Synthesis, Characterization and Magnetism of Metal-Organic Compounds: Role of Positions of the Coordinating Groups of a Meso-flexible Ligand in Placing Anisotropy to Exhibit Spin-Canting Behaviour

Paulami Manna, Bharat Kumar Tripuramallu, Suresh Bommakanti and Samar K Das*

School of chemistry, University of Hyderabad, Hyderabad-500046, India

Contents

1. Section 1:

Powder X-ray patterns of the compounds 1–3.

2. Section 2:

- (a) Magnetic data plot for compound 1.
- (b) Fitting equation for magnetic data of compound **2**.
- (c) Magnetic data plot for compound **2**.
- (d) Magnetic data plot for compound **3**.

3. Section 3:

Selected Bond lengths and bond angles in the compounds 1-3

Section-1

Powder X-ray patterns of the compounds 1-3.

Section-2.

(a) Magnetic data plots of compound 1

Figure S1. Fitted $1/\chi_{\rm M}$ *vs T* plots of the compounds **1**.

(b) Fitting equation for magnetic data of compound 2

The magnetic data of compound **2** were fitted assuming the carboxylate bridges of the two Co(II) ions form a isolated spin dimer. By introducing inter-dimer magnetic coupling constant zJ' the magnetic susceptibility data was fitted from the following equation which was deduced from the spin Hamiltonian.²⁵

 $H=-2JS_{I} \bullet S$ (where S_{I} and S_{2} are the spin operators with $S_{1}=S_{2}=3/2$) $E(S_{T}) = -JS_{T}(S_{T}+I)$ $S_{T}=0, 1, 2, 3.$ $E(S_{T})=0, -J, -3J, -6J$ $\chi_{M} = \chi_{M}'/\{I-\chi_{M}'(2zJ'/Ng^{2}\beta^{2})\}$ $\chi_{M}' = (2Ng^{2}\beta^{2}/k_{B}T)[A/B]$ Where $A=[\exp(2J/k_{B}T) + 5\exp(6J/k_{B}T) + 14\exp(12J/k_{B}T)]$ and

$$B=[1+3\exp(2J/k_BT)+5\exp(6J/k_BT)+7\exp(12J/k_BT)]$$

The parameters N, β and k_B have their normal meanings. The best fit of the theoretical equation to the experimental data leads to the g= 2.35 (4) J= -47.23 (3) cm⁻¹ and zJ'= -2.46 (6).

(c) Magnetic data plots of compound 2

Figure S2. Plots of $\chi_M T$ vs T upto 100K at different fields for compound **2**.

Figure S3. The zero-field-cooled (ZFC) and field-cooled (FC) magnetization at the field 150 Oe and 500 oe for compound **3**.

Figure S4. M(H) plots at temperatures 20K & 30K for compound 2.

(d) Magnetic data plots of compound 3

Figure S5. Fitted $1/\chi_M$ vs T plots of the compounds **3** in the temperature range 80 – 300 K.

Figure S6. The zero-field-cooled (ZFC) and field-cooled (FC) magnetization at the field 100 Oe for compound **3**.

<u>Section-3</u> Selected Bond lengths and bond angles in the compounds 1-3

Compound 1

Co(1)-O(3)#1	1.998(2)	N(4)-Co(1)-N(1)	91.58(10)
Co(1)-O(2)	2.042(2)	O(3)#1-Co(1)-O(1)	92.91(9)
Co(1)-N(4)	2.103(2)	O(2)-Co(1)-O(1)	60.12(8)
Co(1)-N(1)	2.108(2)	N(4)-Co(1)-O(1)	86.71(9)
Co(1)-O(1)	2.301(2)	N(1)-Co(1)-O(1)	171.49(8)
Co(1)-O(4)#1	2.410(2)	O(3)#1-Co(1)-O(4)#1	58.56(8)
O(1)-C(1)	1.249(3)	O(2)-Co(1)-O(4)#1	91.22(9)
O(2)-C(1)	1.280(3)	N(4)-Co(1)-O(4)#1	158.17(8)
O(3)-C(4)	1.277(3)	N(1)-Co(1)-O(4)#1	86.08(9)
O(3)-Co(1)#2	1.998(2)	O(1)-Co(1)-O(4)#1	98.58(9)
O(4)-C(4)	1.239(3)	C(1)-O(1)-Co(1)	84.60(17)
O(9)-C(11)	1.377(3)	C(1)-O(2)-Co(1)	95.56(16)
O(9)-C(29)	1.401(3)	C(4)-O(3)-Co(1)#2	99.04(17)
O(10)-C(12)	1.367(3)	C(11)-O(9)-C(29)	118.2(2)
O(10)-C(29)	1.401(3)	C(12)-O(10)-C(29)	118.0(2)
N(1)-C(10)	1.329(3)	C(17)-N(4)-Co(1)	121.43(18)
N(1)-C(25)	1.340(4)	C(76)-N(4)-Co(1)	120.5(2)
N(2)-C(5)	1.359(4)	O(1)-C(1)-O(2)	119.7(3)
N(2)-C(81)	1.436(4)	O(1)-C(1)-C(20)	120.7(3)
N(3)-C(23)	1.367(4)	O(2)-C(1)-C(20)	119.6(2)
N(3)-C(34)	1.446(4)	O(4)-C(4)-O(3)	120.6(3)
N(4)-C(17)	1.326(4)	O(4)-C(4)-C(3)	121.9(3)
N(4)-C(76)	1.348(4)	O(3)-C(4)-C(3)	117.4(2)
N(10)-C(59)	1.440(4)	O(10)-C(12)-C(39)	124.9(3)
N(12)-C(50)	1.323(4)	O(10)-C(12)-C(42)	115.6(3)
N(12)-C(43)	1.339(4)	O(10)-C(29)-O(9)	111.4(2)
N(10)-C(22)	1.389(4)	O(10)-C(29)-H(29A)	109.3
		O(9)-C(29)-H(29A)	109.3
O(3)#1-Co(1)-O(2)	137.34(9)	O(10)-C(29)-H(29B)	109.3
O(3)#1-Co(1)-N(4)	100.20(9)	O(9)-C(29)-H(29B)	109.3
O(2)-Co(1)-N(4)	109.58(9)		
O(3)#1-Co(1)-N(1)	95.59(9)		
O(2)-Co(1)-N(1)	112.91(9)		

Symmetry transformations used to generate equivalent atoms:

#1 x-1,y-1,z-1 #2 x+1,y+1,z+1 #3 -x+1,-y-1,-z+1 #4 -x,-y+1,-z

Compound 2		O(3)#2-Co(1)-O(2)#3	93.87(7)
Compound 2 Co(1)-O(3)#2 Co(1)-O(1) Co(1)-O(2)#3 Co(1)-N(1) Co(1)-O(4)#4 Co(1)-Co(1)#2 O(2)-Co(1)#5 O(3)-Co(1)#2 O(4)-Co(1)#6 C(1)-O(1) C(1)-O(3) C(6)-O(13) C(6)-O(13) C(8)-O(13) C(8)-O(14) C(15)-O(4) C(15)-O(2) C(44)-N(1) C(45)-N(2)	$\begin{array}{c} 2.0029(16)\\ 2.0214(15)\\ 2.0357(16)\\ 2.0488(17)\\ 2.0745(15)\\ 2.7633(6)\\ 2.0357(16)\\ 2.0028(16)\\ 2.0745(15)\\ 1.250(3)\\ 1.250(3)\\ 1.384(2)\\ 1.405(2)\\ 1.405(2)\\ 1.407(3)\\ 1.253(3)\\ 1.255(3)\\ 1.319(3)\\ 1.367(3)\end{array}$	$\begin{array}{c} O(3)\#2\text{-}Co(1)\text{-}O(2)\#3\\ O(1)\text{-}Co(1)\text{-}O(2)\#3\\ O(3)\#2\text{-}Co(1)\text{-}N(1)\\ O(1)\text{-}Co(1)\text{-}N(1)\\ O(2)\#3\text{-}Co(1)\text{-}N(1)\\ O(3)\#2\text{-}Co(1)\text{-}O(4)\#4\\ O(1)\text{-}Co(1)\text{-}O(4)\#4\\ O(2)\#3\text{-}Co(1)\text{-}O(4)\#4\\ O(2)\#3\text{-}Co(1)\text{-}O(4)\#4\\ O(3)\#2\text{-}Co(1)\text{-}Co(1)\#2\\ O(1)\text{-}Co(1)\text{-}Co(1)\#2\\ O(2)\#3\text{-}Co(1)\text{-}Co(1)\#2\\ O(2)\#3\text{-}Co(1)\text{-}Co(1)\#2\\ O(2)\#3\text{-}Co(1)\text{-}Co(1)\#2\\ O(4)\#4\text{-}Co(1)\text{-}Co(1)\#2\\ O(4)\#4\text{-}Co(1)\text{-}Co(1)\\ C(48)\text{-}N(1)\text{-}Co(1)\\ C(15)\text{-}O(2)\text{-}Co(1)\#5\\ C(1)\text{-}O(3)\text{-}Co(1)\#2\\ \end{array}$	$\begin{array}{c} 93.87(7)\\ 87.48(7)\\ 99.86(7)\\ 95.27(7)\\ 98.15(7)\\ 85.18(7)\\ 89.53(7)\\ 165.04(7)\\ 96.73(7)\\ 83.51(5)\\ 81.00(5)\\ 90.21(5)\\ 170.72(5)\\ 74.84(5)\\ 121.46(14)\\ 119.33(15)\\ 125.64(14)\\ 115.51(15)\\ 123.60(15)\\ \end{array}$
- () (-)		C(15)-O(4)-Co(1)#6	152.41(14)

O(3)#2-Co(1)-O(1) 164.45(7)

Symmetry transformations used to generate equivalent atoms

#1 -x+2/3,-y+1/3,-z-2/3 #2 -x+2/3,-y+1/3,-z+1/3 #3 -y+2/3,x-y+1/3,z+1/3 #4 y,-x+y,-z #5 -x+y+1/3,-x+2/3,z-1/3 #6x-y,x,-z

Compound 3

Co(1)-O(3)	2.046(4)	Co(2)-N(5)	2.048(5)
Co(1)-O(5)	2.083(5)	Co(2)-N(7)	2.055(5)
Co(1)-O(1)	2.103(4)	O(13)-C(15)	1.382(7)
Co(1)-N(3)	2.142(5)	O(13)-C(14)	1.425(8)
Co(1)-N(1)	2.166(5)	O(2)-C(28)	1.267(7)
Co(1)-O(2)	2.236(4)	O(3)-C(10)	1.257(7)
Co(2)-O(7)	1.991(4)	O(14)-C(13)	1.372(7)
Co(2)-O(8)	2.018(4)	O(14)-C(14)	1.407(7)

O(7)-C(21)	1.278(7)	O(1)-Co(1)-N(3)	93.08(19)
O(1)-C(28)	1.257(7)	O(3)-Co(1)-N(1)	87.58(17)
O(8)-C(32)	1.279(7)	O(5)-Co(1)-N(1)	95.4(2)
O(6)-C(21)	1.221(7)	O(1)-Co(1)-N(1)	89.89(18)
N(1)-C(1)	1.337(8)	N(3)-Co(1)-N(1)	176.07(19)
N(1)-C(5)	1.341(7)	O(3)-Co(1)-O(2)	98.14(16)
N(5)-C(33)	1.333(8)	O(5)-Co(1)-O(2)	163.16(18)
N(5)-C(37)	1.335(8)	O(1)-Co(1)-O(2)	60.63(15)
O(9)-C(32)	1.233(7)	N(3)-Co(1)-O(2)	86.97(18)
O(4)-C(10)	1.255(7)	N(1)-Co(1)-O(2)	92.27(17)
N(3)-C(22)	1.317(8)	O(7)-Co(2)-O(8)	96.15(17)
N(3)-C(26)	1.342(8)	O(7)-Co(2)-N(5)	112.20(19)
N(7)-C(48)	1.334(8)	O(8)-Co(2)-N(5)	117.07(19)
N(7)-C(45)	1.341(8)	O(7)-Co(2)-N(7)	100.35(19)
N(6)-C(36)	1.364(8)	O(8)-Co(2)-N(7)	104.97(19)
N(6)-C(38)	1.437(8)	N(5)-Co(2)-N(7)	121.9(2)
N(2)-C(6)	1.446(9)	C(21)-O(7)-Co(2)	113.0(4)
N(4)-C(27)	1.439(11)	C(28)-O(1)-Co(1)	92.3(3)
		C(32)-O(8)-Co(2)	99.1(4)
		C(1)-N(1)-Co(1)	122.7(4)
O(3)-Co(1)-O(5)	97.16(18)	C(5)-N(1)-Co(1)	119.2(4)
O(3)-Co(1)-O(1)	158.52(16)	O(9)-C(32)-O(8)	121.5(5)
O(5)-Co(1)-O(1)	104.32(18)	O(9)-C(32)-C(19)#1	119.4(5)
O(3)-Co(1)-N(3)	88.72(18)	O(8)-C(32)-C(19)#1	119.1(5)
O(5)-Co(1)-N(3)	86.4(2)	C(36)-N(6)-C(38)	124.0(6)

Symmetry transformations used to generate equivalent atoms: #1 x+1,y,z #2 x-1,y,z #3 -x+2,-y,-z+1 #4 -x+1,-y+1,-z #5 -x,-y+3,-z+1