Supporting Information

Novel Electrochemi- / Photo-Luminescence of Ag₃Cu₅ Heterometallic Alkynyl Clusters

Yi Jiang, ^a Wen-Jing Guo, ^a De-Xian Kong, ^a Jin-Yun Wang, ^b Qiao-Hua Wei, ^{*a,b} and Guo-Nan Chen^a

^a Ministry of Education, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, and

Institute of Nanomedicine and Nanobiosensing, College of Chemistry, Fuzhou University, Fuzhou,

Fujian 350108, China

^b State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter and Graduate School of CAS, Fuzhou, Fujian 350002, China, and Beijing Synchrotron Radiation Laboratory, Institute of High Energy Physics, Beijing 100039.

E-mail: qhw76@fzu.edu.cn.

Table of Contents

content	page	
Cover page	1	
Table of Contents	2	
Experimental Section	3-5	
Crystal Structures (Table S1-S2, and Fig. S1)	6-8	
Photophysical Properties (Table S3 and Fig. S2-S3)	9-11	
Electrochemistry (Fig. S4)	12	
Electrochemiluminescence (Fig. S4-S6)	13-14	
References	15	

Experimental Section

Materials

All synthetic operations were performed under dry nitrogen atmosphere using Schlenk techniques and vacuum-line systems. The ligand 2,6-bis(diphenylphosphino)pyridine (dpppy) was purchased from Lude Fine Chemical Industry Co., Ltd., China. Phenylacetylene (HC=CC₆H₅) and 4-methylphenylacetylene (HC=CC₆H₄CH₃-4) were obtained from Acros Organics. All reagents were used as received and solvents were purified by standard methods. (AgC=CC₆H₄-R)_n (R=H, CH₃)⁻¹ and [Cu₂(μ -dpppy)₃](ClO₄)₂⁻² were prepared according to the published methods.

Synthesis

[Ag₃Cu₅(C=CC₆H₅)₆(μ-dpppy)₃](ClO₄)₂ (1). To 5 mL of a CHCl₃/CH₃OH (4:1, v/v) solution of [Cu₂(μ-dpppy)₃](ClO₄)₂ (50.0 mg, 0.03 mmol) was added [Ag(C=CC₆H₅)]_n (19.0 mg, 0.09 mmol) with stirring at room temperature for 12 h to give a yellow solution. Diffusion of *n*-heptane onto the concentrated solution gave yellow crystals of **1**. Yield: 19.0 mg (57%). Elemental analysis (%) calcd for C₁₃₅H₉₉N₃O₈P₆Cl₂Cu₅Ag₃: C, 58.13; H, 3.58; N, 1.51; found: C, 57.98; H, 3.56; N, 1.55. ESI-MS [m/z (%)]: 1295.9 (100) [M-(ClO₄)₂]²⁺. IR (KBr): ν = 2030 (w, C=C), 1096 (s, ClO₄⁻) cm⁻¹. ¹H NMR (400.1 MHz, CDCl₃, TMS): δ = 8.12 (t, *J* = 8 Hz , 3H), 7.59 (d, *J* = 8 Hz, 9H), 7.41 (d, *J* = 8 Hz, 3H), 7.35-7.24 (m, 12H), 7.20-7.14 (m, 9H), 7.07-7.02 (m, 12H), 6.92 (t, *J* = 8 Hz, 15H), 6.78 (t, *J* = 8 Hz, 12H), 6.58 (d, *J* = 8 Hz, 12H), 6.25 (d, *J* = 8 Hz, 12H) ppm. ³¹P{¹H} NMR (162 MHz, CDCl₃): 4.94 ppm (d, *J*_{Ag-P} = 376 Hz, AgPPyPAg; ²*J*_{P-P} = 27 Hz, AgPPyPAg).

[Ag₃Cu₅(C=CC₆H₄CH₃-4)₆(μ-dpppy)₃](ClO₄)₂ (2). To 5 mL of a CH₂Cl₂/CH₃OH/ClCH₂CH₂Cl (4:0.5:0.5, v/v/v) solution of [Cu₂(μ-dpppy)₃](ClO₄)₂ (50.0 mg, 0.03 mmol) was added [Ag(C=CC₆H₄CH₃-4)]_n (20.0 mg, 0.09 mmol) with stirring at room temperature for 12 h to give a yellow-orange solution. Diffusion of n-hexane onto the concentrated solution gave orange crystals of **2**. Yield: 22.0 mg (64%). Elemental analysis (%) calcd for C₁₄₁H₁₁₁N₃O₈P₆Cl₂Cu₅Ag₃: C, 58.93; H, 3.89; N, 1.46; N,1.51; found: C, 58.17; H, 4.03; N,1.47. ESI-MS [m/z (%)]: 1336.6 (100) [M-(ClO₄)₂]²⁺. IR (KBr): v=2020 (w, C=C), 1096 (s, ClO⁴⁻) cm⁻¹. ¹H NMR (400.1 MHz, CDCl₃, TMS): δ = 8.12 (t, *J* = 8 Hz, 3H), 7.59 (d, *J* = 8 Hz, 9H), 7.40 (d, *J* = 8 Hz, 3H), 7.35-7.24 (m, 6H), 7.20-7.14 (m, 9H), 7.07-7.02

(m, 12H), 6.92 (t, J = 8 Hz, 15H), 6.78 (t, J = 8 Hz, 12H), 6.58 (d, J = 8 Hz, 12H), 6.25 (d, J = 8 Hz, 12H), 2.29 (s, 18H, CH₃). ppm. ³¹P{1H} NMR (162 MHz, CDCl₃): 4.77 ppm (d, $J_{Ag-P} = 372$ Hz, AgPPyPAg; ${}^{2}J_{P-P} = 28$ Hz, AgPPyPAg)

Apparatus

Positive-ion ESI-MS spectra were performed on a Thermo Finnigan DECAX-3000 LCQ mass spectrometer using dichloromethane/methanol or acetonitrile/methanol as the mobile phase at the Fujian Institute of Research on the Structure of Matter, the Chinese Academy of Sciences. Elemental analyses (C, H, N) were carried out on a Perkin-Elmer model 240C automatic instrument. IR spectra were recorded on a Nicolet 6700 FT-IR spectrophotometer with KBr pellets. ¹H NMR spectra, with chemical shifts reported relative to tetramethylsilane, and ³¹P{¹H} NMR spectra with chemical shifts relative to 85% H₃PO₄ external reference were recorded on a Bruker AVANCE 400 MHz spectrometer. UV-Vis absorption spectra were recorded at 298K on a Perkin-Elmer Lambda 25 UV-Vis spectrometer. Steady-state excitation and emission spectra at room temperature were determined on an Edinburgh Analytical Instrument (FLS920 fluorescence spectrometer). Emission lifetimes were determined on an Edinburgh Analytical Instrument (FLS920 fluorescence spectrometer) with a light-emitting diode lamp (405 nm) and analyzed by the use of a program for exponential fits. The luminescence quantum yield of the sample was determined according to

$$\Phi_{\rm s} = \Phi_{\rm r} \left(B_{\rm r} \,/\, B_{\rm s} \right) \left(n_{\rm s} \,/\, n_{\rm r} \right)^2 \left(D_{\rm s} \,/\, D_{\rm r} \right) \tag{1}$$

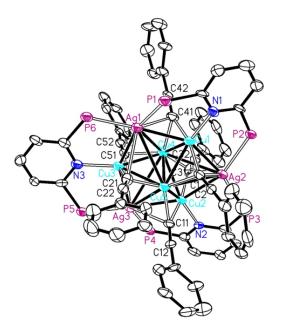
where the subscripts s and r refer to the sample and reference solutions, respectively, $B = 1-10^{-AL}$. A is the absorbance at the excitation wavelength, L is the path length, n is the refractive index of the solvent, and D is the integrated emission intensity. A degassed acetonitrile solution of $[Ru(bpy)_3](PF_6)_2$ $(\Phi_{em}=0.062)^3$ were used as the reference.

Crystal Structural Determination

The Crystals 1 and 2 coated with epoxy resin were measured on a Mar CCD 165 nm diffractometer by the oscillation scan technique at 193K using the Beijing Synchrotron Radiation Facility with a 3W1A beam ($\lambda = 0.71000$ Å). The cell refinement and data reduction were computed using the *HKL2000* software.⁴ The structure was solved by direct method or the heavy atoms were located from E-map. The remaining non-hydrogen atoms were determined from successive difference Fourier syntheses. All non-hydrogen atoms were refined anisotropically except those mentioned otherwise. The structure was refined on F^2 by full-matrix least-squares methods using the *SHELXTL-97* program package. ⁵ The crystallographic parameters and details for data collections and refinements of crystals 1 and 2 are summarized in Table S1. Selected bond distances and angles for complexes 1 and 2 are listed in Table S2.

Crystal Structures

Compound	2(1) • 5 CHCl ₃ • 2 H ₂ O	2(2)·CH ₂ Cl ₂
Empirical formula	$C_{275}H_{211}Ag_6Cl_{19}Cu_{10}N_6O_{18}P_{12}$	C ₂₈₃ H ₂₂₆ Ag ₆ Cl ₆ Cu ₁₀ N ₆ O ₁₆ P ₁₂
fw	6215.31	5833.66
Temperature (K)	193(2)	193(2)
radiation (λ , Å)	0.71000	0.71000
Crystal system	Monoclinic	Monoclinic
Space group	P2(1)/n	<i>C</i> 2/c
<i>a</i> (Å)	18.820 (4)	29.400 (6)
<i>b</i> (Á)	27.340 (6)	17.068 (3)
<i>c</i> (Á)	25.240 (5)	48.669 (10)
β (°)	96.94(3)	92.25(3)
$V(\text{\AA}^3)$	12892(5)	24403(8)
Ζ	2	4
$\rho_{\rm calcd}, {\rm g/cm^3}$	1.601	1.588
μ , mm ⁻¹	1.585	1.526
R1 (F _o)	0.0811	0.0903
$wR2(F_0^2)$	0.2224	0.3118
GOF	1.126	1.104


 Table S1. Crystallographic data for compounds 1 and 2.

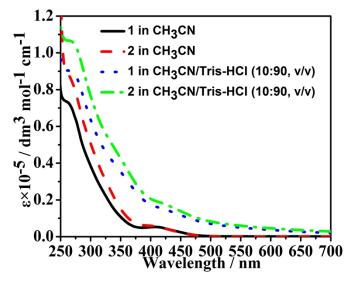
Crystal Structures

Table S2. Selected bond distances	(Å) and angles (°) for com	plexes 1 an	d 2.
-----------------------------------	----	-----------------	-----------	-------------	------

	2(1)·5CH	ICl ₃ ·2H ₂ O	2(2)·CH ₂ Cl ₂			
Ag – Cu	Ag(1)-Cu(1) 2.659(2)	Ag(3)-Cu(2) 2.615(2)	Ag(1)-Cu(1) 2.6453(12)	Ag(3)-Cu(3) 2.6432(13)		
U U	Ag(1)-Cu(3) = 2.641(2)	Ag(3)-Cu(3) = 2.648(2)	Ag(1)-Cu(3) 2.6525(14)	Ag(3)-Cu(2) 2.6738(13)		
	Ag(1)-Cu(5) 3.216(2)	Ag(3)-Cu(5) 3.170(2)	Ag(1)-Cu(4) 3.1717(13)	Ag(3)-Cu(4) 3.1844(13)		
	Ag(2)-Cu(1) 2.632(2)		Ag(2)-Cu(1) 2.6682(13)			
	Ag(2)-Cu(2) 2.645(2)		Ag(2)-Cu(2) 2.6591(13)			
	Ag(2)-Cu(5) 3.160(2)		Ag(2)-Cu(4) 3.1552(14)			
Cu – Cu	Cu(1)-Cu(5) 2.531(2)	Cu(3)-Cu(4) 2.574(3)	Cu(1)-Cu(4) 2.5393(15)	Cu(3)-Cu(5) 2.6178(15)		
	Cu(1)-Cu(4) 2.561(3)	Cu(3)-Cu(5) 2.604(2)	Cu(1)-Cu(5) 2.6628(15)	Cu(3)-Cu(4) 2.6191(16)		
	Cu(2)-Cu(5) 2.548(3)	Cu(4)-Cu(5) 2.684(2)	Cu(2)-Cu(4) 2.6003(15)	Cu(4)-Cu(5) 2.7403(16)		
	Cu(2)-Cu(4) 2.561(2)		Cu(2)-Cu(5) 2.6262(14)			
Ag-C	Ag(1)-C(21) 2.519(15)	Ag(2)-C(1) 2.515(16)	Ag(1)-C(41) 2.562(9)	Ag(3)-C(31) 2.490(9)		
	Ag(1)-C(41) 2.644(15)	Ag(3)-C(11) 2.609(15)	Ag(1)-C(61) 2.594(9)	Ag(3)-C(71) 2.689(10)		
			Ag(2)-C(21) 2.505(9)			
Cu – C	Cu(1)-C(41) 1.927(15)	Cu(3)-C(51) 1.945(17)	Cu(1)-C(61) 1.924(9)	Cu(4)-C(21) 2.037(10)		
	Cu(1)-C(1) 1.936(15)	Cu(4)-C(31) 2.053(14)	Cu(1)-C(21) 1.976(9)	Cu(4)-C(41) 2.062(9)		
	Cu(2)-C(11) 1.927(15)	Cu(4)-C(41) 2.060(15)	Cu(2)-C(51) 1.931(10)	Cu(4)-C(31) 2.061(9)		
	Cu(2)-C(31) 1.967(15)	Cu(4)-C(51) 2.089(14)	Cu(2)-C(31) 1.963(9)	Cu(5)-C(51) 2.124(10)		
	Cu(3)-C(21) 1.918(16)	Cu(5)-C(1) 2.061(15)	Cu(3)-C(71) 1.931(10)	Cu(5)-C(71) 2.132(11)		
		Cu(5)-C(11) 2.034(15)	Cu(3)-C(41) 1.935(9)	Cu(5)-C(61) 2.135(12)		
Cu– N	Cu(1)-N(1) 2.057(12)	Cu(3)-N(3) 2.060(12)	Cu(1)-N(1) 2.088(7)	Cu(3)-N(3) 2.066(7)		
	Cu(2)-N(2) 2.049(12)		Cu(2)-N(2) 2.071(7)			
P - Ag - P	P(1)-Ag(1)-P(6) 115.44(15)	P(5)-Ag(3)-P(4) 120.70(14)	P(1)-Ag(1)-P(6) 117.97(8)	P(5)-Ag(3)-P(4) 118.35(8)		
	P(3)-Ag(2)-P(2) 118.11(14)		P(3)-Ag(2)-P(2) 119.73(8)			
P - Ag - C	P(1)-Ag(1)-C(21) 122.9(4)	P(2)-Ag(2)-C(1) 90.9(3)	P(1)-Ag(1)-C(41) 120.5(2)	C(21)-Ag(2)-P(2) 89.9(2)		
	P(6)-Ag(1)-C(21) 91.5(3)	P(5)-Ag(3)-C(11) 124.7(3)	P(6)-Ag(1)-C(41) 87.6(2)	C(31)-Ag(3)-P(5) 122.6(2)		
	P(3)-Ag(2)-C(1) 125.1(3)	P(4)-Ag(3)-C(11) 90.6(4)	P(3)-Ag(2)-C(21) 123.9(2)	C(31)-Ag(3)-P(4) 90.1(2)		
C – Cu – C	C(41)-Cu(1)-C(1) 162.2(6)	C(31)-Cu(4)-C(51)113.4(6)	C(61)-Cu(1)-C(21)162.4(5)	C(41)-Cu(4)-C(31)113.1(3)		
	C(11)-Cu(2)-C(31)163.5(6)	C(21)-Cu(5)-C(1) 116.5(6)	C(51)-Cu(2)-C(31)161.6(5)	C(51)-Cu(5)-C(61)116.2(4)		
	C(21)-Cu(3)-C(51)160.2(6)	C(21)-Cu(5)-C(11)117.0(5)	C(71)-Cu(3)-C(41)162.5(4)	C(51)-Cu(5)-C(71)117.4(4)		
	C(41)-Cu(4)-C(31)120.1(6)	C(1)-Cu(5)-C(11) 112.6(6)	C(21)-Cu(4)-C(41)117.2(4)	C(61)-Cu(5)-C(71)118.4(4)		
	C(41)-Cu(4)-C(51)111.4(6)		C(21)-Cu(4)-C(31)114.4(3)			
C - Cu - N	C(41)-Cu(1)-N(1) 97.1(5)	C(31)-Cu(2)-N(2) 95.6(5)	C(61)-Cu(1)-N(1) 104.6(4)	C(31)-Cu(2)-N(2) 93.5(3)		
	C(1)-Cu(1)-N(1) 99.7(6)	C(21)-Cu(3)-N(3) 99.0(6)	C(21)-Cu(1)-N(1) 92.9(3)	C(71)-Cu(3)-N(3) 106.7(4)		
	C(11)-Cu(2)-N(2) 100.9(5)	C(51)-Cu(3)-N(3) 100.7(5)	C(51)-Cu(2)-N(2) 104.8(4)	C(41)-Cu(3)-N(3) 90.7(3)		

Crystal Structures

Fig. S1. ORTEP drawing of the cation of complex **1** with atom labelling scheme showing 30% thermal ellipsoids. Phenyl rings on the phosphorus atoms and hydrogen atoms are omitted for clarity.


Photophysical Properties

Compound	Medium	$\lambda_{ m abs}/ m nm$	$\lambda_{ m em}/ m nm$ ($ au_{ m em}/\mu s$) ^a	$\Phi_{ m em}$ b
		$(\varepsilon \times 10^{-5} / dm^3 mol^{-1} cm^{-1})$		
	solid		590 (0.71)	
	CH_2Cl_2	235 (1.90), 246 (1.67), 273 (0.88), 417 (0.05)	595 (0.20)	0.015
1	CH ₃ CN	206 (2.40), 234 (1.39), 270 (0.69), 417 (0.05)	602 (0.10)	0.004
	CH ₃ CN/H ₂ O (10:90,v/v)	234 (1.40), 244 (1.24), 272 (0.89), 425 (0.15)	592 (0.18)	0.062
	solid		594 (0.79)	
	CH_2Cl_2	264 (2.05), 251 (1.87), 276 (0.96), 427 (0.05)	604 (0.23)	0.013
2				
	CH ₃ CN	207 (3.22), 237 (1.45), 272 (0.82), 427 (0.04)	609 (0.10)	0.007
	CH ₃ CN/H ₂ O (10:90,v/v)	233 (1.61), 244 (1.42), 276 (1.03), 436 (0.16)	604 (0.10)	0.058

 Table S3. Photophysical data for 1 and 2 at room temperature.

^a The excitation wavelength in the lifetime measurements are at 405 nm. ^b The quantum yields were measured using $[Ru(bpy)_3](PF_6)_2$ as a standard. ³

Photophysical Properties

Fig. S2. UV–Vis spectra of complexes **1** and **2** in CH₃CN solution and CH₃CN/Tris-HCl (10:90, v/v, pH 9.0) mixture.

Photophysical Properties

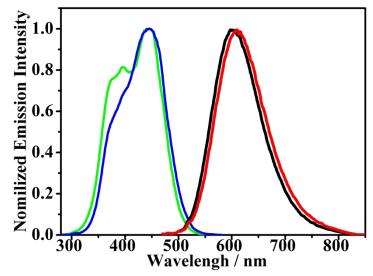
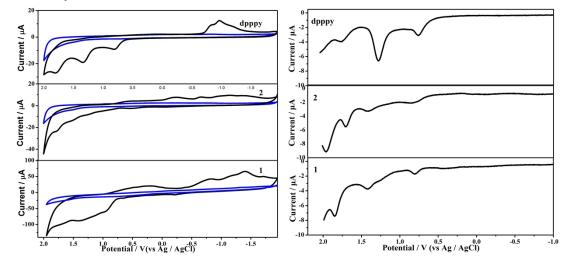
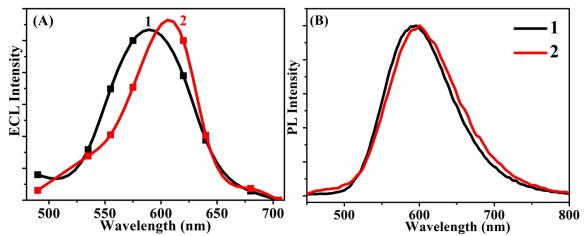



Fig. S3. Excitations and emissions of 0.1 mM 1 (green and black line, respectively) and 2 (blue and red line, respectively) in CH₃CN solution, λ_{ex} =450 nm.

Electrochemistry


Fig. S4. CVs (left) and DPV (right) of 0.1 mM **1**, **2** and 1.0 mM dpppy ligand in deaerated CH₃CN (0.1 M TBAP) at GCE. Scan rate, 100 mv s⁻¹. The blue lines represent the CVs in the blank solution under the same experimental conditions.

Electrochemiluminescence

Fig. S5. The ECL responses of 10 μ M **1** in a solution containing (A) 0.05 M pH 9.0 Tris-HCl / CH₃CN solution with different ratio of Tris-HCl buffer solutions, and (B) 0.05 M Tris-HCl (95%) and CH₃CN (5%) at various pH on GC working electrode. Scan rate, 100 mv s⁻¹.

Electrochemiluminescence

Fig. S6. ECL (A) and PL spectra (B) of **1** and **2** in a solution containing 0.05 M pH 9.0 Tris-HCl (95%) and CH₃CN (5%) solution.

References

- 1 I. O. Koshevoy, A. J. Karttunen, Y. C. Lin, C. C. Lin, P. T. Zhou, S. P. Tunik, M. Haukka and T. A. Pakkanen, *Dalton Trans.* 2010, **39**, 2395-2403.
- 2 S. F. John, J. H. Raymond and W. Barry, Polyhedron, 1996, 15, 3741-3748.
- 3 J. V. Caspar and T. J. Meyer, J. Am. Chem. Soc. 1983, 105, 5583-5590.
- 4 P. R. Evans, Proceedings of the CCP4 Study Weekend. *Recent Advances in Phasing*; K. S. Wilson, G. Davies, A. W. Ashton, S. Bailey, Eds. Daresbury Laboratory: Warrington, U.K. 1997.
- 5 G. M. Sheldrick, *SHELXL-97*, Program for the Refinement of Crystal Structures; University of Göttingen, Göttingen, Germany, 1997.