Supplementary information

Unprecedented structural variations in trinuclear mixed valence Co(II/III) complexes derived from a Schiff base and its reduced form: Theoretical studies, pnicogen bonding interactions and catecholase-like activities

Alokesh Hazari,^a Lakshmi Kanta Das,^a Ramakant M. Kadam,^b Antonio Bauzá,^c Antonio Frontera^{*c} and Ashutosh Ghosh^{*a}

^aDepartment of Chemistry, University College of Science, University of Calcutta, 92, A.P.C. Road, Kolkata-700 009, India. E-mail: <u>ghosh 59@yahoo.com</u>

^bRadiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India ^cDepartment of Chemistry, Universitat de les IllesBalears, Crta de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain. E-mail: <u>toni.frontera@uib.es</u>

I	2	3	
C ₃₆ H ₄₀ Co ₃ N ₁₆ O ₆	$C_{34}H_{40}Co_3N_{16}O_8$	$C_{34}H_{40}Co_3N_{16}O_4$	
969.63	977.61	967.67	
Triclinic	Triclinic	Triclinic	
PĪ	PĪ	PĪ	
10.290(4)	9.270(5)	14.906(5)	
18.442(7)	9.533(5)	9.326(5)	
22.634(9)	12.660(5)	15.164(5)	
71.323(5)	106.395(5)	90.000(5)	
89.960(5)	101.926(5)	92.428(5)	
83.263(5)	99.741(5)	90.000(5)	
4038(3)	1018.8(9)	2106.1(15)	
4	1	2	
1.595	1.593	1.526	
1.286	1.278	1.232	
1988.0	501.0	998.0	
0.063	0.019	0.037	
27114	13270	21543	
13847	5985	7395	
9774	5110	5594	
0.1254, 0.3456	0.0318, 0.0922	0.0407, 0.1153	
1.05	1.05	1.07	
0.1542	0.0387	0.0578	
296	293	293	
	I $C_{36}H_{40}Co_3N_{16}O_6$ 969.63Triclinic $P\overline{1}$ 10.290(4)18.442(7)22.634(9)71.323(5)89.960(5)83.263(5)4038(3)41.5951.2861988.00.063271141384797740.1254, 0.34561.050.1542296	IZ $C_{36}H_{40}Co_3N_{16}O_6$ $C_{34}H_{40}Co_3N_{16}O_8$ 969.63977.61TriclinicTriclinic $P\overline{I}$ $P\overline{I}$ 10.290(4)9.270(5)18.442(7)9.533(5)22.634(9)12.660(5)71.323(5)106.395(5)89.960(5)101.926(5)83.263(5)99.741(5)4038(3)1018.8(9)411.5951.5931.2861.2781988.0501.00.0630.0192711413270138475985977451100.1254, 0.34560.0318, 0.09221.051.050.15420.0387296293	

Table S1 Crystal data and structure refinement of complexes 1–3

 ${}^{a}\text{R1} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|, {}^{b}w\text{R2} (F_{o}{}^{2}) = [\sum [w(F_{o}{}^{2} - F_{c}{}^{2})^{2} / \sum w F_{o}{}^{4}]^{\frac{1}{2}} \text{ and } {}^{c}\text{GOF} = [\sum [w(F_{o}{}^{2} - F_{c}{}^{2})^{2} / (N_{obs} - N_{params})]^{\frac{1}{2}}$

	R.M.S Deviations (Å)			
Metal centers	1		2	3
	1A	1B		
Co(2)	0.032	0.035	0.013	0.027
Co(3)	0.057	0.052		0.028

Table S2 The r.m.s deviations of the complexes 1–3.

Table S3 The \angle N-N-N angles (in °) in azido ligands in the complexes 1–3.

	1A	1B	2	3
N(1)-N(2)-N(3)	174.6(2)	175.4(2)	178.8(2)	178.1(6)
N(10)–N(11)–N(12)	175.0(2)	177.7(2)		173.2(2)
N(4)-N(5)-N(6)	177.4(2)	177.0(2)		176.4(8)
N(7)–N(8)–N(9)	176.5(2)	175.3(2)	175.3(2)	176.9(8)

 Table S4 Hydrogen Bond Interactions in Complex 3.

D–H···A	D-H(Å)	H…A(Å)	D…A(Å)	∠D–H…A(°)	Symmetry
C(38)–H(38A)–N(12B)	0.970	2.620	3.434(1)	141.00	x,1+y,z
C(17)-H(17B)-N(12A)	0.969	2.632	3.439(2)	140.93	x,-1+y,z
C(20)-H(20B)-N(9)	0.970	2.717	3.400(1)	128.06	x,-1+y,z
C(41)-H(41B)-N(6)	0.970	2.743	3.418(1)	127.17	x,-1+y,z

Fig. S1 ¹H-NMR spectrum of ligand (H₂L) in CDCl₃

Fig. S2 ¹H-NMR spectrum of ligand (H_2L^R) in CDCl₃

Fig. S3 IR spectrum of complex 1.

Fig. S4 IR spectrum of complex 2.

Fig. S5 IR spectrum of complex 3.

Fig. S6A UV-Vis spectra of trinuclear complexes in acetonitrile solution (d-d transition).

Fig. S6B UV-Vis spectra of trinuclear complexes in acetonitrile solution (charge transfer band).

Fig. S7 UV-Vis spectra of trinuclear complexes in solid state

Fig. S8 Increase of the quinone band at around 400 nm after the addition of 100 equiv of 3,5-DTBC to an acetonitrile solution of complex **2**. The spectra were recorded at 5 min intervals.

Fig. S9 Increase of the quinone band at around 400 nm after the addition of 100 equiv of 3,5-DTBC to an acetonitrile solution of complex **3**. The spectra were recorded at 5 min intervals.

Fig. S10 Plot of the rate vs substrate concentration for complex **2**. Inset shows the corresponding Lineweaver–Burk plot.

Fig. S11 Plot of the rate vs substrate concentration for complex **3**. Inset shows the corresponding Lineweaver–Burk plot.

Fig. S12A Electrospray mass spectrum (ESI-MS positive) of complex 1 in acetonitrile solvent.

Fig. S12B Electrospray mass spectrum (ESI-MS positive) of complex **1** in acetonitrile solvent at higher m/z (expanded).

Fig. S13A Electrospray mass spectrum (ESI-MS positive) of complex 2 in acetonitrile solvent.

Fig. S13B Electrospray mass spectrum (ESI-MS positive) of complex **2** in acetonitrile solvent at higher m/z (expanded).

Fig. S14A Electrospray mass spectrum (ESI-MS positive) of complex 3 in acetonitrile solvent.

Fig. S15 Electrospray mass spectrum (ESI-MS positive) of complex **1** in acetonitrile solvent after addition of 3,5-DTBC.

Fig. S16 Electrospray mass spectrum (ESI-MS positive) of complex **2** in acetonitrile solvent after addition of 3,5-DTBC.

Fig. S17 Electrospray mass spectrum (ESI-MS positive) of complex **3** in acetonitrile solvent after addition of 3,5-DTBC.