Supplementary Information for

A study on the formation of the nitro radical anion by ornidazole and its significant

decrease in a structurally characterized binuclear Cu^(II)-complex: impact in biology

by

Ramesh Chandra Santra, Durba Ganguly, Jyotsna Singh, Kasturi Mukhopadhyay,

Saurabh Das

Figure S1: Hydrogen bonding interactions in [Cu₂(OAc)₄(Onz)₂]. Only the relevant hydrogen atoms are shown.

Figure S2: I R spectrum of Ornidazole

Figure S3: I R spectrum of [Cu₂(OAc)₄(Onz)₂]

Figure S4: EPR spectrum of [Cu₂(OAc)₄(Onz)₂]

Figure S5: Cyclic voltammogram of 250 μ M Onz and [Cu₂(OAc)₄(onz)₂] at scan rate 0.1 V/sec in aqueous medium at pH = 7.4.

Fig. S6 Dependence of cathodic peak current on square root of scan rate for the reduction of onz (■) and [Cu₂(oac)₄(onz)₂] (●) in pure methanol; T = 25 °C.

Fig. S7 Cyclic voltammograms for [Cu₂(OAc)₄(Onz)₂] in the absence (1) and presence of different concentrations of c t DNA, 70.55 μM (2), 140.64 μM (3), 279.43 μM (4), 618.55 μM (5), 946.87 μM (6), 1783.26 μM (7). [Cu₂(OAc)₄(Onz)₂] = 250 μM; [NaCl] = 120 mM; pH= 7.4; T = 25°C.

Fig. S8 Double reciprocal plots for the interaction of onz (A) and $[Cu_2(OAc)_4(Onz)_2]$ (B) with c t DNA; $[Onz] = [Cu_2(OAc)_4(Onz)_2] = 250 \mu$ M, [NaCl] = 120 mM; pH= 7.4; T = 25°C.

Fig. S9 Plot of normalized increase of peak current as a function of mole-ratio of c t DNA to Onz (A) and $[Cu_2(OAc)_4(Onz)_2]$ (B) respectively. $[Onz] = [Cu_2(OAc)_4(Onz)_2] = 250 \mu M$, [NaCl] = 120 mM; pH= 7.4; T = 25°C.

Table ST1: Se	elected bond	distances	(Å)

Cu1	-01	1.978(2)
Cu1	-02	1.961(1)
Cu1	-O3	1.948(1)
Cul	-04	1.981(1)
Cu1	-N1	2.185(3)

Table ST2: Selected bond angles (°)

01	-Cu1	-02	88.72(7)
01	-Cul	-O3	91.42(6)
01	-Cu1	-04	167.91(11)
01	-Cu1	-N1	93.39(11)
O2	-Cul	-O3	167.55(9)
O2	-Cul	-04	90.37(6)
O2	-Cul	-N1	94.08(7)
03	-Cul	-04	86.90(5)
03	-Cul	-N1	98.34(7)
O4	-Cu1	-N1	98.70(8)

Table ST3: Hydrogen bond distances (Å) and angles (°)

D-HA	D-H	HA	DA	<d-ha< th=""></d-ha<>
O7 H6 O5	0.85(4)	2.21(4)	3.032(5)	162(4)
O7 H6 N3	0.85(4)	2.31(4)	3.131(4)	162(4)

D, donor; H, hydrogen; A, acceptor.

Table ST4: MIC values of Onz, [Cu₂(OAc)₄(Onz)₂] and different controls. The compounds were initially dissolved in DMSO and finally diluted to culture medium.

	Bacterial Strains			
Compound	<i>S. aureus</i> ATCC 29213		<i>E. coli</i> ATCC 25922	
	Run 1	Run 2	Run 1	Run 2
Onz	20.25 μM	40.5 µM	40.5 µM	20.25 μM
$[Cu_2(OAc)_4(Onz)_2]$	20.25 μM	40.5 μΜ	40.5 μΜ	20.25 μM
Cu(NO ₃) ₂ ·3H ₂ O	>162.0 µM	>162.0 µM	>162.0 µM	>162.0 µM
1:1 mixture of Cu(II) & Onz	20.25 μM	40.5 μM	40.5 μM	20.25 μM
Na ₂ EDTA	81.0 μM	162.0 μM	81.0 μM	162.0 μM
Cu(II)-EDTA complex	81.0 μΜ	162.0 μM	162.0 μM	162.0 μM
Cu(OAc) ₂ ·H ₂ O	>162.0 µM	>162.0 µM	>162.0 µM	>162.0 µM

$$\frac{1}{\Delta I} = \frac{1}{\Delta I_{max}} + \frac{K_d}{\Delta I_{max}(C_D - C_0)}$$
(SE 1)

$$K_{d} = \frac{\left[C_{0} \left(\frac{\Delta I}{\Delta I_{max}}\right)C_{0}\right] \left[C_{D} \left(\frac{\Delta I}{\Delta I_{max}}\right)C_{0}\right]}{\left(\frac{\Delta I}{\Delta I_{max}}\right)C_{0}}$$
(SE 2)

$$C_0 \left(\frac{\Delta I}{\Delta I_{max}}\right)^2 - \left(C_0 + C_D + K_d\right) \left(\frac{\Delta I}{\Delta I_{max}}\right) + C_D = 0 \quad (SE\ 3)$$

$$\frac{r}{C_f} = K \tag{SE 4}$$