(13)-C(14)	1.397(2)
C(13)-B(1)	1.622(2)
C(14)-C(15)	1.391(3)

C(15)-C(16)	1.372(3)
C(16)-C(17)	1.372(3)
C(17)-C(18)	1.389(3)
C(19)-C(20)	1.388(2)
C(19)-C(24)	1.395(2)
C(19)-B(1)	1.616(2)
C(20)-C(21)	1.405(3)
C(21)-C(22)	1.367(3)
C(22)-C(23)	1.368(3)
C(23)-C(24)	1.390(2)
B(1)-O(1)	1.490(2)
B(1)-N(1)	1.616(2)
O(1)-C(1)-C(2)	121.11(14)
O(1)-C(1)-C(6)	113.89(13)
C(2)-C(1)-C(6)	124.97(14)
C(1)-C(2)-C(3)	121.25(14)
N(1)-C(3)-C(4)	117.55(14)
N(1)-C(3)-C(2)	118.92(13)
C(4)-C(3)-C(2)	123.52(14)
C(12)-C(4)-C(3)	117.58(15)
N(2)-C(5)-N(1)	126.40(15)
C(7)-C(6)-C(11)	118.18(18)
C(7)-C(6)-C(1)	119.14(15)
C(11)-C(6)-C(1)	122.67(16)
C(8)-C(7)-C(6)	120.7(2)
C(7)-C(8)-C(9)	120.6(2)
C(10)-C(9)-C(8)	119.0(2)
C(9)-C(10)-C(11)	121.6(2)
C(10)-C(11)-C(6)	119.9(2)
N(2)-C(12)-C(4)	124.82(15)
N(2)-C(12)-Cl(1)	115.49(13)
C(4)-C(12)-Cl(1)	119.68(13)
C(18)-C(13)-C(14)	115.90(15)
C(18)-C(13)-B(1)	122.95(14)
C(14)-C(13)-B(1)	121.11(15)
C(15)-C(14)-C(13)	122.01(17)
C(16)-C(15)-C(14)	120.12(17)
C(17)-C(16)-C(15)	119.62(17)
C(16)-C(17)-C(18)	120.03(19)

C(17)-C(18)-C(13)	122.30(17)
C(20)-C(19)-C(24)	116.57(15)
C(20)-C(19)-B(1)	123.59(16)
C(24)-C(19)-B(1)	119.84(14)
C(19)-C(20)-C(21)	120.4(2)
C(22)-C(21)-C(20)	121.08(19)
C(21)-C(22)-C(23)	119.88(18)
C(22)-C(23)-C(24)	119.1(2)
C(23)-C(24)-C(19)	122.96(18)
O(1)-B(1)-C(19)	107.11(13)
O(1)-B(1)-N(1)	105.16(11)
C(19)-B(1)-N(1)	109.42(12)
O(1)-B(1)-C(13)	111.25(13)
C(19)-B(1)-C(13)	116.37(13)
N(1)-B(1)-C(13)	106.97(12)
C(5)-N(1)-C(3)	118.88(13)
C(5)-N(1)-B(1)	122.07(12)
C(3)-N(1)-B(1)	118.52(12)
C(5)-N(2)-C(12)	114.63(15)
C(1)-O(1)-B(1)	120.54(12)

Table S10. Anisotropic displacement parameters (Å²x 10³) for **11**. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}$]

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	40(1)	41(1)	48(1)	-5(1)	6(1)	-3(1)
C(2)	45(1)	40(1)	59(1)	-2(1)	4(1)	-6(1)
C(3)	39(1)	38(1)	51(1)	1(1)	11(1)	2(1)
C(4)	47(1)	40(1)	63(1)	7(1)	7(1)	4(1)
C(5)	46(1)	44(1)	56(1)	1(1)	1(1)	2(1)
C(6)	44(1)	51(1)	49(1)	-6(1)	4(1)	-4(1)
C(7)	68(1)	62(1)	75(1)	8(1)	-19(1)	-11(1)
C(8)	90(2)	86(2)	87(2)	15(1)	-36(1)	-12(1)
C(9)	82(2)	96(2)	72(1)	-5(1)	-26(1)	-21(1)
C(10)	97(2)	77(2)	86(2)	-12(1)	-24(1)	-31(1)
C(11)	87(2)	57(1)	70(1)	-5(1)	-12(1)	-17(1)

C(12)	44(1)	49(1)	55(1)	7(1)	11(1)	9(1)
C(13)	41(1)	37(1)	53(1)	0(1)	3(1)	0(1)
C(14)	46(1)	44(1)	59(1)	6(1)	-2(1)	4(1)
C(15)	40(1)	54(1)	85(1)	2(1)	3(1)	9(1)
C(16)	50(1)	68(1)	80(1)	-15(1)	17(1)	7(1)
C(17)	57(1)	81(1)	58(1)	-16(1)	8(1)	5(1)
C(18)	42(1)	66(1)	56(1)	-9(1)	1(1)	6(1)
C(19)	41(1)	40(1)	49(1)	5(1)	-7(1)	-2(1)
C(20)	64(1)	45(1)	66(1)	-4(1)	0(1)	-9(1)
C(21)	85(2)	45(1)	88(2)	-4(1)	-12(1)	-18(1)
C(22)	57(1)	68(1)	75(1)	20(1)	-14(1)	-22(1)
C(23)	48(1)	77(1)	69(1)	14(1)	2(1)	-13(1)
C(24)	45(1)	53(1)	60(1)	5(1)	3(1)	-5(1)
B(1)	40(1)	38(1)	45(1)	1(1)	-2(1)	1(1)
N(1)	37(1)	39(1)	47(1)	0(1)	5(1)	2(1)
N(2)	47(1)	52(1)	57(1)	4(1)	-3(1)	5(1)
O(1)	49(1)	42(1)	47(1)	1(1)	-1(1)	-7(1)
Cl(1)	67(1)	61(1)	76(1)	20(1)	-4(1)	13(1)

Table S11.Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å² $x \ 10^3$)for 11.

	Х	у	Z	U(eq)	
H(2)	4948	230	6805	57	
H(4)	2966	668	5144	60	
H(7)	5950	-1490	9344	84	
H(8)	7677	-1396	11071	110	
H(9)	8755	-406	11573	103	
H(10)	8095	479	10333	108	
H(11)	6363	404	8595	87	
H(14)	6461	-1834	6799	60	
H(15)	8165	-2158	5527	72	
H(16)	7641	-2194	3317	78	
H(17)	5394	-1917	2381	78	
H(18)	3687	-1594	3644	66	
H(20)	3047	-2731	5322	71	

H(21)	1426	-3512	5828	89
H(22)	-52	-3316	7369	82
H(23)	90	-2342	8469	78
H(23A)	1263	-1384	4659	78
H(24)	1689	-1563	7974	63

Table S12.Torsion angles [°] for 11.

O(1)-C(1)-C(2)-C(3)	5.4(2)
C(6)-C(1)-C(2)-C(3)	-172.58(15)
C(1)-C(2)-C(3)-N(1)	-11.5(2)
C(1)-C(2)-C(3)-C(4)	167.35(15)
N(1)-C(3)-C(4)-C(12)	-1.3(2)
C(2)-C(3)-C(4)-C(12)	179.88(16)
O(1)-C(1)-C(6)-C(7)	6.5(2)
C(2)-C(1)-C(6)-C(7)	-175.41(18)
O(1)-C(1)-C(6)-C(11)	-174.62(18)
C(2)-C(1)-C(6)-C(11)	3.5(3)
C(11)-C(6)-C(7)-C(8)	-0.7(3)
C(1)-C(6)-C(7)-C(8)	178.3(2)
C(6)-C(7)-C(8)-C(9)	0.3(4)
C(7)-C(8)-C(9)-C(10)	0.0(5)
C(8)-C(9)-C(10)-C(11)	0.1(5)
C(9)-C(10)-C(11)-C(6)	-0.5(4)
C(7)-C(6)-C(11)-C(10)	0.7(3)
C(1)-C(6)-C(11)-C(10)	-178.2(2)
C(3)-C(4)-C(12)-N(2)	3.6(3)
C(3)-C(4)-C(12)-Cl(1)	-177.34(12)
C(18)-C(13)-C(14)-C(15)	-0.5(2)
B(1)-C(13)-C(14)-C(15)	177.41(15)
C(13)-C(14)-C(15)-C(16)	0.4(3)
C(14)-C(15)-C(16)-C(17)	-0.4(3)
C(15)-C(16)-C(17)-C(18)	0.3(3)
C(16)-C(17)-C(18)-C(13)	-0.4(3)
C(14)-C(13)-C(18)-C(17)	0.4(3)
B(1)-C(13)-C(18)-C(17)	-177.40(17)
C(24)-C(19)-C(20)-C(21)	0.2(3)
B(1)-C(19)-C(20)-C(21)	-179.69(16)

C(19)-C(20)-C(21)-C(22)	0.2(3)
C(20)-C(21)-C(22)-C(23)	-0.6(3)
C(21)-C(22)-C(23)-C(24)	0.7(3)
C(22)-C(23)-C(24)-C(19)	-0.3(3)
C(20)-C(19)-C(24)-C(23)	-0.1(2)
B(1)-C(19)-C(24)-C(23)	179.75(16)
C(20)-C(19)-B(1)-O(1)	-135.83(15)
C(24)-C(19)-B(1)-O(1)	44.31(18)
C(20)-C(19)-B(1)-N(1)	110.67(17)
C(24)-C(19)-B(1)-N(1)	-69.19(18)
C(20)-C(19)-B(1)-C(13)	-10.7(2)
C(24)-C(19)-B(1)-C(13)	169.47(14)
C(18)-C(13)-B(1)-O(1)	-156.59(14)
C(14)-C(13)-B(1)-O(1)	25.68(19)
C(18)-C(13)-B(1)-C(19)	80.37(19)
C(14)-C(13)-B(1)-C(19)	-97.35(17)
C(18)-C(13)-B(1)-N(1)	-42.26(19)
C(14)-C(13)-B(1)-N(1)	140.01(14)
N(2)-C(5)-N(1)-C(3)	3.4(3)
N(2)-C(5)-N(1)-B(1)	-168.11(16)
C(4)-C(3)-N(1)-C(5)	-1.9(2)
C(2)-C(3)-N(1)-C(5)	177.01(14)
C(4)-C(3)-N(1)-B(1)	169.93(13)
C(2)-C(3)-N(1)-B(1)	-11.2(2)
O(1)-B(1)-N(1)-C(5)	-153.34(14)
C(19)-B(1)-N(1)-C(5)	-38.58(19)
C(13)-B(1)-N(1)-C(5)	88.28(17)
O(1)-B(1)-N(1)-C(3)	35.11(17)
C(19)-B(1)-N(1)-C(3)	149.87(13)
C(13)-B(1)-N(1)-C(3)	-83.26(16)
N(1)-C(5)-N(2)-C(12)	-1.3(3)
C(4)-C(12)-N(2)-C(5)	-2.3(3)
Cl(1)-C(12)-N(2)-C(5)	178.55(13)
C(2)-C(1)-O(1)-B(1)	25.7(2)
C(6)-C(1)-O(1)-B(1)	-156.15(13)
C(19)-B(1)-O(1)-C(1)	-158.99(13)
N(1)-B(1)-O(1)-C(1)	-42.64(17)
C(13)-B(1)-O(1)-C(1)	72.81(16)

Identification code	12			
Empirical formula	C25 H17 B C1 F3 N2 O			
Formula weight	464.67			
Temperature	293(2) K			
Wavelength	0.71075 Å			
Crystal system	Monoclinic			
Space group	P21/c			
Unit cell dimensions	a = 10.343(3) Å	<i>α</i> = 90°.		
	b = 20.367(8) Å	β= 92.628(11)°.		
	c = 10.514(2) Å	$\gamma = 90^{\circ}$.		
Volume	2212.5(12) Å ³			
Z	4			
Density (calculated)	1.395 Mg/m ³			
Absorption coefficient	0.219 mm ⁻¹			
F(000)	952			
Crystal size	0.20 x 0.20 x 0.20 mm ³	0.20 x 0.20 x 0.20 mm ³		
Theta range for data collection	1.97 to 27.92°.	1.97 to 27.92°.		
Index ranges	-13<=h<=13, -26<=k<=2	-13<=h<=13, -26<=k<=26, -13<=l<=13		
Reflections collected	22535	22535		
Independent reflections	5121 [R(int) = 0.0351]			
Completeness to theta = 27.92°	96.7 %			
Absorption correction	Integration			
Max. and min. transmission	0.9576 and 0.9576			
Refinement method	Full-matrix least-squares	s on F ²		
Data / restraints / parameters	5121 / 0 / 298	5121 / 0 / 298		
Goodness-of-fit on F ²	1.104	1.104		
Final R indices [I>2sigma(I)]	R1 = 0.0511, wR2 = 0.12	R1 = 0.0511, $wR2 = 0.1350$		
R indices (all data)	R1 = 0.0699, wR2 = 0.13	559		
Largest diff. peak and hole	0.168 and -0.217 e.Å ⁻³			

 Table S13.
 Crystal data and structure refinement for 12.

Table S14. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³)for 12. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(1)	5481(2)	10635(1)	12313(2)	42(1)
C(2)	5793(2)	10154(1)	11479(2)	45(1)
C(3)	6822(2)	10238(1)	10635(2)	42(1)
C(4)	7349(2)	9722(1)	9947(2)	48(1)
C(5)	8355(2)	10919(1)	9740(2)	53(1)
C(6)	4517(2)	10558(1)	13307(2)	41(1)
C(7)	4167(2)	11104(1)	14021(2)	53(1)
C(8)	3244(2)	11052(1)	14928(2)	56(1)
C(9)	2661(2)	10453(1)	15153(2)	47(1)
C(10)	3005(2)	9906(1)	14461(2)	54(1)
C(11)	3929(2)	9957(1)	13546(2)	50(1)
C(12)	8340(2)	9861(1)	9166(2)	51(1)
C(13)	5482(2)	11690(1)	10092(2)	48(1)
C(14)	4241(2)	11848(1)	10477(2)	54(1)
C(15)	3261(2)	12051(1)	9613(3)	66(1)
C(16)	3501(3)	12102(1)	8338(3)	73(1)
C(17)	4712(3)	11956(1)	7925(3)	72(1)
C(18)	5680(2)	11753(1)	8786(2)	62(1)
C(19)	7670(2)	12026(1)	11527(2)	48(1)
C(20)	7758(2)	12631(1)	10923(3)	69(1)
C(21)	8689(3)	13089(1)	11313(3)	85(1)
C(22)	9542(3)	12960(1)	12312(3)	78(1)
C(23)	9485(3)	12366(1)	12928(3)	78(1)
C(24)	8558(2)	11909(1)	12535(2)	64(1)
C(25)	1640(2)	10408(1)	16113(2)	57(1)
O(1)	6053(1)	11217(1)	12310(1)	46(1)
N(1)	7349(2)	10848(1)	10499(2)	43(1)
N(2)	8877(2)	10452(1)	9051(2)	57(1)
F(1)	1464(2)	9802(1)	16542(2)	82(1)
F(2)	493(1)	10620(1)	15656(2)	85(1)
F(3)	1919(2)	10780(1)	17152(1)	79(1)
Cl(1)	8975(1)	9242(1)	8259(1)	69(1)
B(1)	6615(2)	11474(1)	11117(2)	45(1)

Table S15.Bond lengths [Å] and angles [°] for 12.

C(1)-O(1)

C(1)-C(2)	1.363(3)
C(1)-C(6)	1.485(3)
C(2)-C(3)	1.428(3)
C(3)-N(1)	1.367(2)
C(3)-C(4)	1.400(3)
C(4)-C(12)	1.372(3)
C(5)-N(2)	1.327(3)
C(5)-N(1)	1.348(3)
C(6)-C(11)	1.395(3)
C(6)-C(7)	1.399(3)
C(7)-C(8)	1.384(3)
C(8)-C(9)	1.387(3)
C(9)-C(10)	1.386(3)
C(9)-C(25)	1.497(3)
C(10)-C(11)	1.391(3)
C(12)-N(2)	1.334(3)
C(12)-Cl(1)	1.729(2)
C(13)-C(14)	1.401(3)
C(13)-C(18)	1.404(3)
C(13)-B(1)	1.616(3)
C(14)-C(15)	1.392(3)
C(15)-C(16)	1.379(4)
C(16)-C(17)	1.376(4)
C(17)-C(18)	1.382(3)
C(19)-C(24)	1.391(3)
C(19)-C(20)	1.391(3)
C(19)-B(1)	1.612(3)
C(20)-C(21)	1.390(3)
C(21)-C(22)	1.365(4)
C(22)-C(23)	1.375(4)
C(23)-C(24)	1.386(3)
C(25)-F(1)	1.329(3)
C(25)-F(2)	1.331(3)
C(25)-F(3)	1.350(3)
O(1)-B(1)	1.500(3)
N(1)-B(1)	1.633(3)
O(1)-C(1)-C(2)	121.51(17)
O(1)-C(1)-C(6)	114.27(16)
C(2)-C(1)-C(6)	124.21(16)

C(1)-C(2)-C(3)	121.29(17)
N(1)-C(3)-C(4)	117.58(18)
N(1)-C(3)-C(2)	119.04(16)
C(4)-C(3)-C(2)	123.36(17)
C(12)-C(4)-C(3)	118.21(18)
N(2)-C(5)-N(1)	126.26(19)
C(11)-C(6)-C(7)	118.35(18)
C(11)-C(6)-C(1)	122.18(16)
C(7)-C(6)-C(1)	119.46(16)
C(8)-C(7)-C(6)	120.91(18)
C(7)-C(8)-C(9)	120.21(18)
C(10)-C(9)-C(8)	119.60(19)
C(10)-C(9)-C(25)	120.76(18)
C(8)-C(9)-C(25)	119.62(18)
C(9)-C(10)-C(11)	120.33(18)
C(10)-C(11)-C(6)	120.60(18)
N(2)-C(12)-C(4)	124.51(18)
N(2)-C(12)-Cl(1)	115.96(16)
C(4)-C(12)-Cl(1)	119.53(16)
C(14)-C(13)-C(18)	116.0(2)
C(14)-C(13)-B(1)	121.03(19)
C(18)-C(13)-B(1)	122.90(19)
C(15)-C(14)-C(13)	121.9(2)
C(16)-C(15)-C(14)	120.0(2)
C(17)-C(16)-C(15)	119.8(2)
C(16)-C(17)-C(18)	120.0(3)
C(17)-C(18)-C(13)	122.3(2)
C(24)-C(19)-C(20)	116.4(2)
C(24)-C(19)-B(1)	119.99(18)
C(20)-C(19)-B(1)	123.6(2)
C(21)-C(20)-C(19)	121.3(2)
C(22)-C(21)-C(20)	120.8(2)
C(21)-C(22)-C(23)	119.5(2)
C(22)-C(23)-C(24)	119.6(3)
C(23)-C(24)-C(19)	122.4(2)
F(1)-C(25)-F(2)	106.9(2)
F(1)-C(25)-F(3)	105.94(19)
F(2)-C(25)-F(3)	105.30(18)
F(1)-C(25)-C(9)	113.39(17)
F(2)-C(25)-C(9)	112.42(19)

F(3)-C(25)-C(9)	112.34(19)
C(1)-O(1)-B(1)	120.24(15)
C(5)-N(1)-C(3)	118.76(16)
C(5)-N(1)-B(1)	122.51(15)
C(3)-N(1)-B(1)	118.24(15)
C(5)-N(2)-C(12)	114.60(19)
O(1)-B(1)-C(19)	107.63(16)
O(1)-B(1)-C(13)	110.81(16)
C(19)-B(1)-C(13)	116.74(16)
O(1)-B(1)-N(1)	105.42(14)
C(19)-B(1)-N(1)	109.20(16)
C(13)-B(1)-N(1)	106.47(15)

Table S16. Anisotropic displacement parameters (Å²x 10³) for **12**. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}$]

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	44(1)	35(1)	46(1)	2(1)	-1(1)	-3(1)
C(2)	48(1)	38(1)	50(1)	-3(1)	7(1)	-7(1)
C(3)	44(1)	39(1)	43(1)	-2(1)	-1(1)	-2(1)
C(4)	53(1)	41(1)	51(1)	-6(1)	3(1)	-1(1)
C(5)	52(1)	49(1)	59(1)	0(1)	10(1)	-5(1)
C(6)	43(1)	38(1)	43(1)	1(1)	2(1)	0(1)
C(7)	64(1)	38(1)	57(1)	-1(1)	13(1)	-5(1)
C(8)	67(1)	42(1)	58(1)	-4(1)	14(1)	4(1)
C(9)	45(1)	49(1)	49(1)	4(1)	5(1)	4(1)
C(10)	56(1)	43(1)	64(1)	-1(1)	12(1)	-8(1)
C(11)	56(1)	38(1)	58(1)	-3(1)	9(1)	-4(1)
C(12)	48(1)	54(1)	51(1)	-7(1)	1(1)	6(1)
C(13)	55(1)	33(1)	56(1)	0(1)	2(1)	-5(1)
C(14)	55(1)	40(1)	66(1)	-1(1)	3(1)	-3(1)
C(15)	56(1)	44(1)	99(2)	4(1)	-6(1)	0(1)
C(16)	76(2)	56(1)	83(2)	9(1)	-23(1)	-1(1)
C(17)	88(2)	69(2)	59(1)	10(1)	-7(1)	4(1)
C(18)	68(1)	61(1)	57(1)	5(1)	4(1)	6(1)
C(19)	50(1)	38(1)	56(1)	-5(1)	10(1)	-5(1)

C(20)	67(1)	47(1)	92(2)	10(1)	-1(1)	-13(1)
C(21)	79(2)	45(1)	130(3)	9(1)	4(2)	-22(1)
C(22)	70(2)	61(1)	104(2)	-18(1)	13(2)	-28(1)
C(23)	72(2)	81(2)	81(2)	-9(1)	-9(1)	-23(1)
C(24)	70(1)	53(1)	69(1)	-2(1)	-4(1)	-16(1)
C(25)	52(1)	60(1)	61(1)	1(1)	10(1)	7(1)
O(1)	53(1)	38(1)	49(1)	-4(1)	9(1)	-9(1)
N(1)	44(1)	38(1)	47(1)	1(1)	3(1)	-2(1)
N(2)	53(1)	60(1)	60(1)	-5(1)	11(1)	-3(1)
F(1)	85(1)	68(1)	96(1)	16(1)	40(1)	-4(1)
F(2)	52(1)	106(1)	96(1)	-1(1)	9(1)	19(1)
F(3)	83(1)	93(1)	61(1)	-11(1)	22(1)	-4(1)
Cl(1)	67(1)	72(1)	71(1)	-21(1)	15(1)	9(1)
B(1)	48(1)	36(1)	50(1)	-1(1)	6(1)	-4(1)

Table S17.Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å² $x \ 10^3$)for 12.

	х	у	Z	U(eq)
H(2)	5326	9764	11460	54
H(4)	7035	9296	10018	58
H(5)	8717	11336	9694	63
H(7)	4560	11507	13885	63
H(8)	3013	11421	15387	67
H(10)	2616	9503	14609	64
H(11)	4157	9586	13089	60
H(14)	4066	11816	11335	65
H(15)	2446	12151	9896	80
H(16)	2847	12234	7758	87
H(17)	4878	11993	7066	87
H(18)	6492	11656	8490	74
H(20)	7183	12730	10245	82
H(21)	8732	13489	10889	102
H(22)	10156	13271	12573	94
H(23)	10066	12271	13605	94
H(24)	8527	11509	12962	77

 $Table \ S18. \quad \text{Torsion angles } [^\circ] \ \text{for } 12.$

O(1)-C(1)-C(2)-C(3)	5.1(3)
C(6)-C(1)-C(2)-C(3)	-173.42(17)
C(1)-C(2)-C(3)-N(1)	-11.8(3)
C(1)-C(2)-C(3)-C(4)	166.90(19)
N(1)-C(3)-C(4)-C(12)	-1.1(3)
C(2)-C(3)-C(4)-C(12)	-179.79(18)
D(1)-C(1)-C(6)-C(11)	-172.60(17)
C(2)-C(1)-C(6)-C(11)	6.0(3)
D(1)-C(1)-C(6)-C(7)	8.3(3)
2(2)-C(1)-C(6)-C(7)	-173.09(19)
C(11)-C(6)-C(7)-C(8)	-1.1(3)
C(1)-C(6)-C(7)-C(8)	178.03(19)
C(6)-C(7)-C(8)-C(9)	0.9(3)
C(7)-C(8)-C(9)-C(10)	-0.3(3)
C(7)-C(8)-C(9)-C(25)	-178.5(2)
C(8)-C(9)-C(10)-C(11)	0.1(3)
C(25)-C(9)-C(10)-C(11)	178.2(2)
2(9)-C(10)-C(11)-C(6)	-0.4(3)
(7)-C(6)-C(11)-C(10)	0.8(3)
(1)-C(6)-C(11)-C(10)	-178.26(18)
(3)-C(4)-C(12)-N(2)	2.8(3)
(3)-C(4)-C(12)-Cl(1)	-177.67(14)
(18)-C(13)-C(14)-C(15)	0.5(3)
(1)-C(13)-C(14)-C(15)	178.38(18)
C(13)-C(14)-C(15)-C(16)	-0.1(3)
C(14)-C(15)-C(16)-C(17)	-0.4(3)
C(15)-C(16)-C(17)-C(18)	0.5(4)
C(16)-C(17)-C(18)-C(13)	-0.1(4)
C(14)-C(13)-C(18)-C(17)	-0.4(3)
(1)-C(13)-C(18)-C(17)	-178.2(2)
(24)-C(19)-C(20)-C(21)	0.2(4)
s(1)-C(19)-C(20)-C(21)	-179.9(2)
C(19)-C(20)-C(21)-C(22)	-0.5(5)
C(20)-C(21)-C(22)-C(23)	0.7(5)
C(21)-C(22)-C(23)-C(24)	-0.6(4)

C(22)-C(23)-C(24)-C(19)	0.2(4)
C(20)-C(19)-C(24)-C(23)	0.0(4)
B(1)-C(19)-C(24)-C(23)	-180.0(2)
C(10)-C(9)-C(25)-F(1)	22.5(3)
C(8)-C(9)-C(25)-F(1)	-159.4(2)
C(10)-C(9)-C(25)-F(2)	-98.8(2)
C(8)-C(9)-C(25)-F(2)	79.3(3)
C(10)-C(9)-C(25)-F(3)	142.6(2)
C(8)-C(9)-C(25)-F(3)	-39.3(3)
C(2)-C(1)-O(1)-B(1)	25.9(3)
C(6)-C(1)-O(1)-B(1)	-155.49(16)
N(2)-C(5)-N(1)-C(3)	2.7(3)
N(2)-C(5)-N(1)-B(1)	-169.2(2)
C(4)-C(3)-N(1)-C(5)	-1.4(3)
C(2)-C(3)-N(1)-C(5)	177.38(17)
C(4)-C(3)-N(1)-B(1)	170.88(17)
C(2)-C(3)-N(1)-B(1)	-10.4(2)
N(1)-C(5)-N(2)-C(12)	-1.2(3)
C(4)-C(12)-N(2)-C(5)	-1.6(3)
Cl(1)-C(12)-N(2)-C(5)	178.80(16)
C(1)-O(1)-B(1)-C(19)	-158.84(16)
C(1)-O(1)-B(1)-C(13)	72.4(2)
C(1)-O(1)-B(1)-N(1)	-42.4(2)
C(24)-C(19)-B(1)-O(1)	45.3(3)
C(20)-C(19)-B(1)-O(1)	-134.7(2)
C(24)-C(19)-B(1)-C(13)	170.5(2)
C(20)-C(19)-B(1)-C(13)	-9.4(3)
C(24)-C(19)-B(1)-N(1)	-68.7(2)
C(20)-C(19)-B(1)-N(1)	111.4(2)
C(14)-C(13)-B(1)-O(1)	22.5(2)
C(18)-C(13)-B(1)-O(1)	-159.84(18)
C(14)-C(13)-B(1)-C(19)	-101.2(2)
C(18)-C(13)-B(1)-C(19)	76.5(2)
C(14)-C(13)-B(1)-N(1)	136.60(17)
C(18)-C(13)-B(1)-N(1)	-45.7(2)
C(5)-N(1)-B(1)-O(1)	-153.71(17)
C(3)-N(1)-B(1)-O(1)	34.4(2)
C(5)-N(1)-B(1)-C(19)	-38.3(2)
C(3)-N(1)-B(1)-C(19)	149.76(16)
C(5)-N(1)-B(1)-C(13)	88.5(2)

Identification code	13	
Empirical formula	C25 H17 B Cl N3 O	
Formula weight	421.68	
Temperature	293(2) K	
Wavelength	0.71075 Å	
Crystal system	Monoclinic	
Space group	P21/a	
Unit cell dimensions	a = 10.425(4) Å	$\alpha = 90^{\circ}$.
	b = 21.350(6) Å	$\beta = 117.211(8)^{\circ}.$
	c = 10.573(3) Å	$\gamma = 90^{\circ}$.
Volume	2092.8(12) Å ³	
Ζ	4	
Density (calculated)	1.338 Mg/m ³	
Absorption coefficient	0.205 mm ⁻¹	
F(000)	872	
Crystal size	0.20 x 0.20 x 0.20 mm ³	
Theta range for data collection	1.91 to 27.48°.	
Index ranges	-13<=h<=13, -27<=k<=2'	7, -13<=l<=13
Reflections collected	20973	
Independent reflections	4786 [R(int) = 0.0497]	
Completeness to theta = 27.48°	99.7 %	
Absorption correction	Integration	
Max. and min. transmission	0.9601 and 0.9601	
Refinement method	Full-matrix least-squares	on F ²
Data / restraints / parameters	4786 / 0 / 280	
Goodness-of-fit on F ²	1.062	
Final R indices [I>2sigma(I)]	R1 = 0.0549, wR2 = 0.143	32
R indices (all data)	R1 = 0.0782, wR2 = 0.160	65
Largest diff. peak and hole	0.186 and -0.395 e.Å ⁻³	

Table S19. Crystal data and structure refinement for 13.

C(1) $7371(2)$ $9131(1)$ $5258(2)$ $C(2)$ $7826(2)$ $9624(1)$ $4764(2)$ $C(3)$ $8223(2)$ $9551(1)$ $3653(2)$ $C(4)$ $8459(2)$ $10048(1)$ $2932(2)$ $C(5)$ $8658(2)$ $8880(1)$ $2171(2)$ $C(6)$ $6816(2)$ $9180(1)$ $6313(2)$ $C(7)$ $6671(2)$ $8638(1)$ $6958(2)$ $C(8)$ $6216(2)$ $8663(1)$ $7983(2)$ $C(9)$ $5862(2)$ $9235(1)$ $8360(2)$ $C(10)$ $5966(3)$ $9777(1)$ $7709(2)$ $C(11)$ $6449(3)$ $9751(1)$ $6696(2)$ $C(12)$ $8817(2)$ $9904(1)$ $1879(2)$ $N(1)$ $8354(2)$ $8956(1)$ $3253(2)$ $N(2)$ $8906(2)$ $9325(1)$ $1459(2)$ $N(3)$ $5044(3)$ $9240(1)$ $10312(2)$ $O(1)$ $7364(2)$ $8553(1)$ $4811(1)$ $B(1)$ $8358(2)$ $8364(1)$ $4217(2)$ $C(14)$ $10280(2)$ $8162(1)$ $6855(2)$ $C(14)$ $10280(2)$ $8162(1)$ $6855(2)$ $C(15)$ $11664(3)$ $8060(1)$ $7914(2)$ $C(16)$ $12800(3)$ $8064(1)$ $7607(2)$ $C(17)$ $12558(3)$ $8175(1)$ $6236(3)$	$\begin{array}{c} 46(1) \\ 51(1) \\ 45(1) \\ 54(1) \\ 53(1) \\ 48(1) \\ 54(1) \\ 59(1) \\ 52(1) \\ 61(1) \\ 60(1) \\ 54(1) \\ \end{array}$
C(2)7826(2)9624(1)4764(2)C(3)8223(2)9551(1)3653(2)C(4)8459(2)10048(1)2932(2)C(5)8658(2)8880(1)2171(2)C(6)6816(2)9180(1)6313(2)C(7)6671(2)8638(1)6958(2)C(8)6216(2)8663(1)7983(2)C(9)5862(2)9235(1)8360(2)C(10)5966(3)9777(1)7709(2)C(11)6449(3)9751(1)6696(2)C(12)8817(2)9904(1)1879(2)N(1)8354(2)8956(1)3253(2)N(2)8906(2)9325(1)1459(2)N(3)5044(3)9240(1)10312(2)O(1)7364(2)8553(1)4811(1)B(1)8358(2)8364(1)4217(2)C(13)9983(2)8281(1)5453(2)C(14)10280(2)8162(1)6855(2)C(15)11664(3)8060(1)7914(2)C(16)12800(3)8064(1)7607(2)C(17)12558(3)8175(1)6236(3)	$51(1) \\ 45(1) \\ 54(1) \\ 53(1) \\ 48(1) \\ 54(1) \\ 59(1) \\ 52(1) \\ 61(1) \\ 60(1) \\ 54(1) \\ $
C(3)8223(2)9551(1)3653(2)C(4)8459(2)10048(1)2932(2)C(5)8658(2)8880(1)2171(2)C(6)6816(2)9180(1)6313(2)C(7)6671(2)8638(1)6958(2)C(8)6216(2)8663(1)7983(2)C(9)5862(2)9235(1)8360(2)C(10)5966(3)9777(1)7709(2)C(11)6449(3)9751(1)6696(2)C(12)8817(2)9904(1)1879(2)N(1)8354(2)8956(1)3253(2)N(2)8906(2)9325(1)1459(2)N(3)5044(3)9240(1)10312(2)O(1)7364(2)8553(1)4811(1)B(1)8358(2)8364(1)4217(2)C(13)9983(2)8281(1)5453(2)C(14)10280(2)8162(1)6855(2)C(15)11664(3)8060(1)7914(2)C(16)12800(3)8064(1)7607(2)C(17)12558(3)8175(1)6236(3)	45(1) 54(1) 53(1) 48(1) 54(1) 59(1) 52(1) 61(1) 60(1) 54(1)
C(4)8459(2)10048(1)2932(2)C(5)8658(2)8880(1)2171(2)C(6)6816(2)9180(1)6313(2)C(7)6671(2)8638(1)6958(2)C(8)6216(2)8663(1)7983(2)C(9)5862(2)9235(1)8360(2)C(10)5966(3)9777(1)7709(2)C(11)6449(3)9751(1)6696(2)C(12)8817(2)9904(1)1879(2)N(1)8354(2)8956(1)3253(2)N(2)8906(2)9325(1)1459(2)N(3)5044(3)9240(1)10312(2)O(1)7364(2)8553(1)4811(1)B(1)8358(2)8364(1)4217(2)C(13)9983(2)8281(1)5453(2)C(14)10280(2)8162(1)6855(2)C(15)11664(3)8060(1)7914(2)C(16)12800(3)8064(1)7607(2)C(17)12558(3)8175(1)6236(3)	$54(1) \\ 53(1) \\ 48(1) \\ 54(1) \\ 59(1) \\ 52(1) \\ 61(1) \\ 60(1) \\ 54(1) \\ \ldots$
C(5) $8658(2)$ $8880(1)$ $2171(2)$ $C(6)$ $6816(2)$ $9180(1)$ $6313(2)$ $C(7)$ $6671(2)$ $8638(1)$ $6958(2)$ $C(8)$ $6216(2)$ $8663(1)$ $7983(2)$ $C(9)$ $5862(2)$ $9235(1)$ $8360(2)$ $C(10)$ $5966(3)$ $9777(1)$ $7709(2)$ $C(11)$ $6449(3)$ $9751(1)$ $6696(2)$ $C(12)$ $8817(2)$ $9904(1)$ $1879(2)$ $N(1)$ $8354(2)$ $8956(1)$ $3253(2)$ $N(2)$ $8906(2)$ $9325(1)$ $1459(2)$ $N(3)$ $5044(3)$ $9240(1)$ $10312(2)$ $O(1)$ $7364(2)$ $8553(1)$ $4811(1)$ $B(1)$ $8358(2)$ $8364(1)$ $4217(2)$ $C(13)$ $9983(2)$ $8281(1)$ $5453(2)$ $C(14)$ $10280(2)$ $8162(1)$ $6855(2)$ $C(15)$ $11664(3)$ $8060(1)$ $7914(2)$ $C(16)$ $12800(3)$ $8064(1)$ $7607(2)$ $C(17)$ $12558(3)$ $8175(1)$ $6236(3)$	$53(1) \\ 48(1) \\ 54(1) \\ 59(1) \\ 52(1) \\ 61(1) \\ 60(1) \\ 54(1) \\ \ldots$
C(6)6816(2)9180(1)6313(2)C(7)6671(2)8638(1)6958(2)C(8)6216(2)8663(1)7983(2)C(9)5862(2)9235(1)8360(2)C(10)5966(3)9777(1)7709(2)C(11)6449(3)9751(1)6696(2)C(12)8817(2)9904(1)1879(2)N(1)8354(2)8956(1)3253(2)N(2)8906(2)9325(1)1459(2)N(3)5044(3)9240(1)10312(2)O(1)7364(2)8553(1)4811(1)B(1)8358(2)8364(1)4217(2)C(13)9983(2)8281(1)5453(2)C(14)10280(2)8162(1)6855(2)C(15)11664(3)8060(1)7914(2)C(16)12800(3)8064(1)7607(2)C(17)12558(3)8175(1)6236(3)	48(1) 54(1) 59(1) 52(1) 61(1) 60(1) 54(1)
C(7) $6671(2)$ $8638(1)$ $6958(2)$ $C(8)$ $6216(2)$ $8663(1)$ $7983(2)$ $C(9)$ $5862(2)$ $9235(1)$ $8360(2)$ $C(10)$ $5966(3)$ $9777(1)$ $7709(2)$ $C(11)$ $6449(3)$ $9751(1)$ $6696(2)$ $C(12)$ $8817(2)$ $9904(1)$ $1879(2)$ $N(1)$ $8354(2)$ $8956(1)$ $3253(2)$ $N(2)$ $8906(2)$ $9325(1)$ $1459(2)$ $N(3)$ $5044(3)$ $9240(1)$ $10312(2)$ $O(1)$ $7364(2)$ $8553(1)$ $4811(1)$ $B(1)$ $8358(2)$ $8364(1)$ $4217(2)$ $C(13)$ $9983(2)$ $8281(1)$ $5453(2)$ $C(14)$ $10280(2)$ $8162(1)$ $6855(2)$ $C(15)$ $11664(3)$ $8060(1)$ $7914(2)$ $C(16)$ $12800(3)$ $8064(1)$ $7607(2)$ $C(17)$ $12558(3)$ $8175(1)$ $6236(3)$	54(1) 59(1) 52(1) 61(1) 60(1) 54(1)
C(8) $6216(2)$ $8663(1)$ $7983(2)$ $C(9)$ $5862(2)$ $9235(1)$ $8360(2)$ $C(10)$ $5966(3)$ $9777(1)$ $7709(2)$ $C(11)$ $6449(3)$ $9751(1)$ $6696(2)$ $C(12)$ $8817(2)$ $9904(1)$ $1879(2)$ $N(1)$ $8354(2)$ $8956(1)$ $3253(2)$ $N(2)$ $8906(2)$ $9325(1)$ $1459(2)$ $N(3)$ $5044(3)$ $9240(1)$ $10312(2)$ $O(1)$ $7364(2)$ $8553(1)$ $4811(1)$ $B(1)$ $8358(2)$ $8364(1)$ $4217(2)$ $C(13)$ $9983(2)$ $8281(1)$ $5453(2)$ $C(14)$ $10280(2)$ $8162(1)$ $6855(2)$ $C(15)$ $11664(3)$ $8060(1)$ $7914(2)$ $C(16)$ $12800(3)$ $8064(1)$ $7607(2)$ $C(17)$ $12558(3)$ $8175(1)$ $6236(3)$	59(1) 52(1) 61(1) 60(1) 54(1)
C(9) $5862(2)$ $9235(1)$ $8360(2)$ $C(10)$ $5966(3)$ $9777(1)$ $7709(2)$ $C(11)$ $6449(3)$ $9751(1)$ $6696(2)$ $C(12)$ $8817(2)$ $9904(1)$ $1879(2)$ $N(1)$ $8354(2)$ $8956(1)$ $3253(2)$ $N(2)$ $8906(2)$ $9325(1)$ $1459(2)$ $N(3)$ $5044(3)$ $9240(1)$ $10312(2)$ $O(1)$ $7364(2)$ $8553(1)$ $4811(1)$ $B(1)$ $8358(2)$ $8364(1)$ $4217(2)$ $C(13)$ $9983(2)$ $8281(1)$ $5453(2)$ $C(14)$ $10280(2)$ $8162(1)$ $6855(2)$ $C(15)$ $11664(3)$ $8060(1)$ $7914(2)$ $C(16)$ $12800(3)$ $8175(1)$ $6236(3)$	52(1) 61(1) 60(1) 54(1)
C(10)5966(3)9777(1)7709(2) $C(11)$ 6449(3)9751(1)6696(2) $C(12)$ 8817(2)9904(1)1879(2) $N(1)$ 8354(2)8956(1)3253(2) $N(2)$ 8906(2)9325(1)1459(2) $N(3)$ 5044(3)9240(1)10312(2) $O(1)$ 7364(2)8553(1)4811(1) $B(1)$ 8358(2)8364(1)4217(2) $C(13)$ 9983(2)8281(1)5453(2) $C(14)$ 10280(2)8162(1)6855(2) $C(15)$ 11664(3)8060(1)7914(2) $C(16)$ 12800(3)8064(1)7607(2) $C(17)$ 12558(3)8175(1)6236(3)	61(1) 60(1) 54(1)
C(11) $6449(3)$ $9751(1)$ $6696(2)$ $C(12)$ $8817(2)$ $9904(1)$ $1879(2)$ $N(1)$ $8354(2)$ $8956(1)$ $3253(2)$ $N(2)$ $8906(2)$ $9325(1)$ $1459(2)$ $N(3)$ $5044(3)$ $9240(1)$ $10312(2)$ $O(1)$ $7364(2)$ $8553(1)$ $4811(1)$ $B(1)$ $8358(2)$ $8364(1)$ $4217(2)$ $C(13)$ $9983(2)$ $8281(1)$ $5453(2)$ $C(14)$ $10280(2)$ $8162(1)$ $6855(2)$ $C(15)$ $11664(3)$ $8060(1)$ $7914(2)$ $C(16)$ $12800(3)$ $8175(1)$ $6236(3)$	60(1) 54(1)
C(12) $8817(2)$ $9904(1)$ $1879(2)$ $N(1)$ $8354(2)$ $8956(1)$ $3253(2)$ $N(2)$ $8906(2)$ $9325(1)$ $1459(2)$ $N(3)$ $5044(3)$ $9240(1)$ $10312(2)$ $O(1)$ $7364(2)$ $8553(1)$ $4811(1)$ $B(1)$ $8358(2)$ $8364(1)$ $4217(2)$ $C(13)$ $9983(2)$ $8281(1)$ $5453(2)$ $C(14)$ $10280(2)$ $8162(1)$ $6855(2)$ $C(15)$ $11664(3)$ $8060(1)$ $7914(2)$ $C(16)$ $12800(3)$ $8064(1)$ $7607(2)$ $C(17)$ $12558(3)$ $8175(1)$ $6236(3)$	54(1)
N(1) $8354(2)$ $8956(1)$ $3253(2)$ N(2) $8906(2)$ $9325(1)$ $1459(2)$ N(3) $5044(3)$ $9240(1)$ $10312(2)$ O(1) $7364(2)$ $8553(1)$ $4811(1)$ B(1) $8358(2)$ $8364(1)$ $4217(2)$ C(13) $9983(2)$ $8281(1)$ $5453(2)$ C(14) $10280(2)$ $8162(1)$ $6855(2)$ C(15) $11664(3)$ $8060(1)$ $7914(2)$ C(16) $12800(3)$ $8064(1)$ $7607(2)$ C(17) $12558(3)$ $8175(1)$ $6236(3)$	
N(2) $8906(2)$ $9325(1)$ $1459(2)$ N(3) $5044(3)$ $9240(1)$ $10312(2)$ O(1) $7364(2)$ $8553(1)$ $4811(1)$ B(1) $8358(2)$ $8364(1)$ $4217(2)$ C(13) $9983(2)$ $8281(1)$ $5453(2)$ C(14) $10280(2)$ $8162(1)$ $6855(2)$ C(15) $11664(3)$ $8060(1)$ $7914(2)$ C(16) $12800(3)$ $8064(1)$ $7607(2)$ C(17) $12558(3)$ $8175(1)$ $6236(3)$	44(1)
N(3) $5044(3)$ $9240(1)$ $10312(2)$ O(1) $7364(2)$ $8553(1)$ $4811(1)$ B(1) $8358(2)$ $8364(1)$ $4217(2)$ C(13) $9983(2)$ $8281(1)$ $5453(2)$ C(14) $10280(2)$ $8162(1)$ $6855(2)$ C(15) $11664(3)$ $8060(1)$ $7914(2)$ C(16) $12800(3)$ $8064(1)$ $7607(2)$ C(17) $12558(3)$ $8175(1)$ $6236(3)$	55(1)
O(1)7364(2)8553(1)4811(1)B(1)8358(2)8364(1)4217(2)C(13)9983(2)8281(1)5453(2)C(14)10280(2)8162(1)6855(2)C(15)11664(3)8060(1)7914(2)C(16)12800(3)8064(1)7607(2)C(17)12558(3)8175(1)6236(3)	78(1)
B(1)8358(2)8364(1)4217(2)C(13)9983(2)8281(1)5453(2)C(14)10280(2)8162(1)6855(2)C(15)11664(3)8060(1)7914(2)C(16)12800(3)8064(1)7607(2)C(17)12558(3)8175(1)6236(3)	49(1)
C(13)9983(2)8281(1)5453(2)C(14)10280(2)8162(1)6855(2)C(15)11664(3)8060(1)7914(2)C(16)12800(3)8064(1)7607(2)C(17)12558(3)8175(1)6236(3)	44(1)
C(14)10280(2)8162(1)6855(2)C(15)11664(3)8060(1)7914(2)C(16)12800(3)8064(1)7607(2)C(17)12558(3)8175(1)6236(3)	46(1)
C(15)11664(3)8060(1)7914(2)C(16)12800(3)8064(1)7607(2)C(17)12558(3)8175(1)6236(3)	52(1)
C(16)12800(3)8064(1)7607(2)C(17)12558(3)8175(1)6236(3)	60(1)
C(17) 12558(3) 8175(1) 6236(3)	66(1)
	69(1)
C(18) 11175(2) 8280(1) 5190(2)	59(1)
C(19) 7669(2) 7770(1) 3202(2)	50(1)
C(20) 8436(3) 7223(1) 3305(3)	71(1)
C(21) 7764(5) 6720(1) 2404(5)	107(1)
C(22) 6340(5) 6752(2) 1409(4)	114(2)
C(23) 5577(4) 7287(2) 1280(3)	94(1)
C(24) 6228(3) 7788(1) 2166(2)	66(1)
C(25) 5389(3) 9246(1) 9447(2)	60(1)
Cl(1) 9197(1) 10487(1) 991(1)	91(1)

Table S20. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³)for 13. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(1)-O(1)	1.320(2)
C(1)-C(2)	1.354(3)
C(1)-C(6)	1.477(3)
C(2)-C(3)	1.422(3)
C(3)-N(1)	1.366(2)
C(3)-C(4)	1.392(3)
C(4)-C(12)	1.362(3)
C(5)-N(2)	1.309(3)
C(5)-N(1)	1.329(2)
C(6)-C(7)	1.386(3)
C(6)-C(11)	1.394(3)
C(7)-C(8)	1.369(3)
C(8)-C(9)	1.386(3)
C(9)-C(10)	1.377(3)
C(9)-C(25)	1.442(3)
C(10)-C(11)	1.377(3)
C(12)-N(2)	1.331(3)
C(12)-Cl(1)	1.711(2)
N(1)-B(1)	1.621(3)
N(3)-C(25)	1.127(3)
O(1)-B(1)	1.492(2)
B(1)-C(19)	1.604(3)
B(1)-C(13)	1.608(3)
C(13)-C(18)	1.392(3)
C(13)-C(14)	1.393(3)
C(14)-C(15)	1.381(3)
C(15)-C(16)	1.364(3)
C(16)-C(17)	1.373(3)
C(17)-C(18)	1.376(3)
C(19)-C(20)	1.390(3)
C(19)-C(24)	1.398(3)
C(20)-C(21)	1.394(4)
C(21)-C(22)	1.373(6)
C(22)-C(23)	1.364(5)
C(23)-C(24)	1.378(3)
O(1)-C(1)-C(2)	122.30(17)
O(1)-C(1)-C(6)	113.38(17)
C(2)-C(1)-C(6)	124.31(17)

C(1)-C(2)-C(3)	121.29(17)
N(1)-C(3)-C(4)	118.18(17)
N(1)-C(3)-C(2)	117.73(16)
C(4)-C(3)-C(2)	124.08(17)
C(12)-C(4)-C(3)	117.34(18)
N(2)-C(5)-N(1)	126.47(18)
C(7)-C(6)-C(11)	118.80(18)
C(7)-C(6)-C(1)	118.75(16)
C(11)-C(6)-C(1)	122.45(19)
C(8)-C(7)-C(6)	120.80(18)
C(7)-C(8)-C(9)	119.8(2)
C(10)-C(9)-C(8)	120.35(19)
C(10)-C(9)-C(25)	121.23(18)
C(8)-C(9)-C(25)	118.4(2)
C(9)-C(10)-C(11)	119.69(19)
C(10)-C(11)-C(6)	120.5(2)
N(2)-C(12)-C(4)	124.66(19)
N(2)-C(12)-Cl(1)	115.11(16)
C(4)-C(12)-Cl(1)	120.23(16)
C(5)-N(1)-C(3)	118.43(16)
C(5)-N(1)-B(1)	120.86(15)
C(3)-N(1)-B(1)	120.18(15)
C(5)-N(2)-C(12)	114.84(18)
C(1)-O(1)-B(1)	120.79(15)
O(1)-B(1)-C(19)	108.08(16)
O(1)-B(1)-C(13)	111.36(15)
C(19)-B(1)-C(13)	116.07(16)
O(1)-B(1)-N(1)	104.56(14)
C(19)-B(1)-N(1)	108.93(15)
C(13)-B(1)-N(1)	107.21(15)
C(18)-C(13)-C(14)	115.39(19)
C(18)-C(13)-B(1)	122.89(17)
C(14)-C(13)-B(1)	121.59(17)
C(15)-C(14)-C(13)	122.2(2)
C(16)-C(15)-C(14)	120.4(2)
C(15)-C(16)-C(17)	119.5(2)
C(16)-C(17)-C(18)	119.7(2)
C(17)-C(18)-C(13)	122.9(2)
C(20)-C(19)-C(24)	117.3(2)
C(20)-C(19)-B(1)	123.1(2)

C(24)-C(19)-B(1)	119.58(19)
C(19)-C(20)-C(21)	120.2(3)
C(22)-C(21)-C(20)	121.0(3)
C(23)-C(22)-C(21)	119.6(3)
C(22)-C(23)-C(24)	120.0(3)
C(23)-C(24)-C(19)	121.9(3)
N(3)-C(25)-C(9)	178.0(3)

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
 C(1)	48(1)	45(1)	48(1)	-8(1)	24(1)	3(1)
C(2)	64(1)	42(1)	54(1)	-10(1)	32(1)	0(1)
C(3)	49(1)	39(1)	48(1)	-6(1)	23(1)	-1(1)
C(4)	71(1)	38(1)	59(1)	-5(1)	35(1)	-2(1)
C(5)	72(1)	42(1)	56(1)	-4(1)	40(1)	-1(1)
C(6)	47(1)	51(1)	49(1)	-8(1)	26(1)	4(1)
C(7)	64(1)	45(1)	70(1)	-11(1)	45(1)	-1(1)
C(8)	71(1)	53(1)	71(1)	-5(1)	49(1)	-1(1)
C(9)	55(1)	59(1)	51(1)	-9(1)	31(1)	3(1)
C(10)	83(2)	53(1)	62(1)	-4(1)	45(1)	13(1)
C(11)	83(2)	51(1)	62(1)	1(1)	47(1)	14(1)
C(12)	68(1)	44(1)	54(1)	1(1)	32(1)	-4(1)
N(1)	53(1)	38(1)	48(1)	-4(1)	29(1)	-2(1)
N(2)	74(1)	45(1)	57(1)	-1(1)	40(1)	-1(1)
N(3)	111(2)	69(1)	83(1)	-2(1)	70(1)	10(1)
O(1)	60(1)	43(1)	58(1)	-9(1)	39(1)	-3(1)
B(1)	57(1)	37(1)	49(1)	-5(1)	34(1)	0(1)
C(13)	57(1)	39(1)	50(1)	-7(1)	32(1)	-2(1)
C(14)	62(1)	50(1)	53(1)	-2(1)	35(1)	0(1)
C(15)	73(1)	61(1)	50(1)	1(1)	31(1)	4(1)
C(16)	61(1)	73(2)	59(1)	-2(1)	24(1)	2(1)
C(17)	57(1)	89(2)	68(1)	-3(1)	36(1)	1(1)
C(18)	60(1)	72(1)	55(1)	-2(1)	36(1)	1(1)
C(19)	71(1)	42(1)	52(1)	-7(1)	42(1)	-11(1)

Table S22. Anisotropic displacement parameters (Å²x 10³) for 13. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}$]

C(20)	100(2)	45(1)	96(2)	-15(1)	70(2)	-7(1)
C(21)	167(3)	55(2)	166(3)	-44(2)	135(3)	-33(2)
C(22)	179(4)	103(3)	114(3)	-69(2)	113(3)	-89(3)
C(23)	129(3)	102(2)	57(1)	-24(1)	50(2)	-65(2)
C(24)	81(2)	65(1)	55(1)	-4(1)	34(1)	-23(1)
C(25)	76(1)	55(1)	60(1)	-7(1)	42(1)	4(1)
Cl(1)	160(1)	51(1)	94(1)	5(1)	86(1)	-13(1)

Table S23.Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10^3)for 13.

	Х	У	Z	U(eq)
H(2)	7880	10018	5160	61
H(4)	8376	10461	3161	65
H(5)	8697	8470	1892	63
H(7)	6886	8252	6691	65
H(8)	6144	8297	8425	71
H(10)	5710	10160	7951	73
H(11)	6531	10118	6265	72
H(14)	9520	8151	7086	62
H(15)	11823	7987	8841	72
H(16)	13732	7993	8320	79
H(17)	13325	8179	6015	82
H(18)	11031	8354	4267	71
H(20)	9399	7193	3978	85
H(21)	8288	6357	2477	128
H(22)	5899	6410	826	137
H(23)	4619	7315	595	112
H(24)	5692	8149	2071	79

Table S24.Torsion angles [°] for 13.

O(1)-C(1)-C(2)-C(3)	4.7(3)
C(6)-C(1)-C(2)-C(3)	-174.09(19)

C(1)-C(2)-C(3)-N(1)	-10.3(3)
C(1)-C(2)-C(3)-C(4)	168.5(2)
N(1)-C(3)-C(4)-C(12)	-0.4(3)
C(2)-C(3)-C(4)-C(12)	-179.2(2)
O(1)-C(1)-C(6)-C(7)	14.6(3)
C(2)-C(1)-C(6)-C(7)	-166.5(2)
O(1)-C(1)-C(6)-C(11)	-166.26(19)
C(2)-C(1)-C(6)-C(11)	12.7(3)
C(11)-C(6)-C(7)-C(8)	-1.8(3)
C(1)-C(6)-C(7)-C(8)	177.4(2)
C(6)-C(7)-C(8)-C(9)	1.5(3)
C(7)-C(8)-C(9)-C(10)	0.0(4)
C(7)-C(8)-C(9)-C(25)	-179.8(2)
C(8)-C(9)-C(10)-C(11)	-1.2(4)
C(25)-C(9)-C(10)-C(11)	178.7(2)
C(9)-C(10)-C(11)-C(6)	0.8(4)
C(7)-C(6)-C(11)-C(10)	0.7(3)
C(1)-C(6)-C(11)-C(10)	-178.5(2)
C(3)-C(4)-C(12)-N(2)	2.5(3)
C(3)-C(4)-C(12)-Cl(1)	-177.34(16)
N(2)-C(5)-N(1)-C(3)	2.9(3)
N(2)-C(5)-N(1)-B(1)	-168.7(2)
C(4)-C(3)-N(1)-C(5)	-2.0(3)
C(2)-C(3)-N(1)-C(5)	176.87(18)
C(4)-C(3)-N(1)-B(1)	169.68(18)
C(2)-C(3)-N(1)-B(1)	-11.4(3)
N(1)-C(5)-N(2)-C(12)	-1.0(3)
C(4)-C(12)-N(2)-C(5)	-1.8(3)
Cl(1)-C(12)-N(2)-C(5)	178.02(17)
C(2)-C(1)-O(1)-B(1)	24.8(3)
C(6)-C(1)-O(1)-B(1)	-156.24(17)
C(1)-O(1)-B(1)-C(19)	-156.29(16)
C(1)-O(1)-B(1)-C(13)	75.1(2)
C(1)-O(1)-B(1)-N(1)	-40.4(2)
C(5)-N(1)-B(1)-O(1)	-154.64(17)
C(3)-N(1)-B(1)-O(1)	33.9(2)
C(5)-N(1)-B(1)-C(19)	-39.3(2)
C(3)-N(1)-B(1)-C(19)	149.20(17)
C(5)-N(1)-B(1)-C(13)	87.0(2)
C(3)-N(1)-B(1)-C(13)	-84.46(19)

O(1)-B(1)-C(13)-C(18)	-161.59(18)
C(19)-B(1)-C(13)-C(18)	74.2(2)
N(1)-B(1)-C(13)-C(18)	-47.8(2)
O(1)-B(1)-C(13)-C(14)	22.8(2)
C(19)-B(1)-C(13)-C(14)	-101.4(2)
N(1)-B(1)-C(13)-C(14)	136.65(17)
C(18)-C(13)-C(14)-C(15)	0.9(3)
B(1)-C(13)-C(14)-C(15)	176.79(19)
C(13)-C(14)-C(15)-C(16)	-0.8(3)
C(14)-C(15)-C(16)-C(17)	0.3(4)
C(15)-C(16)-C(17)-C(18)	0.1(4)
C(16)-C(17)-C(18)-C(13)	0.0(4)
C(14)-C(13)-C(18)-C(17)	-0.5(3)
B(1)-C(13)-C(18)-C(17)	-176.3(2)
O(1)-B(1)-C(19)-C(20)	-129.8(2)
C(13)-B(1)-C(19)-C(20)	-3.9(3)
N(1)-B(1)-C(19)-C(20)	117.2(2)
O(1)-B(1)-C(19)-C(24)	49.6(2)
C(13)-B(1)-C(19)-C(24)	175.50(17)
N(1)-B(1)-C(19)-C(24)	-63.4(2)
C(24)-C(19)-C(20)-C(21)	-0.4(3)
B(1)-C(19)-C(20)-C(21)	179.0(2)
C(19)-C(20)-C(21)-C(22)	-0.4(4)
C(20)-C(21)-C(22)-C(23)	1.3(5)
C(21)-C(22)-C(23)-C(24)	-1.3(4)
C(22)-C(23)-C(24)-C(19)	0.5(4)
C(20)-C(19)-C(24)-C(23)	0.3(3)
B(1)-C(19)-C(24)-C(23)	-179.07(19)
C(10)-C(9)-C(25)-N(3)	-150(8)
C(8)-C(9)-C(25)-N(3)	30(9)

Table S25.	Crystal	data and	structure	refinement	for 1	14.
------------	---------	----------	-----------	------------	-------	-----

Identification code	14
Empirical formula	C25 H20 B Cl N2 O2
Formula weight	426.69
Temperature	293(2) K

Wavelength	0.71075 Å	
Crystal system	Monoclinic	
Space group	P 21/c	
Unit cell dimensions	a = 10.102(2) Å	α= 90°.
	b = 20.037(4) Å	β= 92.7166(10)°.
	c = 10.665(2) Å	$\gamma = 90^{\circ}$.
Volume	2156.3(7) Å ³	
Z	4	
Density (calculated)	1.314 Mg/m ³	
Absorption coefficient	0.202 mm ⁻¹	
F(000)	888	
Crystal size	$0.20 \ x \ 0.20 \ x \ 0.20 \ mm^3$	
Theta range for data collection	2.79 to 27.66°.	
Index ranges	-13<=h<=13, -26<=k<=26, -13	<=1<=13
Reflections collected	21280	
Independent reflections	4931 [R(int) = 0.0728]	
Completeness to theta = 27.66°	98.2 %	
Absorption correction	Integration	
Max. and min. transmission	0.9607 and 0.9607	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	4931 / 0 / 281	
Goodness-of-fit on F ²	1.024	
Final R indices [I>2sigma(I)]	R1 = 0.0572, wR2 = 0.1527	
R indices (all data)	R1 = 0.0701, wR2 = 0.1682	
Largest diff. peak and hole	0.527 and -0.274 e.Å ⁻³	

Table S26. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³)for 14. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	х	у	Z	U(eq)
C(1)	487(2)	10703(1)	7218(2)	41(1)
C(2)	811(2)	10193(1)	6443(2)	47(1)
C(3)	1844(2)	10256(1)	5595(2)	42(1)
C(4)	2366(2)	9709(1)	4959(2)	49(1)
C(5)	3392(2)	10916(1)	4615(2)	48(1)
C(6)	-477(2)	10648(1)	8210(2)	46(1)
C(7)	-885(2)	11219(1)	8835(2)	57(1)

C(8)	-1828(3)	11187(1)	9732(2)	67(1)
C(9)	-2368(2)	10583(1)	10051(2)	63(1)
C(10)	-1958(2)	10009(1)	9473(2)	65(1)
C(11)	-1021(2)	10042(1)	8546(2)	57(1)
C(12)	3356(2)	9826(1)	4170(2)	49(1)
C(13)	466(2)	11706(1)	4899(2)	43(1)
C(14)	-807(2)	11869(1)	5259(2)	49(1)
C(15)	-1817(2)	12023(1)	4382(3)	63(1)
C(16)	-1573(3)	12020(1)	3123(3)	70(1)
C(17)	-326(3)	11874(1)	2733(2)	69(1)
C(18)	670(2)	11718(1)	3613(2)	57(1)
C(19)	2700(2)	12098(1)	6266(2)	44(1)
C(20)	2805(3)	12682(1)	5587(3)	66(1)
C(21)	3770(3)	13158(1)	5911(3)	83(1)
C(22)	4625(3)	13064(1)	6919(3)	77(1)
C(23)	4533(3)	12492(1)	7621(3)	72(1)
C(24)	3581(2)	12017(1)	7289(2)	57(1)
C(25)	-3809(3)	10015(2)	11416(3)	82(1)
N(1)	2381(1)	10870(1)	5388(1)	40(1)
N(2)	3911(2)	10424(1)	3976(2)	53(1)
O(1)	1053(1)	11296(1)	7128(1)	44(1)
O(2)	-3293(2)	10612(1)	10955(2)	88(1)
Cl(1)	3987(1)	9164(1)	3344(1)	67(1)
B(1)	1630(2)	11519(1)	5934(2)	40(1)

Table S27.Bond lengths [Å] and angles [°] for 14.

C(1)-O(1)	1.325(2)
C(1)-C(2)	1.364(3)
C(1)-C(6)	1.476(3)
C(2)-C(3)	1.419(3)
C(3)-N(1)	1.366(2)
C(3)-C(4)	1.405(3)
C(4)-C(12)	1.358(3)
C(5)-N(2)	1.320(2)
C(5)-N(1)	1.346(2)
C(6)-C(11)	1.386(3)
C(6)-C(7)	1.396(3)
C(7)-C(8)	1.383(3)
-----------------	------------
C(8)-C(9)	1.376(4)
C(9)-O(2)	1.375(3)
C(9)-C(10)	1.378(4)
C(10)-C(11)	1.402(3)
C(12)-N(2)	1.344(3)
C(12)-Cl(1)	1.7293(19)
C(13)-C(18)	1.397(3)
C(13)-C(14)	1.398(3)
C(13)-B(1)	1.618(3)
C(14)-C(15)	1.386(3)
C(15)-C(16)	1.376(4)
C(16)-C(17)	1.377(4)
C(17)-C(18)	1.378(3)
C(19)-C(20)	1.384(3)
C(19)-C(24)	1.385(3)
C(19)-B(1)	1.613(3)
C(20)-C(21)	1.395(3)
C(21)-C(22)	1.360(4)
C(22)-C(23)	1.374(4)
C(23)-C(24)	1.386(3)
C(25)-O(2)	1.402(3)
N(1)-B(1)	1.627(2)
O(1)-B(1)	1.494(2)
O(1)-C(1)-C(2)	120.82(16)
O(1)-C(1)-C(6)	114.84(16)
C(2)-C(1)-C(6)	124.34(16)
C(1)-C(2)-C(3)	121.57(16)
N(1)-C(3)-C(4)	117.61(17)
N(1)-C(3)-C(2)	119.60(16)
C(4)-C(3)-C(2)	122.79(17)
C(12)-C(4)-C(3)	117.98(17)
N(2)-C(5)-N(1)	126.63(18)
C(11)-C(6)-C(7)	117.64(18)
C(11)-C(6)-C(1)	122.27(18)
C(7)-C(6)-C(1)	120.09(17)
C(8)-C(7)-C(6)	121.4(2)
C(9)-C(8)-C(7)	120.4(2)
O(2)-C(9)-C(8)	115.3(2)

O(2)-C(9)-C(10)	125.3(2)
C(8)-C(9)-C(10)	119.4(2)
C(9)-C(10)-C(11)	120.3(2)
C(6)-C(11)-C(10)	120.8(2)
N(2)-C(12)-C(4)	125.02(17)
N(2)-C(12)-Cl(1)	116.04(15)
C(4)-C(12)-Cl(1)	118.93(15)
C(18)-C(13)-C(14)	116.49(18)
C(18)-C(13)-B(1)	122.54(17)
C(14)-C(13)-B(1)	120.97(17)
C(15)-C(14)-C(13)	121.6(2)
C(16)-C(15)-C(14)	119.8(2)
C(15)-C(16)-C(17)	120.3(2)
C(16)-C(17)-C(18)	119.4(2)
C(17)-C(18)-C(13)	122.4(2)
C(20)-C(19)-C(24)	116.64(19)
C(20)-C(19)-B(1)	124.07(18)
C(24)-C(19)-B(1)	119.29(17)
C(19)-C(20)-C(21)	121.2(2)
C(22)-C(21)-C(20)	120.8(3)
C(21)-C(22)-C(23)	119.3(2)
C(22)-C(23)-C(24)	119.8(3)
C(19)-C(24)-C(23)	122.2(2)
C(5)-N(1)-C(3)	118.62(15)
C(5)-N(1)-B(1)	123.01(14)
C(3)-N(1)-B(1)	117.79(14)
C(5)-N(2)-C(12)	114.06(17)
C(1)-O(1)-B(1)	121.09(14)
C(9)-O(2)-C(25)	119.1(2)
O(1)-B(1)-C(19)	108.14(15)
O(1)-B(1)-C(13)	110.54(15)
C(19)-B(1)-C(13)	116.16(15)
O(1)-B(1)-N(1)	105.87(13)
C(19)-B(1)-N(1)	109.52(14)
C(13)-B(1)-N(1)	106.12(14)

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	38(1)	43(1)	43(1)	5(1)	-1(1)	-4(1)
C(2)	44(1)	41(1)	57(1)	1(1)	5(1)	-7(1)
C(3)	37(1)	38(1)	49(1)	-2(1)	-1(1)	-1(1)
C(4)	46(1)	41(1)	61(1)	-7(1)	3(1)	-2(1)
C(5)	45(1)	45(1)	56(1)	0(1)	7(1)	-1(1)
C(6)	42(1)	54(1)	42(1)	6(1)	2(1)	-5(1)
C(7)	63(1)	58(1)	51(1)	-1(1)	14(1)	-7(1)
C(8)	77(2)	67(1)	59(1)	-7(1)	24(1)	-5(1)
C(9)	66(1)	73(1)	51(1)	4(1)	17(1)	-5(1)
C(10)	61(1)	63(1)	72(1)	19(1)	12(1)	-13(1)
C(11)	58(1)	55(1)	58(1)	7(1)	10(1)	-5(1)
C(12)	42(1)	49(1)	54(1)	-9(1)	-3(1)	7(1)
C(13)	43(1)	34(1)	52(1)	0(1)	1(1)	-2(1)
C(14)	46(1)	41(1)	62(1)	-1(1)	2(1)	-2(1)
C(15)	44(1)	51(1)	94(2)	10(1)	-6(1)	3(1)
C(16)	64(1)	65(1)	79(2)	14(1)	-22(1)	1(1)
C(17)	76(2)	73(2)	56(1)	9(1)	-9(1)	5(1)
C(18)	56(1)	61(1)	54(1)	4(1)	1(1)	7(1)
C(19)	41(1)	39(1)	53(1)	-7(1)	8(1)	-2(1)
C(20)	69(1)	50(1)	79(2)	8(1)	-2(1)	-13(1)
C(21)	85(2)	48(1)	116(2)	8(1)	6(2)	-23(1)
C(22)	62(1)	62(1)	106(2)	-21(1)	5(1)	-22(1)
C(23)	59(1)	75(2)	82(2)	-15(1)	-9(1)	-14(1)
C(24)	54(1)	53(1)	64(1)	-4(1)	-4(1)	-9(1)
C(25)	75(2)	103(2)	69(2)	13(1)	26(1)	-12(2)
N(1)	37(1)	37(1)	45(1)	0(1)	1(1)	-1(1)
N(2)	46(1)	53(1)	59(1)	-6(1)	10(1)	2(1)
O(1)	46(1)	42(1)	46(1)	-2(1)	7(1)	-6(1)
O(2)	97(1)	81(1)	90(1)	1(1)	49(1)	-4(1)
Cl(1)	64(1)	60(1)	77(1)	-21(1)	12(1)	9(1)
B(1)	38(1)	37(1)	45(1)	1(1)	4(1)	-2(1)

displacement factor exponent takes the form: -2 π^2 [$h^2a^{*2}U^{11}$ + ... + 2 h k a* b* U^{12}]

Table S29.Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å² $x \ 10^3$)for 14.

	Х	У	Z	U(eq)
H(2)	344	9793	6472	57
H(4)	2044	9280	5076	59
H(5)	3763	11337	4521	58
H(7)	-515	11629	8645	69
H(8)	-2099	11575	10122	80
H(10)	-2304	9599	9697	78
H(11)	-761	9653	8152	68
H(14)	-980	11874	6108	59
H(15)	-2657	12128	4644	76
H(16)	-2254	12117	2534	84
H(17)	-158	11879	1883	82
H(18)	1507	11618	3340	68
H(20)	2221	12760	4902	79
H(21)	3830	13544	5432	100
H(22)	5265	13384	7132	92
H(23)	5108	12424	8316	87
H(24)	3534	11632	7770	69
H(25)	-4410	9823	10792	123
H(25A)	-4272	10106	12163	123
H(25B)	3007	9709	11607	123

Table S30.Torsion angles [°] for 14.

O(1)-C(1)-C(2)-C(3)	5.8(3)
C(6)-C(1)-C(2)-C(3)	-173.36(17)
C(1)-C(2)-C(3)-N(1)	-11.2(3)
C(1)-C(2)-C(3)-C(4)	167.81(18)
N(1)-C(3)-C(4)-C(12)	-0.9(3)
C(2)-C(3)-C(4)-C(12)	-179.89(18)
O(1)-C(1)-C(6)-C(11)	-170.94(17)
C(2)-C(1)-C(6)-C(11)	8.2(3)
O(1)-C(1)-C(6)-C(7)	9.9(3)
C(2)-C(1)-C(6)-C(7)	-170.89(19)
C(11)-C(6)-C(7)-C(8)	-1.9(3)

C(1)-C(6)-C(7)-C(8)	177.2(2)
C(6)-C(7)-C(8)-C(9)	1.5(4)
C(7)-C(8)-C(9)-O(2)	179.8(2)
C(7)-C(8)-C(9)-C(10)	0.2(4)
O(2)-C(9)-C(10)-C(11)	179.0(2)
C(8)-C(9)-C(10)-C(11)	-1.5(4)
C(7)-C(6)-C(11)-C(10)	0.7(3)
C(1)-C(6)-C(11)-C(10)	-178.47(19)
C(9)-C(10)-C(11)-C(6)	1.0(4)
C(3)-C(4)-C(12)-N(2)	2.3(3)
C(3)-C(4)-C(12)-Cl(1)	-178.32(14)
C(18)-C(13)-C(14)-C(15)	1.0(3)
B(1)-C(13)-C(14)-C(15)	-179.25(17)
C(13)-C(14)-C(15)-C(16)	-0.2(3)
C(14)-C(15)-C(16)-C(17)	-0.9(4)
C(15)-C(16)-C(17)-C(18)	1.2(4)
C(16)-C(17)-C(18)-C(13)	-0.3(4)
C(14)-C(13)-C(18)-C(17)	-0.7(3)
B(1)-C(13)-C(18)-C(17)	179.5(2)
C(24)-C(19)-C(20)-C(21)	1.2(4)
B(1)-C(19)-C(20)-C(21)	-178.8(2)
C(19)-C(20)-C(21)-C(22)	-1.0(5)
C(20)-C(21)-C(22)-C(23)	0.2(5)
C(21)-C(22)-C(23)-C(24)	0.5(4)
C(20)-C(19)-C(24)-C(23)	-0.5(3)
B(1)-C(19)-C(24)-C(23)	179.4(2)
C(22)-C(23)-C(24)-C(19)	-0.3(4)
N(2)-C(5)-N(1)-C(3)	2.7(3)
N(2)-C(5)-N(1)-B(1)	-168.34(18)
C(4)-C(3)-N(1)-C(5)	-1.4(3)
C(2)-C(3)-N(1)-C(5)	177.64(17)
C(4)-C(3)-N(1)-B(1)	170.13(16)
C(2)-C(3)-N(1)-B(1)	-10.8(2)
N(1)-C(5)-N(2)-C(12)	-1.4(3)
C(4)-C(12)-N(2)-C(5)	-1.2(3)
Cl(1)-C(12)-N(2)-C(5)	179.40(14)
C(2)-C(1)-O(1)-B(1)	24.0(2)
C(6)-C(1)-O(1)-B(1)	-156.79(15)
C(8)-C(9)-O(2)-C(25)	-174.5(2)
C(10)-C(9)-O(2)-C(25)	5.1(4)

C(1)-O(1)-B(1)-C(19)	-158.17(15)
C(1)-O(1)-B(1)-C(13)	73.64(19)
C(1)-O(1)-B(1)-N(1)	-40.9(2)
C(20)-C(19)-B(1)-O(1)	-136.1(2)
C(24)-C(19)-B(1)-O(1)	44.0(2)
C(20)-C(19)-B(1)-C(13)	-11.2(3)
C(24)-C(19)-B(1)-C(13)	168.87(18)
C(20)-C(19)-B(1)-N(1)	109.0(2)
C(24)-C(19)-B(1)-N(1)	-71.0(2)
C(18)-C(13)-B(1)-O(1)	-158.65(17)
C(14)-C(13)-B(1)-O(1)	21.6(2)
C(18)-C(13)-B(1)-C(19)	77.7(2)
C(14)-C(13)-B(1)-C(19)	-102.04(19)
C(18)-C(13)-B(1)-N(1)	-44.3(2)
C(14)-C(13)-B(1)-N(1)	135.99(16)
C(5)-N(1)-B(1)-O(1)	-155.15(16)
C(3)-N(1)-B(1)-O(1)	33.7(2)
C(5)-N(1)-B(1)-C(19)	-38.8(2)
C(3)-N(1)-B(1)-C(19)	150.08(15)
C(5)-N(1)-B(1)-C(13)	87.34(19)
C(3)-N(1)-B(1)-C(13)	-83.81(18)

 Table S31.
 Crystal data and structure refinement for 15.

Identification code	15	_
Empirical formula	C26 H23 B Cl N3 O	
Formula weight	439.73	
Temperature	293(2) K	
Wavelength	0.71075 Å	
Crystal system	Monoclinic	
Space group	P21/n	
Unit cell dimensions	a = 8.885(8) Å	<i>α</i> = 90°.
	b = 12.288(11) Å	β= 97.033(12)°.
	c = 20.917(19) Å	$\gamma = 90^{\circ}$.
Volume	2267(4) Å ³	
Ζ	4	
Density (calculated)	1.289 Mg/m ³	

Absorption coefficient	0.192 mm ⁻¹
F(000)	920
Crystal size	0.20 x 0.20 x 0.20 mm ³
Theta range for data collection	2.62 to 27.48°.
Index ranges	-11<=h<=11, -15<=k<=15, -27<=l<=26
Reflections collected	21423
Independent reflections	5132 [R(int) = 0.0409]
Completeness to theta = 27.48°	98.8 %
Absorption correction	Integration
Max. and min. transmission	0.9626 and 0.9626
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	5132 / 0 / 291
Goodness-of-fit on F ²	1.074
Final R indices [I>2sigma(I)]	R1 = 0.0534, $wR2 = 0.1247$
R indices (all data)	R1 = 0.0752, wR2 = 0.1370
Largest diff. peak and hole	0.153 and -0.187 e.Å ⁻³

Table S32. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³)for 15. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	х	у	Z	U(eq)
C(1)	9588(2)	11730(1)	10831(1)	47(1)
C(2)	9054(2)	11114(2)	10307(1)	49(1)
C(3)	8035(2)	10251(1)	10349(1)	45(1)
C(4)	7238(2)	9742(2)	9809(1)	49(1)
C(5)	6759(2)	9088(2)	10982(1)	57(1)
C(6)	10534(2)	12694(1)	10790(1)	48(1)
C(7)	11356(2)	13141(2)	11338(1)	55(1)
C(8)	12299(2)	14018(2)	11307(1)	59(1)
C(9)	12445(2)	14533(2)	10721(1)	54(1)
C(10)	11618(3)	14086(2)	10168(1)	65(1)
C(11)	10703(2)	13196(2)	10205(1)	60(1)
C(12)	6267(2)	8924(2)	9914(1)	51(1)
C(19)	8021(2)	10279(2)	12194(1)	52(1)
C(24)	7219(3)	11162(2)	12372(1)	70(1)
C(23)	6405(3)	11125(2)	12904(1)	88(1)
C(22)	6354(3)	10192(2)	13253(1)	80(1)

C(21)	7130(3)	9304(2)	13091(1)	79(1)
C(20)	7963(3)	9352(2)	12568(1)	69(1)
C(13)	10444(2)	9608(2)	11619(1)	48(1)
C(14)	11811(2)	10063(2)	11894(1)	60(1)
C(15)	13155(2)	9472(2)	11974(1)	70(1)
C(16)	13168(2)	8411(2)	11789(1)	71(1)
C(17)	11844(2)	7935(2)	11514(1)	67(1)
C(18)	10510(2)	8526(2)	11430(1)	54(1)
C(25)	13416(3)	16003(2)	10084(1)	84(1)
C(26)	14415(3)	15747(2)	11229(1)	85(1)
N(1)	7795(2)	9875(1)	10947(1)	46(1)
N(2)	5979(2)	8582(1)	10497(1)	58(1)
N(3)	13343(2)	15433(2)	10685(1)	72(1)
O(1)	9254(2)	11476(1)	11414(1)	53(1)
Cl(1)	5276(1)	8267(1)	9266(1)	69(1)
B(1)	8901(2)	10317(2)	11561(1)	49(1)

Table S33.Bond lengths [Å] and angles [°] for 15.

C(1)-O(1)	1.328(2)
C(1)-C(2)	1.368(3)
C(1)-C(6)	1.461(3)
C(2)-C(3)	1.404(3)
C(2)-H(2)	0.9300
C(3)-N(1)	1.373(2)
C(3)-C(4)	1.404(3)
C(4)-C(12)	1.359(3)
C(4)-H(4)	0.9300
C(5)-N(2)	1.312(3)
C(5)-N(1)	1.344(2)
C(5)-H(5)	0.9300
C(6)-C(7)	1.394(3)
C(6)-C(11)	1.396(3)
C(7)-C(8)	1.372(3)
C(7)-H(7)	0.9300
C(8)-C(9)	1.399(3)
C(8)-H(8)	0.9300
C(9)-N(3)	1.372(3)

C(9)-C(10)	1.404(3)
C(10)-C(11)	1.370(3)
C(10)-H(10)	0.9300
С(11)-Н(11)	0.9300
C(12)-N(2)	1.344(3)
C(12)-Cl(1)	1.724(2)
C(19)-C(24)	1.375(3)
C(19)-C(20)	1.387(3)
C(19)-B(1)	1.619(3)
C(24)-C(23)	1.400(3)
C(24)-H(24)	0.9300
C(23)-C(22)	1.363(4)
С(23)-Н(23)	0.9300
C(22)-C(21)	1.356(4)
С(22)-Н(22)	0.9300
C(21)-C(20)	1.394(3)
С(21)-Н(21)	0.9300
C(20)-H(20)	0.9300
C(13)-C(18)	1.390(3)
C(13)-C(14)	1.395(3)
C(13)-B(1)	1.616(3)
C(14)-C(15)	1.389(3)
C(14)-H(14)	0.9300
C(15)-C(16)	1.360(4)
C(15)-H(15)	0.9300
C(16)-C(17)	1.375(3)
C(16)-H(16)	0.9300
C(17)-C(18)	1.383(3)
C(17)-H(17)	0.9300
C(18)-H(18)	0.9300
C(25)-N(3)	1.447(3)
C(25)-H(25)	0.9600
C(25)-H(25A)	0.9600
C(25)-H(25B)	0.9600
C(26)-N(3)	1.445(3)
C(26)-H(26)	0.9600
C(26)-H(26A)	0.9600
C(26)-H(26B)	0.9600
N(1)-B(1)	1.613(3)
O(1)-B(1)	1.498(3)

O(1)-C(1)-C(2)	120.75(17)
O(1)-C(1)-C(6)	115.99(16)
C(2)-C(1)-C(6)	123.26(16)
C(1)-C(2)-C(3)	122.06(16)
C(1)-C(2)-H(2)	119.0
C(3)-C(2)-H(2)	119.0
N(1)-C(3)-C(2)	118.97(16)
N(1)-C(3)-C(4)	117.59(17)
C(2)-C(3)-C(4)	123.44(16)
C(12)-C(4)-C(3)	117.84(17)
C(12)-C(4)-H(4)	121.1
C(3)-C(4)-H(4)	121.1
N(2)-C(5)-N(1)	126.74(18)
N(2)-C(5)-H(5)	116.6
N(1)-C(5)-H(5)	116.6
C(7)-C(6)-C(11)	116.41(18)
C(7)-C(6)-C(1)	121.29(17)
C(11)-C(6)-C(1)	122.26(18)
C(8)-C(7)-C(6)	122.14(18)
C(8)-C(7)-H(7)	118.9
C(6)-C(7)-H(7)	118.9
C(7)-C(8)-C(9)	121.31(19)
C(7)-C(8)-H(8)	119.3
C(9)-C(8)-H(8)	119.3
N(3)-C(9)-C(8)	121.95(19)
N(3)-C(9)-C(10)	121.34(19)
C(8)-C(9)-C(10)	116.72(19)
C(11)-C(10)-C(9)	121.31(19)
С(11)-С(10)-Н(10)	119.3
С(9)-С(10)-Н(10)	119.3
C(10)-C(11)-C(6)	122.1(2)
С(10)-С(11)-Н(11)	119.0
С(6)-С(11)-Н(11)	119.0
N(2)-C(12)-C(4)	124.90(17)
N(2)-C(12)-Cl(1)	115.55(15)
C(4)-C(12)-Cl(1)	119.54(15)
C(24)-C(19)-C(20)	115.98(19)
C(24)-C(19)-B(1)	121.22(18)
C(20)-C(19)-B(1)	122.73(18)

C(19)-C(24)-C(23)	121.8(2)
C(19)-C(24)-H(24)	119.1
C(23)-C(24)-H(24)	119.1
C(22)-C(23)-C(24)	120.4(2)
С(22)-С(23)-Н(23)	119.8
С(24)-С(23)-Н(23)	119.8
C(21)-C(22)-C(23)	119.5(2)
С(21)-С(22)-Н(22)	120.2
C(23)-C(22)-H(22)	120.2
C(22)-C(21)-C(20)	119.8(2)
C(22)-C(21)-H(21)	120.1
C(20)-C(21)-H(21)	120.1
C(19)-C(20)-C(21)	122.5(2)
C(19)-C(20)-H(20)	118.7
C(21)-C(20)-H(20)	118.7
C(18)-C(13)-C(14)	115.78(18)
C(18)-C(13)-B(1)	123.97(17)
C(14)-C(13)-B(1)	120.21(18)
C(15)-C(14)-C(13)	122.2(2)
C(15)-C(14)-H(14)	118.9
C(13)-C(14)-H(14)	118.9
C(16)-C(15)-C(14)	120.2(2)
C(16)-C(15)-H(15)	119.9
C(14)-C(15)-H(15)	119.9
C(15)-C(16)-C(17)	119.3(2)
C(15)-C(16)-H(16)	120.3
C(17)-C(16)-H(16)	120.3
C(16)-C(17)-C(18)	120.4(2)
С(16)-С(17)-Н(17)	119.8
C(18)-C(17)-H(17)	119.8
C(17)-C(18)-C(13)	122.1(2)
C(17)-C(18)-H(18)	119.0
C(13)-C(18)-H(18)	119.0
N(3)-C(25)-H(25)	109.5
N(3)-C(25)-H(25A)	109.5
H(25)-C(25)-H(25A)	109.5
N(3)-C(25)-H(25B)	109.5
H(25)-C(25)-H(25B)	109.5
H(25A)-C(25)-H(25B)	109.5
N(3)-C(26)-H(26)	109.5

N(3)-C(26)-H(26A)	109.5
H(26)-C(26)-H(26A)	109.5
N(3)-C(26)-H(26B)	109.5
H(26)-C(26)-H(26B)	109.5
H(26A)-C(26)-H(26B)	109.5
C(5)-N(1)-C(3)	118.41(16)
C(5)-N(1)-B(1)	123.58(15)
C(3)-N(1)-B(1)	117.67(15)
C(5)-N(2)-C(12)	114.38(17)
C(9)-N(3)-C(26)	120.3(2)
C(9)-N(3)-C(25)	121.7(2)
C(26)-N(3)-C(25)	117.4(2)
C(1)-O(1)-B(1)	119.15(14)
O(1)-B(1)-N(1)	106.22(15)
O(1)-B(1)-C(13)	109.32(16)
N(1)-B(1)-C(13)	107.90(15)
O(1)-B(1)-C(19)	109.19(14)
N(1)-B(1)-C(19)	109.47(16)
C(13)-B(1)-C(19)	114.41(16)

Table S34. Anisotropic displacement parameters ($Å^2x \ 10^3$) for **15**. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}$]

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	51(1)	46(1)	44(1)	2(1)	15(1)	6(1)
C(2)	55(1)	52(1)	43(1)	2(1)	16(1)	-1(1)
C(3)	45(1)	48(1)	44(1)	1(1)	14(1)	6(1)
C(4)	51(1)	54(1)	44(1)	-1(1)	12(1)	2(1)
C(5)	58(1)	61(1)	54(1)	5(1)	18(1)	-4(1)
C(6)	52(1)	43(1)	50(1)	2(1)	15(1)	4(1)
C(7)	69(1)	53(1)	46(1)	-1(1)	18(1)	-2(1)
C(8)	64(1)	58(1)	54(1)	-9(1)	12(1)	-3(1)
C(9)	53(1)	48(1)	63(1)	0(1)	12(1)	2(1)
C(10)	78(1)	60(1)	56(1)	14(1)	7(1)	-12(1)
C(11)	70(1)	58(1)	50(1)	6(1)	4(1)	-9(1)
C(12)	43(1)	54(1)	56(1)	-6(1)	7(1)	6(1)

C(19)	56(1)	58(1)	45(1)	-6(1)	17(1)	-9(1)
C(24)	82(2)	66(1)	69(1)	-12(1)	34(1)	-5(1)
C(23)	90(2)	89(2)	93(2)	-34(2)	47(2)	-9(1)
C(22)	76(2)	115(2)	53(1)	-25(1)	31(1)	-34(1)
C(21)	91(2)	97(2)	54(1)	4(1)	29(1)	-20(1)
C(20)	84(2)	71(1)	57(1)	5(1)	29(1)	-4(1)
C(13)	54(1)	55(1)	35(1)	5(1)	14(1)	-3(1)
C(14)	67(1)	64(1)	48(1)	-1(1)	6(1)	-8(1)
C(15)	56(1)	94(2)	59(1)	3(1)	1(1)	-11(1)
C(16)	57(1)	82(2)	73(2)	9(1)	10(1)	8(1)
C(17)	66(1)	62(1)	76(1)	2(1)	17(1)	6(1)
C(18)	54(1)	55(1)	54(1)	2(1)	12(1)	-4(1)
C(25)	79(2)	70(2)	105(2)	24(1)	19(1)	-12(1)
C(26)	67(1)	74(2)	113(2)	-11(1)	1(1)	-12(1)
N(1)	48(1)	49(1)	45(1)	0(1)	14(1)	0(1)
N(2)	55(1)	65(1)	56(1)	0(1)	12(1)	-9(1)
N(3)	70(1)	61(1)	83(1)	5(1)	11(1)	-17(1)
O(1)	69(1)	48(1)	44(1)	-2(1)	21(1)	-4(1)
Cl(1)	65(1)	76(1)	64(1)	-13(1)	3(1)	-9(1)
B(1)	60(1)	48(1)	41(1)	1(1)	16(1)	-4(1)

Table S35.Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å² $x \ 10^3$)for 15.

	Х	У	Z	U(eq)	
H(2)	9375	11271	9911	59	
H(4)	7371	9957	9394	59	
H(5)	6575	8879	11393	68	
H(7)	11261	12835	11738	66	
H(8)	12853	14276	11682	70	
H(10)	11693	14399	9768	78	
H(11)	10178	12918	9828	71	
H(24)	7217	11800	12134	85	
H(23)	5896	11742	13021	105	
H(22)	5791	10164	13599	95	
H(21)	7107	8664	13327	95	

H(20)	8500	8739	12467	83
H(14)	11824	10785	12027	71
H(15)	14047	9803	12155	84
H(16)	14064	8012	11848	85
H(17)	11846	7211	11385	81
H(18)	9629	8189	11241	65
H(25)	12407	16149	9882	126
H(25A)	13939	15561	9804	126
H(25B)	13951	16677	10167	126
H(26)	15109	15159	11341	128
H(26A)	13881	15912	11589	128
H(26B)	14968	16377	11119	128

Table S36.Torsion angles [°] for 15.

O(1)-C(1)-C(2)-C(3)	5.5(3)
C(6)-C(1)-C(2)-C(3)	-174.02(16)
C(1)-C(2)-C(3)-N(1)	-13.0(3)
C(1)-C(2)-C(3)-C(4)	167.14(17)
N(1)-C(3)-C(4)-C(12)	1.0(2)
C(2)-C(3)-C(4)-C(12)	-179.11(16)
O(1)-C(1)-C(6)-C(7)	16.4(2)
C(2)-C(1)-C(6)-C(7)	-164.07(18)
O(1)-C(1)-C(6)-C(11)	-165.66(17)
C(2)-C(1)-C(6)-C(11)	13.9(3)
C(11)-C(6)-C(7)-C(8)	-0.9(3)
C(1)-C(6)-C(7)-C(8)	177.19(17)
C(6)-C(7)-C(8)-C(9)	2.1(3)
C(7)-C(8)-C(9)-N(3)	177.70(18)
C(7)-C(8)-C(9)-C(10)	-2.0(3)
N(3)-C(9)-C(10)-C(11)	-179.0(2)
C(8)-C(9)-C(10)-C(11)	0.7(3)
C(9)-C(10)-C(11)-C(6)	0.5(3)
C(7)-C(6)-C(11)-C(10)	-0.4(3)
C(1)-C(6)-C(11)-C(10)	-178.47(19)
C(3)-C(4)-C(12)-N(2)	1.8(3)
C(3)-C(4)-C(12)-Cl(1)	-179.46(13)
C(20)-C(19)-C(24)-C(23)	0.5(3)

B(1)-C(19)-C(24)-C(23)	177.5(2)
C(19)-C(24)-C(23)-C(22)	-1.8(4)
C(24)-C(23)-C(22)-C(21)	1.7(4)
C(23)-C(22)-C(21)-C(20)	-0.4(4)
C(24)-C(19)-C(20)-C(21)	0.8(3)
B(1)-C(19)-C(20)-C(21)	-176.1(2)
C(22)-C(21)-C(20)-C(19)	-0.9(4)
C(18)-C(13)-C(14)-C(15)	-0.1(3)
B(1)-C(13)-C(14)-C(15)	177.67(17)
C(13)-C(14)-C(15)-C(16)	-0.6(3)
C(14)-C(15)-C(16)-C(17)	0.8(3)
C(15)-C(16)-C(17)-C(18)	-0.3(3)
C(16)-C(17)-C(18)-C(13)	-0.4(3)
C(14)-C(13)-C(18)-C(17)	0.6(3)
B(1)-C(13)-C(18)-C(17)	-177.09(18)
N(2)-C(5)-N(1)-C(3)	3.7(3)
N(2)-C(5)-N(1)-B(1)	-169.49(18)
C(2)-C(3)-N(1)-C(5)	176.60(16)
C(4)-C(3)-N(1)-C(5)	-3.5(2)
C(2)-C(3)-N(1)-B(1)	-9.8(2)
C(4)-C(3)-N(1)-B(1)	170.11(15)
N(1)-C(5)-N(2)-C(12)	-1.0(3)
C(4)-C(12)-N(2)-C(5)	-1.9(3)
Cl(1)-C(12)-N(2)-C(5)	179.34(14)
C(8)-C(9)-N(3)-C(26)	13.1(3)
C(10)-C(9)-N(3)-C(26)	-167.3(2)
C(8)-C(9)-N(3)-C(25)	-176.0(2)
C(10)-C(9)-N(3)-C(25)	3.6(3)
C(2)-C(1)-O(1)-B(1)	26.4(2)
C(6)-C(1)-O(1)-B(1)	-154.03(16)
C(1)-O(1)-B(1)-N(1)	-43.7(2)
C(1)-O(1)-B(1)-C(13)	72.5(2)
C(1)-O(1)-B(1)-C(19)	-161.69(16)
C(5)-N(1)-B(1)-O(1)	-151.56(15)
C(3)-N(1)-B(1)-O(1)	35.2(2)
C(5)-N(1)-B(1)-C(13)	91.31(19)
C(3)-N(1)-B(1)-C(13)	-81.97(19)
C(5)-N(1)-B(1)-C(19)	-33.8(2)
C(3)-N(1)-B(1)-C(19)	152.94(15)
C(18)-C(13)-B(1)-O(1)	-146.02(17)

C(14)-C(13)-B(1)-O(1)	36.4(2)
C(18)-C(13)-B(1)-N(1)	-30.9(2)
C(14)-C(13)-B(1)-N(1)	151.52(15)
C(18)-C(13)-B(1)-C(19)	91.2(2)
C(14)-C(13)-B(1)-C(19)	-86.4(2)
C(24)-C(19)-B(1)-O(1)	24.2(3)
C(20)-C(19)-B(1)-O(1)	-159.01(19)
C(24)-C(19)-B(1)-N(1)	-91.7(2)
C(20)-C(19)-B(1)-N(1)	85.1(2)
C(24)-C(19)-B(1)-C(13)	147.10(19)
C(20)-C(19)-B(1)-C(13)	-36.1(3)

DFT calculation results of 6.

SCF Energy: -1331.77467591

С	0	-2.2217	-1.3194	0.1829
С	0	-3.4683	-0.7766	-0.0333
N	0	-3.7004	0.5211	-0.2938
С	0	-2.6363	1.2967	-0.3051
N	0	-1.3726	0.8877	-0.0798
С	0	-1.1137	-0.4429	0.1407
С	0	0.2307	-0.8649	0.2710
С	0	1.2768	-0.0030	0.0052
0	0	1.0673	1.2760	-0.2605
Cl	0	-4.8786	-1.8076	0.0105
С	0	2.6909	-0.4207	-0.0320

С	0	3.0625	-1.7745	-0.1241
С	0	4.4064	-2.1356	-0.1429
С	0	5.3993	-1.1541	-0.0741
С	0	5.0407	0.1934	0.0079
С	0	3.6975	0.5597	0.0255
В	0	-0.1982	1.9586	0.0588
F	0	-0.4266	2.9735	-0.8439
F	0	-0.1870	2.4097	1.3659
Н	0	-2.0779	-2.3763	0.3634
Н	0	-2.7610	2.3547	-0.5070
Н	0	0.4166	-1.9028	0.5048
Н	0	2.3061	-2.5472	-0.2057
Н	0	4.6802	-3.1831	-0.2198
Н	0	6.4468	-1.4391	-0.0893
Н	0	5.8080	0.9594	0.0601
Η	0	3.4139	1.6031	0.0935

DFT calculation results of 7.

SCF Energy: -1668.80912773

С	0	-3.3962	-1.4587	0.1902
С	0	-4.7032	-1.0829	-0.0329
Ν	0	-5.0985	0.1723	-0.3001
С	0	-4.1438	1.0796	-0.3130
Ν	0	-2.8387	0.8380	-0.0817
С	0	-2.4134	-0.4464	0.1469
С	0	-1.0232	-0.6916	0.2814
С	0	-0.1006	0.2966	0.0139
0	0	-0.4667	1.5378	-0.2573

Cl	0	-5.9666	-2.2874	0.0108
С	0	1.3585	0.0623	-0.0182
С	0	1.8984	-1.2305	-0.1296
С	0	3.2751	-1.4206	-0.1491
С	0	4.1319	-0.3191	-0.0626
С	0	3.6084	0.9724	0.0380
С	0	2.2306	1.1613	0.0559
В	0	-1.8126	2.0550	0.0498
F	0	-2.1653	3.0203	-0.8654
F	0	-1.8664	2.5152	1.3515
С	0	5.6213	-0.5321	-0.0263
F	0	6.0689	-0.7012	1.2418
F	0	6.2965	0.5186	-0.5415
F	0	5.9918	-1.6315	-0.7198
Н	0	-3.1170	-2.4872	0.3752
Н	0	-4.4042	2.1113	-0.5214
Н	0	-0.7054	-1.6953	0.5221
Н	0	1.2488	-2.0924	-0.2280
Н	0	3.6833	-2.4199	-0.2469
Н	0	4.2743	1.8259	0.0969
Н	0	1.8191	2.1601	0.1326

DFT calculation results of 8.

SCF Energy: -1424.01762784

С	0	-2.6934	-1.4165	0.1865
С	0	-3.9824	-0.9808	-0.0367
Ν	0	-4.3189	0.2912	-0.3021
С	0	-3.3237	1.1541	-0.3135

Ν	0	-2.0312	0.8523	-0.0820
С	0	-1.6663	-0.4502	0.1460
С	0	-0.2876	-0.7590	0.2825
С	0	0.6780	0.1864	0.0168
0	0	0.3702	1.4427	-0.2576
Cl	0	-5.2989	-2.1261	0.0054
С	0	2.1261	-0.1118	-0.0100
С	0	2.6102	-1.4282	-0.1085
С	0	3.9750	-1.6805	-0.1223
С	0	4.8831	-0.6104	-0.0422
С	0	4.4106	0.7095	0.0464
С	0	3.0431	0.9514	0.0585
В	0	-0.9504	2.0217	0.0505
F	0	-1.2588	3.0022	-0.8639
F	0	-0.9827	2.4817	1.3525
С	0	6.2932	-0.8681	-0.0571
Ν	0	7.4376	-1.0781	-0.0686
Н	0	-2.4621	-2.4570	0.3702
Н	0	-3.5363	2.1969	-0.5207
Н	0	-0.0174	-1.7760	0.5257
Н	0	1.9252	-2.2628	-0.1987
Н	0	4.3423	-2.6971	-0.2033
Η	0	5.1131	1.5331	0.1065
Н	0	2.6724	1.9664	0.1285

DFT calculation results of 9.

SCF Energy: -1446.30401570

С	0	-2.8972	-1.3817	0.1662
С	0	-4.1681	-0.9084	-0.0618

Ν	0	-4.4719	0.3769	-0.3173
С	0	-3.4526	1.2102	-0.3106
N	0	-2.1704	0.8722	-0.0732
С	0	-1.8367	-0.4442	0.1417
С	0	-0.4761	-0.7915	0.2850
С	0	0.5287	0.1293	0.0367
0	0	0.2443	1.3963	-0.2245
Cl	0	-5.5197	-2.0184	-0.0424
С	0	1.9560	-0.2050	0.0060
С	0	2.4193	-1.5386	0.0070
С	0	3.7724	-1.8214	-0.0154
С	0	4.7157	-0.7768	-0.0433
С	0	4.2742	0.5550	-0.0515
С	0	2.9103	0.8261	-0.0294
В	0	-1.0600	2.0032	0.0870
F	0	-1.3339	3.0136	-0.8096
F	0	-1.0877	2.4452	1.3982
0	0	6.0142	-1.1588	-0.0640
С	0	7.0261	-0.1498	-0.1054
Н	0	-2.6968	-2.4301	0.3417
Н	0	-3.6343	2.2612	-0.5065
Н	0	-0.2387	-1.8209	0.5091
Н	0	1.7186	-2.3658	0.0057
Н	0	4.1304	-2.8452	-0.0210
Н	0	4.9791	1.3765	-0.0715
Н	0	2.5718	1.8553	-0.0316
Η	0	7.9759	-0.6837	-0.1219
Η	0	6.9837	0.4920	0.7810
Н	0	6.9369	0.4646	-1.0077

DFT calculation results of 10.

SCF Energy: -1465.75636489

С	0	-3.1499	-1.4478	0.1449
С	0	-4.4421	-1.0443	-0.0828
N	0	-4.8206	0.2259	-0.3248
С	0	-3.8494	1.1142	-0.3024
N	0	-2.5509	0.8483	-0.0642
С	0	-2.1393	-0.4515	0.1350
С	0	-0.7672	-0.7227	0.2786
С	0	0.1924	0.2586	0.0497
0	0	-0.1709	1.5110	-0.1967
Cl	0	-5.7311	-2.2305	-0.0837
С	0	1.6261	0.0094	0.0189
С	0	2.1783	-1.2879	0.0889
С	0	3.5429	-1.5000	0.0627
С	0	4.4535	-0.4115	-0.0393
С	0	3.8970	0.8947	-0.1169
С	0	2.5294	1.0886	-0.0893
В	0	-1.5080	2.0349	0.1176
F	0	-1.8351	3.0445	-0.7646
F	0	-1.5666	2.4582	1.4358
N	0	5.8054	-0.6140	-0.0636
С	0	6.3507	-1.9636	0.0266
С	0	6.7164	0.5170	-0.1985
Н	0	-2.8917	-2.4854	0.3091
Н	0	-4.0896	2.1558	-0.4855
Н	0	-0.4740	-1.7420	0.4817
Н	0	1.5318	-2.1566	0.1513
Η	0	3.9115	-2.5162	0.1125
Η	0	4.5437	1.7591	-0.1942
Н	0	2.1357	2.0967	-0.1450

Η	0	6.0352	-2.5871	-0.8192
Н	0	6.0418	-2.4609	0.9537
Н	0	7.4383	-1.9092	0.0196
Н	0	6.6197	1.2168	0.6405
Н	0	6.5378	1.0701	-1.1286
Н	0	7.7412	0.1489	-0.2153

DFT calculation results of 11.

SCF Energy: -1595.29055595

С	0	-1.6149	-2.8355	-0.0647
С	0	-2.9411	-2.5588	-0.3109
N	0	-3.4251	-1.3365	-0.5708
С	0	-2.5376	-0.3576	-0.5456
Ν	0	-1.2257	-0.4918	-0.2821
С	0	-0.7103	-1.7500	-0.0683
С	0	0.6892	-1.9116	0.0756
С	0	1.5545	-0.8857	-0.2560
0	0	1.1076	0.3255	-0.5186
Cl	0	-4.1106	-3.8614	-0.3103
С	0	3.0154	-1.0586	-0.3982
С	0	3.6208	-2.3287	-0.3968
С	0	5.0012	-2.4528	-0.5250
С	0	5.8003	-1.3145	-0.6644
С	0	5.2091	-0.0492	-0.6781

С	0	3.8286	0.0793	-0.5477
В	0	-0.2511	0.7885	-0.0454
С	0	-0.7083	2.0172	-0.9913
С	0	-0.2082	1.1070	1.5467
С	0	-1.2558	1.2706	3.7580
С	0	-0.7697	3.0596	-3.2082
С	0	-1.3084	0.9284	2.4035
С	0	-0.3807	2.0208	-2.3611
С	0	-0.0851	1.8037	4.2990
С	0	1.0249	1.9926	3.4720
С	0	0.9570	1.6503	2.1203
С	0	-1.5101	4.1324	-2.7040
С	0	-1.4482	3.1118	-0.5105
С	0	-1.8496	4.1552	-1.3505
Н	0	-1.2596	-3.8426	0.1081
Н	0	-2.8803	0.6521	-0.7421
Н	0	1.0592	-2.9011	0.3004
Н	0	3.0180	-3.2259	-0.3134
Н	0	5.4538	-3.4395	-0.5240
Н	0	6.8766	-1.4147	-0.7658
Н	0	5.8239	0.8385	-0.7891
Н	0	3.3658	1.0587	-0.5603
Н	0	-2.1267	1.1156	4.3896
Н	0	-0.4960	3.0347	-4.2599
Η	0	-2.2344	0.5074	2.0176
Η	0	0.2002	1.1968	-2.7682
Η	0	-0.0372	2.0678	5.3518
Η	0	1.9435	2.4058	3.8809
Η	0	1.8329	1.8038	1.4952
Η	0	-1.8156	4.9432	-3.3597
Η	0	-1.7108	3.1537	0.5434
Η	0	-2.4208	4.9870	-0.9466

DFT calculation results of 12.

SCF Energy: -1932.32508795

С	0	2.2201	3.0148	-0.0396
С	0	3.5625	2.9499	-0.3446
Ν	0	4.2160	1.8199	-0.6446
С	0	3.4916	0.7153	-0.6052
Ν	0	2.1855	0.6430	-0.2914
С	0	1.4961	1.8033	-0.0279
С	0	0.0941	1.7449	0.1820
С	0	-0.6145	0.6036	-0.1314
0	0	-0.0073	-0.5198	-0.4500
Cl	0	4.5151	4.4165	-0.3677
С	0	-2.0934	0.5515	-0.1806
С	0	-2.8797	1.7169	-0.1919
С	0	-4.2664	1.6336	-0.2245
С	0	-4.8893	0.3814	-0.2537
С	0	-4.1206	-0.7845	-0.2576
С	0	-2.7323	-0.6986	-0.2251
В	0	1.4329	-0.7789	-0.0546
С	0	2.0248	-1.8958	-1.0601
С	0	1.5085	-1.1495	1.5238
С	0	2.5205	-1.0411	3.7545
С	0	2.1229	-2.8816	-3.3008
С	0	2.4758	-0.6501	2.4123
С	0	1.6159	-1.9371	-2.4069
С	0	1.5853	-1.9498	4.2496
С	0	0.6115	-2.4648	3.3895
С	0	0.5815	-2.0698	2.0517

С	0	3.0681	-3.8158	-2.8686
С	0	2.9725	-2.8511	-0.6516
С	0	3.4934	-3.7972	-1.5394
С	0	-6.3914	0.2989	-0.2294
F	0	-6.8750	0.4001	1.0328
F	0	-6.8463	-0.8701	-0.7307
F	0	-6.9627	1.2954	-0.9434
Н	0	1.7215	3.9522	0.1678
Н	0	3.9772	-0.2270	-0.8325
Н	0	-0.4128	2.6585	0.4564
Н	0	-2.4144	2.6956	-0.1981
Н	0	-4.8630	2.5388	-0.2418
Н	0	-4.6048	-1.7536	-0.2897
Н	0	-2.1313	-1.5993	-0.2313
Н	0	3.2831	-0.6313	4.4117
Н	0	1.7822	-2.8907	-4.3329
Н	0	3.2168	0.0662	2.0646
Н	0	0.8776	-1.2205	-2.7582
Н	0	1.6136	-2.2543	5.2922
Н	0	-0.1225	-3.1748	3.7619
Η	0	-0.1821	-2.4865	1.3992
Н	0	3.4661	-4.5525	-3.5611
Н	0	3.3046	-2.8606	0.3835
Н	0	4.2247	-4.5222	-1.1919

DFT calculation results of 13.

С	0	1.7313	2.9728	-0.0508
С	0	3.0750	2.8499	-0.3344
N	0	3.6846	1.6912	-0.6147
С	0	2.9146	0.6177	-0.5780
N	0	1.6020	0.6027	-0.2838
С	0	0.9586	1.7927	-0.0399
С	0	-0.4489	1.7946	0.1492
С	0	-1.1986	0.6819	-0.1681
0	0	-0.6342	-0.4672	-0.4740
Cl	0	4.0877	4.2749	-0.3545
С	0	-2.6781	0.6888	-0.2395
С	0	-3.4201	1.8833	-0.2278
С	0	-4.8067	1.8568	-0.2848
С	0	-5.4788	0.6245	-0.3627
С	0	-4.7480	-0.5749	-0.3873
С	0	-3.3610	-0.5367	-0.3279
В	0	0.7867	-0.7852	-0.0503
С	0	1.3485	-1.9323	-1.0382
С	0	0.8172	-1.1450	1.5318
С	0	1.7853	-1.0511	3.7824
С	0	1.4633	-2.9213	-3.2767
С	0	1.7823	-0.6710	2.4364
С	0	0.9791	-1.9519	-2.3969
С	0	0.8094	-1.9230	4.2649
С	0	-0.1635	-2.4120	3.3886
С	0	-0.1520	-2.0280	2.0473
С	0	2.3446	-3.9039	-2.8173
С	0	2.2318	-2.9360	-0.6025
С	0	2.7290	-3.9081	-1.4757
С	0	-6.9106	0.5939	-0.4226
N	0	-8.0731	0.5696	-0.4706
Н	0	1.2690	3.9319	0.1410
Н	0	3.3638	-0.3457	-0.7902
Н	0	-0.9201	2.7310	0.4098
Н	0	-2.9201	2.8438	-0.1917
Н	0	-5.3719	2.7818	-0.2771
Н	0	-5.2678	-1.5243	-0.4502
Н	0	-2.7919	-1.4575	-0.3466
Н	0	2.5476	-0.6619	4.4523

Η	0	1.1545	-2.9123	-4.3188
Н	0	2.5547	0.0161	2.0986
Н	0	0.2905	-1.1975	-2.7696
Н	0	0.8055	-2.2193	5.3102
Н	0	-0.9291	-3.0931	3.7512
Н	0	-0.9162	-2.4235	1.3824
Н	0	2.7246	-4.6601	-3.4988
Н	0	2.5312	-2.9628	0.4421
Н	0	3.4103	-4.6705	-1.1073

DFT calculation results of 14.

SCF Energy: -1709.81971712

С	0	1.9750	2.9200	-0.1413
С	0	3.3019	2.7297	-0.4501
Ν	0	3.8567	1.5391	-0.7215
С	0	3.0394	0.5040	-0.6434
N	0	1.7355	0.5521	-0.3183
С	0	1.1445	1.7754	-0.0891
С	0	-0.2498	1.8442	0.1299
С	0	-1.0646	0.7563	-0.1413
0	0	-0.5446	-0.4207	-0.4331
Cl	0	4.3799	4.1090	-0.5217
С	0	-2.5319	0.8207	-0.1892
С	0	-3.2465	2.0259	-0.0176
С	0	-4.6286	2.0469	-0.0614

С	0	-5.3506	0.8600	-0.2870
С	0	-4.6585	-0.3466	-0.4679
С	0	-3.2683	-0.3544	-0.4170
В	0	0.8630	-0.7865	-0.0277
С	0	1.3544	-1.9889	-0.9916
С	0	0.9206	-1.0963	1.5662
С	0	2.0988	-1.2125	3.7143
С	0	1.3992	-3.0202	-3.2144
С	0	2.0623	-0.8777	2.3575
С	0	0.9842	-2.0056	-2.3506
С	0	0.9788	-1.7790	4.3247
С	0	-0.1704	-2.0075	3.5643
С	0	-0.1915	-1.6718	2.2092
С	0	2.2090	-4.0552	-2.7386
С	0	2.1640	-3.0455	-0.5396
С	0	2.5913	-4.0646	-1.3966
0	0	-6.6988	0.9884	-0.3132
С	0	-7.4942	-0.1770	-0.5405
Н	0	1.5614	3.9031	0.0395
Н	0	3.4391	-0.4831	-0.8472
Н	0	-0.6716	2.8116	0.3599
Н	0	-2.7226	2.9606	0.1466
Н	0	-5.1787	2.9723	0.0710
Н	0	-5.1890	-1.2738	-0.6448
Н	0	-2.7352	-1.2871	-0.5570
Н	0	2.9993	-1.0260	4.2937
Н	0	1.0921	-3.0058	-4.2571
Н	0	2.9508	-0.4297	1.9173
Н	0	0.3501	-1.2108	-2.7358
Н	0	1.0002	-2.0376	5.3798
Н	0	-1.0504	-2.4464	4.0277
Н	0	-1.0970	-1.8553	1.6366
Н	0	2.5351	-4.8470	-3.4074
Н	0	2.4621	-3.0770	0.5052
Н	0	3.2169	-4.8672	-1.0146
Н	0	-8.5296	0.1626	-0.5220
Н	0	-7.3409	-0.9226	0.2471
Н	0	-7.2744	-0.6243	-1.5159

DFT calculation results of 15.

SCF Energy: -1729.27164887

С	0	2.0357	2.9996	-0.1474
С	0	3.3696	2.9031	-0.4592
N	0	4.0090	1.7548	-0.7361
С	0	3.2661	0.6654	-0.6567
N	0	1.9630	0.6192	-0.3288
С	0	1.2832	1.7985	-0.0983
С	0	-0.1071	1.7689	0.1222
С	0	-0.8494	0.6217	-0.1411
0	0	-0.2414	-0.5157	-0.4300
Cl	0	4.3497	4.3564	-0.5306
С	0	-2.3074	0.5814	-0.1819
С	0	-3.1126	1.7280	-0.0149
С	0	-4.4925	1.6597	-0.0480
С	0	-5.1619	0.4227	-0.2597
С	0	-4.3509	-0.7309	-0.4374
С	0	-2.9719	-0.6443	-0.3982
В	0	1.1892	-0.7744	-0.0301
С	0	1.7615	-1.9446	-0.9916
С	0	1.2777	-1.0755	1.5651
С	0	2.4863	-1.1299	3.6992
С	0	1.8658	-2.9808	-3.2107
С	0	2.4176	-0.8015	2.3422
С	0	1.3856	-1.9940	-2.3483

С	0	1.4017	-1.7463	4.3251
С	0	0.2551	-2.0299	3.5796
С	0	0.2018	-1.6997	2.2238
С	0	2.7492	-3.9541	-2.7356
С	0	2.6461	-2.9397	-0.5406
С	0	3.1391	-3.9302	-1.3959
N	0	-6.5278	0.3476	-0.2925
С	0	-7.3365	1.5455	-0.1012
С	0	-7.1881	-0.9327	-0.5182
Н	0	1.5551	3.9511	0.0377
Н	0	3.7343	-0.2909	-0.8626
Н	0	-0.5968	2.7048	0.3489
Н	0	-2.6576	2.7005	0.1389
Н	0	-5.0608	2.5710	0.0855
Н	0	-4.8074	-1.6981	-0.6036
Н	0	-2.3794	-1.5412	-0.5365
Н	0	3.3843	-0.8999	4.2670
Н	0	1.5523	-2.9928	-4.2515
Н	0	3.2789	-0.3137	1.8900
Н	0	0.6947	-1.2477	-2.7327
Н	0	1.4482	-2.0006	5.3805
Н	0	-0.5981	-2.5075	4.0549
Н	0	-0.7013	-1.9262	1.6629
Η	0	3.1263	-4.7243	-3.4030
Н	0	2.9515	-2.9452	0.5025
Н	0	3.8217	-4.6852	-1.0144
Η	0	-7.1377	2.2967	-0.8755
Η	0	-7.1528	2.0056	0.8774
Η	0	-8.3904	1.2761	-0.1548
Н	0	-6.9442	-1.6581	0.2677
Н	0	-6.9067	-1.3677	-1.4849
Н	0	-8.2668	-0.7824	-0.5164

Figure S13. ¹H NMR spectra of 3.

Figure S14. ¹³C NMR spectra of 3.

Figure S15. ¹H NMR spectra of 4.

Figure S16. ¹³C NMR spectra of 4.

Figure S17. ¹H NMR spectra of 8.

Figure S18. ¹³C NMR spectra of 8.

Figure S19. ¹H NMR spectra of 9.

Figure S20. ¹³C NMR spectra of 9.

Figure S21. ¹H NMR spectra of **11**.

Figure S22. ¹³C NMR spectra of 11.

Figure S23. ¹H NMR spectra of **12**.

Figure S24. ¹³C NMR spectra of 12.

Figure S25. ¹H NMR spectra of 13.

Figure S26. ¹³C NMR spectra of 13.

Figure S27. ¹H NMR spectra of 14.

Figure S28. ¹³C NMR spectra of 14.

Figure S29. ¹H NMR spectra of **15**.

Figure S30. ¹³C NMR spectra of 15.