## Understanding the relative binding ability of hydroxyfullerene to divalent and trivalent metals

Jessica Heimann,<sup>a</sup> Lauren Morrow,<sup>a</sup> Robin E. Anderson<sup>a</sup> and Andrew R. Barron\*<sup>a,b,c</sup>

<sup>a</sup>Department of Chemistry, Rice University, Houston, Texas 77005, USA

<sup>b</sup>Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005,

USA

<sup>c</sup>Energy Safety Research Institute, College of Engineering, Swansea University, Singleton Park,

Swansea, SA2 8PP, Wales, UK

**Electronic Supplementary Information** 

| Metal source                      | Observation           |
|-----------------------------------|-----------------------|
| AgNO <sub>3</sub>                 | red-brown precipitate |
| Al(NO <sub>3</sub> ) <sub>3</sub> | red-brown precipitate |
| B(OH) <sub>3</sub>                | no precipitate        |
| $CaCl_2$                          | red-brown precipitate |
| $Cd(NO_3)_2$                      | red-brown precipitate |
| $CoCl_2$                          | red-brown precipitate |
| $CuCl_2$                          | red-brown precipitate |
| KCl                               | no precipitate        |
| $La(NO_3)_3$                      | red-brown precipitate |
| KMnO <sub>4</sub>                 | dark solution         |
| MnCl <sub>2</sub>                 | red-brown precipitate |
| NaOH                              | no precipitate        |
| Nd(NO <sub>3</sub> ) <sub>3</sub> | red-brown precipitate |
| $Ni(NO_3)_2$                      | red-brown precipitate |
| $ZnCl_2$                          | red-brown precipitate |

Table S1. Observed reactivity between metal salts (500 mM) with fullerenol (4.6 mM).

**Table S2.** Particle size as a function of reaction time as measured by DLS.

| [Fe <sup>n+</sup> ]<br>(mM) | [fullerenol]<br>(mM) | Reaction time<br>(min.) | Particle size<br>(µm) |
|-----------------------------|----------------------|-------------------------|-----------------------|
| 5.0                         | 0.46                 | 12                      | 243-359               |
| 0.5                         | 0.046                | 1                       | 0.25                  |
|                             |                      | 1.5                     | 0.80                  |
|                             |                      | 2.5                     | 12                    |
| 0.05                        | 0.0046               | 14                      | 0.20                  |
|                             |                      | 16                      | 2.7                   |

**Table S3.** Selected bond lengths (Å) and angles (°) for  $K_3[Ga(catecholate)_3] \cdot 1.5 H_2O X$ -ray crystallographic data and *ab initio* calculations.

|                                                                                                              | Crystallographic data <sup>a</sup> | Gaussian model datab |  |  |
|--------------------------------------------------------------------------------------------------------------|------------------------------------|----------------------|--|--|
| Ga-O                                                                                                         | 1.969(2) - 2.005(2)                | 2.013                |  |  |
| O1 - C                                                                                                       | 1.342(3) - 1.355(3)                | 1.335                |  |  |
| O-Ga-O <sub>chelate</sub>                                                                                    | 83.61(7) - 83.89(7)                | 82.22 - 82.23        |  |  |
| O-Ga-O <sub>cis</sub>                                                                                        | 89.01(8) - 98.09(8)                | 91.72 - 94.99        |  |  |
| O-Ga-O <sub>trans</sub>                                                                                      | 170.41(8) - 170.97(8)              | 171.08 - 171.09      |  |  |
| Ga - O1 - C11                                                                                                | 109.9(2) - 111.4(2)                | 112.37 - 112.38      |  |  |
| O6 - C22 - C21                                                                                               | 117.4 (2)                          | 116.507              |  |  |
| <sup>a</sup> B. A Borgias, S. J. Barclay <sup>,</sup> and K. N. Raymond, J. Coord. Chem., 1986, 15, 109-123. |                                    |                      |  |  |

<sup>b</sup>B3LYP/3-21G\*.

**Table S4.** Selected calculated bond lengths (Å) and angles (°).

|             | C-O          | $O-C-C(O)^a$    | O-C-C(H) <sup>b</sup> |
|-------------|--------------|-----------------|-----------------------|
| Catechol    | 1.401, 1.382 | 113.06, 119.24° | 126.14, 121.44°       |
| Catecholate | 1.297        | 120.88          | 123.42                |

<sup>a</sup>Carbon atom attached to the second oxygen. <sup>b</sup>Carbon atom attached to hydrogen. <sup>c</sup>Hydrogen bonded OH, see Fig. S9.

**Table S5.** Selected *ab initio* calculated bond lengths (Å) and angles (°) for  $[M(catecholate)_n]^{n-1}$ .

|                                               | М-О С-О     | O-M-O <sub>chelate</sub> | O-M-O <sub>cis</sub> <sup>a</sup> | O-M-O <sub>trans</sub> | O-C-C <sup>b</sup> | O-C-C <sup>c</sup> |
|-----------------------------------------------|-------------|--------------------------|-----------------------------------|------------------------|--------------------|--------------------|
| [Zn(catecholate) <sub>2</sub> ] <sup>2-</sup> | 1.889 1.343 | 90.12                    | 119.93                            | n/a                    | 116.91             | 124.70             |
| [Cd(catecholate) <sub>2</sub> ] <sup>2-</sup> | 2.190 1.343 | 79.29                    | 126.36                            | n/a                    | 119.67             | 122.43             |
| [Al(catecholate) <sub>3</sub> ] <sup>3-</sup> | 1.932 1.332 | 83.45                    | 91.35                             | 172.39                 | 114.79             | 126.36             |
| [Ga(catecholate) <sub>3</sub> ] <sup>3-</sup> | 2.181 1.335 | 82.23                    | 93.74                             | 171.09                 | 116.51             | 124.91             |
| $[In(catecholate)_3]^{3-}$                    | 2.181 1.337 | 77.14                    | 91.72                             | 166.38                 | 118.09             | 123.69             |

<sup>a</sup>For tetrahedral complexes this is the non-chelate O-M-O angle. <sup>b</sup>Endo the 5-membered cycle. <sup>b</sup>Exo the 5-membered cycle.

**Table S6.** Selected *ab initio* calculated bond lengths (Å) and angles (°) for  $[M(L_3)_n]^{2-}$  and  $[M(L_2)_n]^{2-}$ .<sup>a</sup>

|                     | M-O          | C-O          | O-M-O <sub>chelate</sub> | O-M-O <sup>b</sup>             |
|---------------------|--------------|--------------|--------------------------|--------------------------------|
| $[Zn(L_3)_2]^{2-1}$ | 1.858, 1.888 | 1.412, 1.427 | 90.12                    | 105.04, 105.05, 116.66, 129.01 |
| $[Cd(L_3)_2]^{2-1}$ | 2.144, 2.178 | 1.415, 1.441 | 79.29                    | 101.86. 101.86, 122.30, 144.25 |
| $[Zn(L_2)_2]^{2-1}$ | 1.871,1.902  | 1.410, 1.406 | 101.59                   | 108.85, 108.85, 113.99, 122.47 |
| $[Cd(L_2)_2]^{2-1}$ | 2.157, 2.197 | 1.412, 1.415 | 95.19                    | 108.49, 108.49, 112.90, 136.31 |
| -                   |              |              |                          |                                |

 $^{a}L_{3} = cis, cis-1, 3, 5$ -trihydroxycyclohexane,  $L_{2} = cis-1, 3$ -dihydroxycyclohexane. <sup>b</sup>Non-chelate angles. <sup>b</sup>Non chelate.



**Fig. S1** SEM image of  $Fe^{3+}/Cd^{2+}$  cross-linked fullerenol.



Fig. S2 High resolution C1s XPS data for (a) fullerenol, (b)  $Fe^{3+}$  cross-linked fullerenol, and (c)  $Fe^{3+}/La^{3+}$  cross-linked fullerenol.



Fig. S3 Plot of [Fe<sup>3+</sup>] in competitive binding with  $M^{n+}$  versus Pearson' absolute hardness ( $\eta$ ) of  $M^{n+}$ .



Fig. S4 Calculated structure of  $[Zn(catecholate)_2]^2$ .



Fig. S5 Calculated structure of  $[Cd(catecholate)_2]^{2-}$ .



Fig. S6 Calculated structure of  $[Al(catecholate)_3]^{3-}$ .



Fig. S7 Calculated structure of [Ga(catecholate)<sub>3</sub>]<sup>3-</sup>.



Fig. S8 Calculated structure of  $[In(catecholate)_3]^{3-}$ .



Fig. S9 Calculated structure of catechol.



Fig. S10 Calculated structure of [catecholate]<sup>-</sup>.



**Fig. S11** Calculated structure of  $[Zn(L_3)_2]^{2-}$ .



**Fig. S12** Calculated structure of  $[Zn(L_2)_2]^{2-}$ .



Fig. S13 Calculated structure of  $[Al(L_3)_2]^3$ .



**Fig. S14** Calculated structure of  $[Ga(L_3)_2]^{3-}$ .