Electronic supplementary information (ESI)

3D Co(II) coordination polymer with ferrimagnetic-like layers based on azide and tetrazolate bridges showing slow magnetic dynamics

Xiu-Mei Zhang,* Peng Li, Wei Gao, and Jie-Ping Liu and En-Qing Gao

Synthesis: A mixture of $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.095 \mathrm{~g}, 0.4 \mathrm{mmol})$, 4 -cyanopyridine ($0.036 \mathrm{~g}, 0.3 \mathrm{mmol}$) and $\mathrm{NaN}_{3}(0.052 \mathrm{~g}, 0.8 \mathrm{mmol})$ in distilled water $(15 \mathrm{~mL})$ was stirred for 20 min in air and then heated in a 23 mL Teflon-lined autoclave at $150^{\circ} \mathrm{C}$ for 2 days. After cooling to room temperature, red block crystals of 1 were collected in a 53% yield based on Co. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{24} \mathrm{~N}_{48} \mathrm{Co}_{6}$: C, 29.17; H, 1.63; N, 45.35. Found: C, 29.18; H, 1.62; N, 45.32. IR bands (cm^{-1}): $2106 \mathrm{~s}, 2073 \mathrm{~s}$, $1622 \mathrm{~s}, 1449 \mathrm{~m}, 1367 \mathrm{~m}, 1286 \mathrm{~m}, 1005 \mathrm{~m}, 837 \mathrm{~m}, 765 \mathrm{~m}, 714 \mathrm{~s}, 545 \mathrm{~m}$.

Crystal Data Collection and Refinement Diffraction data were collected at 298 K on a Bruker Apex II CCD area detector equipped with graphite-monochromated Mo $\mathrm{K} \alpha$ radiation $(\lambda=0.71073$ \AA). Empirical absorption corrections were applied using the SADABS program.[1] The structures were solved by the direct method and refined by the full-matrix least-squares method on F^{2}, with all non-hydrogen atoms refined with anisotropic thermal parameters.[2] All the hydrogen atoms attached to carbon atoms were placed in calculated positions and refined using the riding model. All calculations were carried out with the SHELXTL crystallographic software.

References

1. Sheldrick, G. M. Program for Empirical Absorption Correction of Area Detector Data; University of Göttingen, Germany, 1996.
2. Sheldrick, G. M. SHELXTL Version 5.1. Bruker Analytical X-ray Instruments Inc., Madison, Wisconsin, USA, 1998.

Figure S1. Arrhenius plots and best linear fits for $\mathbf{1}$ at zero dc field (solid squares)

Figure S2. Frequency dependence of $\quad \chi^{\prime}$ for $\mathbf{1}$ was fitted by the conventional critical scaling law of the spin dynamics.

