Supporting Information

Synthesis of Zinc Phthalocyanine with Large Steric Hindrance and Its

Photovoltaic Performance for Dye-Sensitized Solar Cells

Li Lin,^a Bosi Peng,^a Wenye Shi,^a Yingying Guo^a and Renjie Li^{*a}

^aCollege of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, China. *Corresponding author. Fax: (+86) 27 6875 6679; Tel: +86-27 6875 6679; *E-mail*: <u>lirj@whu.edu.cn</u> (Li, R.)

Tables and Figures Captions

Fig. S1. MALDI-TOF mass spectrum of Zn-tri-PcNc-8a.

Fig. S2. MALDI-TOF mass spectrum of Zn-tri-PcNc-8.

Fig. S3. ¹H MNR (in DMSO-d₆) spectrum of the molecular ion of Zn-*tri*-PcNc-8a

Fig. S4. ¹H MNR (in DMSO-d₆) spectrum of the molecular ion of Zn-tri-PcNc-8

Fig. S5. UV-vis absorption spectra and Fluorescence emission spectra and of Std-ZnPc in THF solution (C= 1×10^{-5} M) with excitation fixed at 620 nm.

Fig. S6. UV-vis absorption spectra and Fluorescence emission spectra and of Zn-*tri*-PcNc-8 in THF solution (C= 1×10^{-5} M) with excitation fixed at 480 nm.

Fig. S7. UV-Vis absorption spectra of Zn-tri-PcNc-8 in THF at different concentration

Fig. S8. IR spectra of Zn-*tri*-PcNc-8.

Fig. S9. The typical cyclic voltammogram of Zn-*tri*-PcNc-8 in o-DCB containing 0.1M $[NBu_4][ClO_4]$ at a scan rate of 20 mV S⁻¹.

Fig. S10. The frontier molecular orbitals of Zn-*tri*-PcNc-8, full optimized at B3LYP/6-31G level.

Table S1. Fluorescence emission data of zinc phthalocyanines in THF.

Table S2. Electrochemical data of Zn-tri-PcNc-8.

Table S3. TD-DFT calculated spectra selected (lowest-excited energies (ΔE), absorption wavelengths, oscillator strengths (*f*), and domination excitation characters for low-lying singlet state) of Zn-*tri*-PcNc-2 and Zn-*tri*-PcNc-8

Fig. S1. MALDI-TOF mass spectrum of Zn-*tri*-PcNc-8a.

Fig. S2. MALDI-TOF mass spectrum of Zn-tri-PcNc-8.

Fig. S3. ¹H MNR (in DMSO-d₆) spectrum of the molecular ion of Zn-*tri*-PcNc-8a

Fig. S4. ¹H MNR (in DMSO-d₆) spectrum of the molecular ion of Zn-*tri*-PcNc-8

Fig. S5. UV-vis absorption spectra and Fluorescence emission spectra and of Std-ZnPc in THF solution ($C=1 \times 10^{-5}$ M) with excitation fixed at 620 nm.

Fig. S6. UV-vis absorption spectra and Fluorescence emission spectra and of Zn-*tri*-PcNc-8 in THF solution (C= 1×10^{-5} M) with excitation fixed at 480 nm.

Fig. S7. UV-Vis absorption spectra of Zn-tri-PcNc-8 in THF at different concentration.

Fig. S8. IR spectra of Zn-tri-PcNc-8.

Fig. S9. The typical cyclic voltammogram of Zn-*tri*-PcNc-8 in o-DCB containing 0.1 M [NBu₄][ClO₄] at a scan rate of 20 mV S⁻¹.

Fig. S10. The frontier molecular orbitals of Zn-tri-PcNc-8, full optimized at B3LYP/6-31G level.

Fluorescence quantum yields (\PhiF): Fluorescence quantum yields (Φ F) of the studied Zn-tri-PcNc-8 was determined in THF by the comparative method using equation.¹⁻²

F and F_{Std} are the areas under the fluorescence emission curves of the Zn-*tri*-PcNc-8 and the unsubstituted zinc(II)Pc (the standard Std-ZnPc), respectively. *A* and A_{Std} are the respective absorbances of the samples and standard at the excitation wavelengths, respectively. n^2 and n_{Std}^2 are the refractive indices of solvents used for the sample and standard, respectively. Unsubstituted ZnPc (Std-ZnPc) (ϕ F = 0.30 in THF)² was employed as the standard.

- 1. N. Kobayashi, H. Ogata, N. Nonaka and E. A. Luk'yanets, Chem. Eur. J. 2003, 9, 5123-5134.
- 2. M. M. Ayhan, G. A. Özpinar, M. Durmus and A. G. Gürek, *Dalton Trans.*, 2013, **42**, 14892-14904.

Dye	Excitation wavelength	Fluorescence	Fluorescence
	λ [nm]	peak maximum λ [nm]	quantum yield \$ F
Std-ZnPc	620	678	0.30
Zn-tri-PcNc-8	480	716	0.31

Table S1. Fluorescence Emission Data of Zinc Phthalocyanines in THF.

Table S2. Electrochemical Data of Zn-tri-PcNc-8.

Dye O	vd. Ov	d Dad	D 1	-0.3
5		a_1 Red ₁	Red_2	$\Delta E_{1/2}^{o}$
Zn-tri-PcNc-8 0	.99 0.6	52 -1.07	-1.39	1.69

 ${}^{a}\Delta E^{o}_{1/2}$ is the potential difference between the first oxidation and first reduction processes.

Table S3. TD-DFT Calculated Spectra Selected (Lowest-Excited Energies (ΔE), Absorption Wavelengths, Oscillator Strengths (*f*), and Domination Excitation Characters for Low-Lying Singlet State) of Zn-*tri*-PcNc-2 and Zn-*tri*-PcNc-8.

Dye	State	Theoretically calculated				Experimental		
		$\Delta E(eV)$	λ(nm)	Main configuration	f	$\Delta E(eV)$	λ (nm)	
Zn-tri-PcNc-2	1	1.88	661	219 ^a →220 ^b 70%	0.625	1.76 6	594	
	2	1.93	644	219→221 70%	0.828			
	3	2.61	475	219→222 70%	0.035			
	6	3.08	403	216→220 19%	0.028			
				217→220 15%				
				218→220 64%				
	7	3.14	394	214→220 13%	0.123			
				218→221 67%				
				219→223 10%				
	8	3.17	391	216→220 24%	0.018			
				217→220 58%				
				218→220 23%				
	9	3.23	384	216→220 52%	0.018			
				217→220 28%				
				217→221 23%				
	10	3.23	383	216→220 21%	0.023			
				216→221 35%				
				217→223 47%				
Zn-tri-PcNc-8	1	1.85	669	$555^{\mathrm{a}} \rightarrow 556^{\mathrm{b}} 70\%$	0.625	1.75 7	702	
	2	1.90	652	555→557 70%	0.772			
	3	2.56	484	553→557 13%	0.034			
				555→558 67%				
	4	2.58	479	553→556 35%	0.011			
				554→556 56%				
	5	2.62	472	553→557 26%	0.017			
				554→557 58%				

6	2.67	463	553→556	54%	0.117
			554→556	32%	
			554→557	25%	
7	2 72	455	553→557	63%	0 177
,	2.72	155	554→556	13%	0.177
			554 550	260/	
			<u>3</u> 34 → 337	20%	
8	2.77	447	552→556	63%	0.094
			552→557	13%	
			553→556	13%	
9	2.87	432	551→557	18%	0.115
			552→556	14%	
			552→557	65%	

^a HOMO; ^b LUMO.