ESI for

Palladium(II) -1-phenylthio-2-arylchalcogenoethane complexes: palladium phosphide nano-peanut and ribbon formation controlled by chalcogen and Suzuki coupling activation

Gyandshwar Kumar Rao, Arun Kumar, Fariha Saleem, Mahabir P. Singh, Satyendra Kumar, Bharat Kumar, Goutam Mukherjee and Ajai K. Singh*

Department of Chemistry, Indian Institute of Technology Delhi, New Delhi-110016, India.

Compound	1	3	
Empirical formula	$C_{14}H_{14}Cl_2PdS_2$	C ₁₅ H ₁₆ Cl ₂ OPdSTe	
Formula wt.	423.69	549.25	
Colour	Red	Orange	
Crystal size, mm ³	0.553 × 0.295 × 0.207	0.517 × 0.301 × 0.225	
Crystal system	Monoclinic	Orthorhombic	
Space group	<i>C2/c</i>	$P2_{1}2_{1}2_{1}$	
Unit Cell	a = 22.333(3) Å	a = 8.3567(16) Å	
dimension	b = 10.6408(15) Å	b = 14.188(3) Å	
	c = 25.506(4) Å	c = 14.676(3) Å	
	$\alpha = \gamma = 90.00^{\circ}$	$\alpha = \beta = \gamma = 90.00^{\circ}$	
	$\beta = 111.481(2)^{\circ}$		
Volume [Å ³]	1621.9(15)	1740.0(6)	
Ζ	4	4	
ρ , (calc.) Mg/m ³	1.721	2.097	
μ , mm ⁻¹	1.714	3.122	
<i>F</i> (000)	840	1048	
θ, range (°)	2.80 to 24.99	2.00 to 25.00	
Index ranges	$-22 \le h \le 22$	$-9 \le h \le 9$	
	$-9 \le k \le 9$	$-16 \le k \le 16$	
	$-14 \le l \le 14$	$-17 \le l \le 17$	
Reflections collected	1400	3057	
Independent reflections($R_{int.}$)	1307 [R(int) = 0.0309]	$2944 [R_{int} = 0.0420]$	
Completeness	99.7	99.9	
to max. θ, %			
Max. / min. Transmission	0.558 / 0.711	0.215 / 0.081	
Data / restraints / parameters	1400 / 0 / 87	3057 / 0 / 192	

Table S1. Crystal Data and Structure Refinement Parameters for 1 and 3

Goodness–of–fit on F^2	1.264	1.164
Final R indices	$R_1 = 0.0354$	$R_1 = 0.0398,$
$[I \ge 2\sigma(I)]$	$wR_2 = 0.0817$	$wR_2 = 0.0745$
R indices	$R_1 = 0.0386$	$R_1 = 0.0419,$
(all data)	$wR_2 = 0.0831$	$wR_2 = 0.0754$
Largest diff. peak /hole	0.146 / -1.334	0.103 / -0.819
[e.Å ⁻³]		
CCDC	1014070	1014071

Table S2. Selected Bond Lengths (Å) and Bond Angles (°) of 1

Bond Length (Å)					
Pd(1)—Cl(1)	2.330(13)	Pd(1)—S(1)	2.285(14)		
S(1)—C(7)	1.833(5)	C(2)—C(1)	1.400(6)		
C(3)—C(2)	1.381(6)	C(4)—C(5)	1.390(7)		
C(6)—C(1)	1.389(6)	C(5)—C(6)	1.383(6)		
C(6)—S(1)	1.793(4)	C(7)—C(7)	1.521(9)		
Bond Angle (°)					
S(1)—Pd(1)—S(1)	89.11(8)	S(1)—Pd(1)—Cl(1)	177.22(4)		
S(1)—Pd(1)—Cl(1)	88.52(6)	Cl(1)— $Pd(1)$ — $Cl(1)$	93.89(7)		
C(6)—S(1)—C(7)	99.4(2)	C(7)-S(1)-Pd(1)	101.99(19)		
C(6) - S(1) - Pd(1)	109.28(13)	C(7)—C(7)—S(1)	108.0(4)		
C(3)—C(4)—C(5)	120.7(4)	C(2)—C(3)—C(4)	119.6(4)		
C(6)—C(5)—C(4)	119.3(4)	C(3)—C(2)—C(1)	120.7(4)		
C(5)—C(6)—C(1)	121.0(4)	C(5)—C(6)—S(1)	117.8(3)		
C(1)-C(6)-S(1)	121.1(3)	C(6)-C(1)-C(2)	118.7(4)		

	Bond Le	ength (Å)	
Pd(1)—S(1)	2.260(19)	Pd(1)—Cl(1)	2.330(19)
Pd(1)—Cl(2)	2.375(19)	Pd(1)—Te(1)	2.504(8)
C(9)—C(8)	1.525(10)	C(9)—S(1)	1.832(7)
C(5)—C(6)	1.353(10)	C(5)—C(4)	1.358(11)
C(5)—Te(1)	2.128(7)	C(8)—Te(1)	2.117(7)
C(6)—C(7)	1.403(11)	C(7)—C2	1.374(12)
C(2)—O(1)	1.357(10)	C(2)—C(3)	1.364(12)
C(4)—C(3)	1.367(12)	C(10)—C(11)	1.365(13)
C(10)—C(15)	1.367(12)	C(10)—S(1)	1.779(8)
C(11)—C(12)	1.384(13)	C(1)—O(1)	1.417(11)
C(14)—C(13)	1.34(2)	C(14)—C(15)	1.401(17)
C(13)—C(12)	1.34(2)		
	Bond A	angle (°)	
S(1)—Pd(1)—Cl(1)	175.48(8)	S(1)—Pd(1)—Cl(2)	90.05(7)
Cl(1)—Pd(1)—Cl(2)	93.70(8)	S(1)—Pd(1)—Te(1)	89.97(5)
Cl(1)—Pd(1)—Te(1)	86.19(6)	Cl(2)—Pd(1)—Te(1)	177.90(5)
C(10)—S(1)—C(9)	101.5(4)	C(10)—S(1)—Pd(1)	108.3(3)
C(9)—S(1)—Pd(1)	107.5(2)	C(8)—Te(1)—C(5)	95.3(3)
C(8)—Te(1)—Pd(1)	96.1(2)	C(5)—Te(1)—Pd(1)	98.11(18)
C(8)—C(9)—S(1)	108.7(5)	C(6)—C(5)—C(4)	118.7(7)
C(6)—C(5)—Te(1)	118.1(5)	C(4)—C(5)—Te(1)	123.2(6)
C(9)—C(8)—Te(1)	111.4(5)	C(5)—C(6)—C(7)	120.4(8)
C(2)—C(7)—C(6)	120.2(9)	O(1)—C(2)—C(3)	118.3(8)
O(1)—C(2)—C(7)	123.4(9)	C(3)—C(2)—C(7)	118.3(8)
C(5)—C(4)—C(3)	121.7(9)	C(11)—C(10)—C(15)	121.8(9)
C(11)—C(10)—S(1)	122.0(7)	C(15)—C(10)—S(1)	116.1(8)
C(10)—C(11)—C(12)	117.1(11)	C(2)—C(3)—C(4)	120.7(9)
C(13)—C(14)—C(15)	120.1(15)	C(10)—C(15)—C(14)	118.4(13)
C(12)—C(13)—C(14)	120.1(13)	C(13)—C(12)—C(11)	122.4(14)
C(2)—O(1)—C(1)	118.0(7)		

Table S3. Selected Bond Lengths (Å) and Bond Angles (°) of 3

Fig. S1 ¹H NMR Spectrum of L1

Fig. S2 ${}^{13}C{}^{1}H$ NMR Spectrum of L1

Fig. S3 ¹³⁵DEPT NMR Spectrum of L1

Fig. S4 ¹H NMR Spectrum of L2

Fig. S5 $^{13}C\{^{1}H\}$ NMR Spectrum of L2

Fig. S6 ¹³⁵DEPT NMR Spectrum of L2

Fig. S7 $^{77}Se\{^{1}H\}$ NMR Spectrum of L2

Fig. S8¹H NMR Spectrum of L3

Fig. S9 ${}^{13}C{}^{1}H$ NMR Spectrum of L3

Fig. S10¹³⁵DEPT NMR Spectrum of L3

Fig. S11 $^{125}\text{Te}\{^{1}\text{H}\}$ NMR Spectrum of L3

Fig. S12 ¹H NMR Spectrum of 1

Fig. S13 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR Spectrum of 1

Fig. S14 ¹H NMR Spectrum of 2

Fig. S15 ${}^{13}C{}^{1}H$ NMR Spectrum of 2

Fig. S16 77 Se{ 1 H} NMR Spectrum of 2

Fig. S17 ¹H NMR Spectrum of 3

Fig. S18 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR Spectrum of 3

Fig. S19 125 Te{ 1 H} NMR Spectrum of 3

Fig. S20 Molecular Packing of 3 showing Cl... Te Interaction

Fig. S21 TGA Spectrum of 1

Fig. S22 TGA Spectrum of 2

Fig. S23 TGA Spectrum of 3

Fig. S24 PXRD of PdP₂ Nanoparticles Obtained from 1

Fig. S25 PXRD of PdP₂ Nanoparticles Obtained from 2

Fig. S26 PXRD of PdP₂ Nanoparticles Obtained from 3

Fig. S27 SEM Image of Decomposition Product (Pd Nanoparticles Protected by Ligand) of 1 Obtained after Suzuki Coupling Reaction

Fig. S28 SEM Image of Decomposition Product (Pd Nanoparticles Protected by Ligand) of 2 Obtained after Suzuki Coupling Reaction

Fig. S29 SEM Image of Decomposition Product (Pd Nanoparticles Protected by Ligand) of 3 Obtained after Suzuki Coupling Reaction

Fig. S30 SEM–EDX of Decomposition Product (Pd nanoparticles protected by Ligand) of 1 Obtained after Suzuki Coupling Reaction

Fig. S31 SEM–EDX of Decomposition Product (Pd nanoparticles protected by Ligand) of 2 Obtained after Suzuki Coupling Reaction

Fig. S32 SEM–EDX of Decomposition Product (Pd nanoparticles protected by Ligand) of **3** Obtained after Suzuki Coupling Reaction

Fig. S33 FE-SEM image of PdP₂ NPs obtained from complex 1

Fig. S34 FE-SEM image of PdP_2 NPs obtained from complex 2

Fig. S35 FE-SEM image of PdP_2 NPs obtained from complex 3

Fig. S36 SEM Image of PdP_2 Nanoparticles obtained from 1

Fig. S37 SEM Image of PdP_2 Nanoparticles obtained from 2

Fig. S38 SEM Image of PdP_2 Nanoparticles obtained from 3

Fig. S39 SEM EDX of PdP_2 Nanoparticles obtained from 1

Fig. S40 SEM EDX of PdP_2 Nanoparticles obtained from 2

Fig. S41 SEM EDX of PdP_2 Nanoparticles obtained from 3