Electronic Supplementary Information

Electrocatalytic proton reduction catalysed by the low-valent tetrairon-oxo cluster $[Fe_4(CO)_{10}(\kappa^2-dppn)(\mu_4-O)]^{2-}$ [dppn = 1,1'-bis(diphenylphosphino) naphthalene]

Shishir Ghosh,^a Katherine B. Holt^a, Shariff E. Kabir^b, Michael G. Richmond^c and Graeme Hogarth^{a,d*}

^a Department of Chemistry, University College London, 20 Gordon Street, London WC1H OAJ, UK

^b Department of Chemistry, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh

^c Department of Chemistry, University of North Texas, 1155 Union Circle, Box 305070, Denton, TX 76203, USA

^d Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK.

Fig. S1. IR spectra of $Fe_4(CO)_{10}(\kappa^2-dppn)(\mu_4-O)$ (1) in absence of (black) and in presence of 1 (pink), 3 (blue) and 5 (green) molar equivalents of Cl_2HCCO_2H in CH_2CL_2 .

Fig. S2. IR spectra of $Fe_4(CO)_{10}(\kappa^2-dppn)(\mu_4-O)$ (1) in absence of (black) and in presence of 1 (pink), 3 (blue) and 5 (green) molar equivalents of CF_3CO_2H in CH_2CL_2 .

(a)

Fig. S3. CVs of $Fe_4(CO)_{10}(\kappa^2-dppn)(\mu_4-O)$ (1) at various scan rates as shown in the legend (in CH₂Cl₂, 1 mM solution, supporting electrolyte [NBu₄][PF₆], scan rate 0.1 Vs⁻¹, glassy carbon electrode, potential vs Fc⁺/Fc) – (a) CVs recorded scanning negative potential window first; (b) CVs recorded scanning positive potential window first.

(d)

Fig. S4. Scan rate dependence of the oxidative and reductive features in cyclic voltamograms of $Fe_4(CO)_{10}(\kappa^2-dppn)(\mu_4-O)$ (1) in CH_2Cl_2 (1 mM solution, supporting electrolyte $[NBu_4][PF_6]$, glassy carbon electrode, potential vs Fc⁺/Fc). Line shows best linear fit of data through the origin.

Fig. S5. CVs of $Fe_4(CO)_{10}(\kappa^2-dppn)(\mu_4-O)$ (1) in a 1:1 mixture of $CH_2Cl_2/MeCN$ recorded by scanning the anodic region first (1 mM solution, supporting electrolyte [NBu₄][PF₆], scan rate 0.1 Vs⁻¹, glassy carbon electrode, potential vs Fc⁺/Fc)

(a)

Fig. S6. CVs of $Fe_4(CO)_{10}(\kappa^2-dppn)(\mu_4-O)$ (1) at various scan rates as shown in the legend (in a 1:1 mixture of CH₂Cl₂/MeCN, 1 mM solution, supporting electrolyte [NBu₄][PF₆], scan rate 0.1 Vs⁻¹, glassy carbon electrode, potential vs Fc⁺/Fc) – (a) CVs recorded scanning negative potential window first; (b) CVs recorded scanning positive potential window first.

Fig. S7. CVs of $Fe_4(CO)_{10}(\kappa^2-dppn)(\mu_4-O)$ (1) in a 1:1 mixture of $CH_2Cl_2/MeCN$ recorded by scanning the anodic region first (1 mM solution, supporting electrolyte [NBu₄][PF₆], scan rate 1 Vs⁻¹, glassy carbon electrode, potential vs Fc⁺/Fc)

(a)

(d)

Fig. S8. Scan rate dependence of the oxidative and reductive features in cyclic voltamograms of $Fe_4(CO)_{10}(\kappa^2-dppn)(\mu_4-O)$ (1) in a 1:1 mixture of $CH_2Cl_2/MeCN$ (1 mM solution, supporting electrolyte [NBu₄][PF₆], glassy carbon electrode, potential vs Fc⁺/Fc). Line shows best linear fit of data through the origin.