Employment of triketone to construct dysprosium(III) single-molecule magnet

Chao Wang,^a Shuang-Yan Lin,^a Jianfeng Wu,^{a,b} Sen-Wen Yuan^a and Jinkui Tang^{*a}

^a State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
^b University of Chinese Academy of Sciences, Beijing, 100049, P. R. China

Dy(1)-O(3)	2.245(12)	Dy(1)-O(6)	2.253(11)
Dy(1)-O(9)	2.306(13)	Dy(1)-O(8)	2.349(11)
Dy(1)-O(5)	2.406(10)	Dy(1)-O(2)	2.441(11)
Dy(1)-N(2)	2.558(14)	Dy(1)-N(1)	2.562(14)
Dy(2)-O(1)	2.229(12)	Dy(2)-O(4)	2.271(12)
Dy(2)-O(7)	2.313(13)	Dy(2)-O(8)	2.390(10)
Dy(2)-O(2)	2.415(11)	Dy(2)-O(5)	2.452(10)
Dy(2)-N(3)	2.501(15)	Dy(2)-N(4)	2.528(14)
O(3)-Dy(1)-O(6)	84.3(4)	O(3)-Dy(1)-O(9)	144.5(4)
O(6)-Dy(1)-O(9)	77.7(5)	O(3)-Dy(1)-O(8)	140.2(4)
O(6)-Dy(1)-O(8)	131.1(4)	O(9)-Dy(1)-O(8)	71.2(4)
O(3)-Dy(1)-O(5)	114.5(4)	O(6)-Dy(1)-O(5)	73.9(4)
O(9)-Dy(1)-O(5)	89.7(4)	O(8)-Dy(1)-O(5)	69.2(3)
O(3)-Dy(1)-O(2)	74.9(4)	O(6)-Dy(1)-O(2)	122.2(4)
O(9)-Dy(1)-O(2)	140.4(4)	O(8)-Dy(1)-O(2)	70.5(4)
O(5)-Dy(1)-O(2)	67.6(4)	O(3)-Dy(1)-N(2)	73.3(4)
O(6)-Dy(1)-N(2)	84.6(4)	O(9)-Dy(1)-N(2)	74.7(5)
O(8)-Dy(1)-N(2)	120.6(4)	O(5)-Dy(1)-N(2)	155.8(4)
O(2)-Dy(1)-N(2)	135.4(4)	O(3)-Dy(1)-N(1)	80.4(4)
O(6)-Dy(1)-N(1)	148.3(4)	O(9)-Dy(1)-N(1)	99.4(5)
O(8)-Dy(1)-N(1)	74.9(4)	O(5)-Dy(1)-N(1)	137.7(4)
O(2)-Dy(1)-N(1)	80.1(4)	N(2)-Dy(1)-N(1)	64.5(4)
O(1)-Dy(2)-O(4)	79.1(4)	O(1)-Dy(2)-O(7)	86.9(5)
O(4)-Dy(2)-O(7)	148.5(4)	O(1)-Dy(2)-O(8)	136.8(4)
O(4)-Dy(2)-O(8)	136.6(4)	O(7)-Dy(2)-O(8)	70.8(4)
O(1)-Dy(2)-O(2)	75.9(4)	O(4)-Dy(2)-O(2)	108.0(4)
O(7)-Dy(2)-O(2)	95.6(4)	O(8)-Dy(2)-O(2)	70.2(4)
O(1)-Dy(2)-O(5)	121.8(4)	O(4)-Dy(2)-O(5)	71.8(4)
O(7)-Dy(2)-O(5)	138.4(4)	O(8)-Dy(2)-O(5)	67.8(3)
O(2)-Dy(2)-O(5)	67.2(4)	O(1)-Dy(2)-N(3)	142.8(5)
O(4)-Dy(2)-N(3)	82.7(4)	O(7)-Dy(2)-N(3)	92.1(4)

Table S1. Selected bond lengths (Å) and angles (°) for complex 1

O(8)-Dy(2)-N(3)	76.4(4)	O(2)-Dy(2)-N(3)	140.9(4)
O(5)-Dy(2)-N(3)	81.8(4)	O(1)-Dy(2)-N(4)	78.4(5)
O(4)-Dy(2)-N(4)	72.9(4)	O(7)-Dy(2)-N(4)	76.7(4)
O(8)-Dy(2)-N(4)	128.1(4)	O(2)-Dy(2)-N(4)	153.5(4)
O(5)-Dy(2)-N(4)	134.1(4)	N(3)-Dy(2)-N(4)	65.4(5)
Dy(1)-O(2)-Dy(2)	97.5(4)	Dy(1)-O(5)-Dy(2)	97.4(3)
Dy(1)-O(8)-Dy(2)	100.7(4)		

Table S2. Selected bond lengths (Å) and angles (°) for complex ${\bf 2}$

N(1)-Nd(1)	2.610(3)	N(2)-Nd(1)	2.637(4)
N(3)-Nd(2)	2.642(4)	N(4)-Nd(2)	2.586(4)
Nd(1)-O(4)	2.294(3)	Nd(1)-O(1)	2.342(3)
Nd(1)-O(8)	2.371(3)	Nd(1)-O(7)	2.423(3)
Nd(1)-O(5)	2.496(3)	Nd(1)-O(2)	2.548(3)
Nd(2)-O(3)	2.300(3)	Nd(2)-O(6)	2.339(3)
Nd(2)-O(8)	2.376(3)	Nd(2)-O(9)	2.419(3)
Nd(2)-O(2)	2.505(3)	Nd(2)-O(5)	2.560(3)
O(4)-Nd(1)-O(1)	84.60(11)	O(4)-Nd(1)-O(8)	137.29(10)
O(1)-Nd(1)-O(8)	132.98(11)	O(4)-Nd(1)-O(7)	82.64(12)
O(1)-Nd(1)-O(7)	154.99(10)	O(8)-Nd(1)-O(7)	68.32(11)
O(4)-Nd(1)-O(5)	74.81(10)	O(1)-Nd(1)-O(5)	116.24(10)
O(8)-Nd(1)-O(5)	70.33(9)	O(7)-Nd(1)-O(5)	80.87(10)
O(4)-Nd(1)-O(2)	117.54(11)	O(1)-Nd(1)-O(2)	71.91(10)
O(8)-Nd(1)-O(2)	69.35(10)	O(7)-Nd(1)-O(2)	133.10(9)
O(5)-Nd(1)-O(2)	66.59(9)	O(4)-Nd(1)-N(1)	85.95(11)
O(1)-Nd(1)-N(1)	85.66(11)	O(8)-Nd(1)-N(1)	112.24(10)
O(7)-Nd(1)-N(1)	72.08(11)	O(5)-Nd(1)-N(1)	148.58(11)
O(2)-Nd(1)-N(1)	144.72(10)	O(4)-Nd(1)-N(2)	141.66(11)
O(1)-Nd(1)-N(2)	72.77(11)	O(8)-Nd(1)-N(2)	78.11(10)
O(7)-Nd(1)-N(2)	105.22(11)	O(5)-Nd(1)-N(2)	143.00(10)
O(2)-Nd(1)-N(2)	84.75(10)	N(1)-Nd(1)-N(2)	62.33(12)
O(3)-Nd(2)-O(6)	88.98(11)	O(3)-Nd(2)-O(8)	135.37(10)
O(6)-Nd(2)-O(8)	131.48(11)	O(3)-Nd(2)-O(9)	81.53(12)
O(6)-Nd(2)-O(9)	154.10(11)	O(8)-Nd(2)-O(9)	68.08(11)
O(3)-Nd(2)-O(2)	74.57(10)	O(6)-Nd(2)-O(2)	117.80(10)
O(8)-Nd(2)-O(2)	70.04(9)	O(9)-Nd(2)-O(2)	82.90(10)
O(3)-Nd(2)-O(5)	119.20(10)	O(6)-Nd(2)-O(5)	71.85(10)
O(8)-Nd(2)-O(5)	69.14(9)	O(9)-Nd(2)-O(5)	133.61(10)
O(2)-Nd(2)-O(5)	66.28(9)	O(3)-Nd(2)-N(4)	82.32(12)
O(6)-Nd(2)-N(4)	82.77(11)	O(8)-Nd(2)-N(4)	115.98(11)

O(9)-Nd(2)-N(4)	72.15(12)	O(2)-Nd(2)-N(4)	148.16(12)
O(5)-Nd(2)-N(4)	145.51(12)	O(3)-Nd(2)-N(3)	141.99(11)
O(6)-Nd(2)-N(3)	73.76(11)	O(8)-Nd(2)-N(3)	76.98(10)
O(9)-Nd(2)-N(3)	99.30(12)	O(2)-Nd(2)-N(3)	143.44(10)
O(5)-Nd(2)-N(3)	87.78(11)	N(3)-Nd(2)-N(4)	62.41(13)
Nd(1)-O(2)-Nd(2)	95.71(10)	Nd(1)-O(5)-Nd(2)	95.64(9)
Nd(1)-O(8)-Nd(2)	104.22(10)		

Table S3. Selected bond lengths (Å) and angles (°) for complex 10

Yb(2)-N(1)	2.502(4)	Yb(2)-N(2)	2.474(3)
Yb(1)-N(3)	2.528(4)	Yb(1)-N(4)	2.503(3)
Yb(1)-O(1)	2.222(3)	Yb(1)-O(2)	2.377(3)
Yb(2)-O(2)	2.407(3)	Yb(2)-O(3)	2.216(3)
Yb(2)-O(4)	2.199(3)	Yb(2)-O(5)	2.370(3)
Yb(1)-O(5)	2.423(3)	Yb(1)-O(6)	2.213(3)
Yb(2)-O(7)	2.278(3)	Yb(1)-O(8)	2.313(3)
Yb(2)-O(8)	2.350(3)	Yb(1)-O(9)	2.260(3)
O(6)-Yb(1)-O(1)	83.25(11)	O(6)-Yb(1)-O(9)	143.56(10)
O(1)-Yb(1)-O(9)	76.75(12)	O(6)-Yb(1)-O(8)	139.96(10)
O(1)-Yb(1)-O(8)	132.52(10)	O(9)-Yb(1)-O(8)	72.78(10)
O(6)-Yb(1)-O(2)	114.02(10)	O(1)-Yb(1)-O(2)	75.66(10)
O(9)-Yb(1)-O(2)	90.26(11)	O(8)-Yb(1)-O(2)	69.04(10)
O(6)-Yb(1)-O(5)	75.24(10)	O(1)-Yb(1)-O(5)	122.96(11)
O(9)-Yb(1)-O(5)	141.11(10)	O(8)-Yb(1)-O(5)	69.82(9)
O(2)-Yb(1)-O(5)	66.80(9)	O(6)-Yb(1)-N(4)	73.02(11)
O(1)-Yb(1)-N(4)	82.28(12)	O(9)-Yb(1)-N(4)	74.33(12)
O(8)-Yb(1)-N(4)	121.81(11)	O(2)-Yb(1)-N(4)	155.55(11)
O(5)-Yb(1)-N(4)	136.15(11)	O(6)-Yb(1)-N(3)	80.41(11)
O(1)-Yb(1)-N(3)	146.73(11)	O(9)-Yb(1)-N(3)	100.18(12)
O(8)-Yb(1)-N(3)	75.06(10)	O(2)-Yb(1)-N(3)	137.57(10)
O(5)-Yb(1)-N(3)	80.28(10)	N(4)-Yb(1)-N(3)	65.30(12)
O(4)-Yb(2)-O(3)	78.40(12)	O(4)-Yb(2)-O(7)	84.92(12)
O(3)-Yb(2)-O(7)	146.82(11)	O(4)-Yb(2)-O(8)	136.39(11)
O(3)-Yb(2)-O(8)	137.98(10)	O(7)-Yb(2)-O(8)	71.75(10)
O(4)-Yb(2)-O(5)	76.17(11)	O(3)-Yb(2)-O(5)	108.05(11)
O(7)-Yb(2)-O(5)	95.28(11)	O(8)-Yb(2)-O(5)	70.14(9)
O(4)-Yb(2)-O(2)	122.31(11)	O(3)-Yb(2)-O(2)	72.92(10)
O(7)-Yb(2)-O(2)	139.45(10)	O(8)-Yb(2)-O(2)	67.93(10)
O(2)-Yb(2)-O(5)	67.19(9)	O(4)-Yb(2)-N(2)	142.95(12)
O(3)-Yb(2)-N(2)	83.25(11)	O(7)-Yb(2)-N(2)	93.62(12)

O(8)-Yb(2)-N(2)	76.49(11)	O(5)-Yb(2)-N(2)	140.59(11)
O(2)-Yb(2)-N(2)	81.38(11)	O(4)-Yb(2)-N(1)	77.62(12)
O(3)-Yb(2)-N(1)	72.50(12)	O(7)-Yb(2)-N(1)	76.04(12)
O(8)-Yb(2)-N(1)	128.23(12)	O(5)-Yb(2)-N(1)	153.01(11)
O(2)-Yb(2)-N(1)	134.61(11)	N(2)-Yb(2)-N(1)	66.20(12)
Yb(1)-O(2)-Yb(2)	97.79(10)	Yb(1)-O(5)-Yb(2)	97.54(10)
Yb(1)-O(8)-Yb(2)	101.27(10)		

IR spectra data of complexes 2-10 (cm⁻¹):

Complex 2: 1625(m), 1602(w), 1553(m), 1518(w), 1494(w), 1427(w), 1262(vs), 1184(vs), 1161(vw), 1146(vw), 1125(m), 1100(m), 998(vw), 983(s), 883(s), 864(w), 833(s), 820(vw), 775(w), 752(w), 722(m).

Complex **3**: 1614(s), 1549(m), 1529(w), 1494(m), 1425(m), 1388(vw), 1347(w), 1269(vs), 1185(vs), 1145(vw), 1114(vs), 982(s), 885(s), 864(w), 843(m), 820(s), 769(w), 775(w), 722(m).

Complex 4: 1614(s), 1549(m), 1531(vw), 1494(s), 1425(m), 1388(w), 1347(w), 1291(vw), 1270(vs), 1185(vs), 1145(vw), 1115(vs), 983(s), 884(s), 864(w), 843(w), 820(m), 779(vw), 769(w), 755(w), 722(m).

Complex **5**: 1615(s), 1549(m), 1533(w), 1495(m), 1425(m), 1389(w), 1347(w), 1268(vs), 1184(vs), 1145(vw), 1112(vs), 983(s), 885(s), 864(w), 843(w), 819(s), 779(vw), 769(w), 755(w), 722(m).

Complex 6: 1614(s), 1550(m), 1535(w), 1495(m), 1425(m), 1388(w), 1347(w), 1269(vs), 1184(vs), 1145(vw), 1113(vs), 984(s), 886(s), 864(vw), 844(w), 819(s), 779(vw), 769(w), 756(w), 722(m), 706(vw).

Complex 7: 1615(s), 1552(m), 1537(w), 1496(m), 1425(m), 1389(w), 1345(w), 1268(vs), 1184(vs), 1144(vw), 1114(vs), 1037(vw), 986(s), 887(s), 865(vw), 844(w), 819(s), 779(vw), 770(w), 756(w), 722(m), 705(vw).

Complex 8: 1615(s), 1552(m), 1537(w), 1497(m), 1479(vw), 1425(m), 1389(w), 1347(w), 1268(vs), 1184(vs), 1144(vw), 1114(vs), 1038(vw), 986(s), 887(s), 865(vw), 844(w), 819(s), 779(vw), 770(w), 756(w), 723(m), 705(vw).

Complex **9**: 1626(vw), 1615(s), 1553(m), 1538(w), 1522(vw), 1497(m), 1425(m), 1389(w), 1347(w), 1267(vs), 1185(vs), 1116(vs), 1038(vw), 988(s), 889(s), 865(vw), 845(w), 819(s), 770(vw), 756(w), 723(m).

Complex **10**: 1629(w), 1608(w), 1556(m), 1537(w), 1522(vw), 1499(m), 1425(m), 1266(vs), 1185(vs), 1118(vs), 1038(vw), 990(s), 890(s), 866(w), 845(w), 829(vw), 818(m), 771(w), 755(w),

740(vw), 723(m).

Elemental analysis found (calc) % of complexes **2-10**:

Complex **2**: C: 38.71(38.80) H: 1.63(1.59) N: 4.04(4.02).

Complex **3**: C: 38.52(38.46) H: 1.57(1.58) N: 4.02(3.99).

Complex 4: C: 38.44(38.37) H: 1.60(1.57) N: 3.92(3.98).

Complex 5: C: 38.01(38.09) H: 1.52(1.56) N: 4.00(3.95).

Complex 6: C: 38.03(38.00) H: 1.55(1.56) N: 3.91(3.94).

Complex **7**: C: 37.59(37.68) H: 1.52(1.55) N: 3.93(3.91). Complex **8**: C: 37.61(37.56) H: 1.53(1.54) N: 3.85(3.89). Complex **9**: C: 37.40(37.47) H: 1.54(1.54) N: 3.91(3.88). Complex **10**: C: 37.19(37.26) H: 1.55(1.53) N: 3.88(3.86). The calculation result by SHAPE software: Dv1:

Dyl:		
HBPY-8	3 D6h	Hexagonal bipyramid
CU-8	4 Oh	Cube
SAPR-8	5 D4d	Square antiprism
TDD-8	6 D2d	Triangular dodecahedron
JGBF-8	7 D2d	Johnson gyrobifastigium J26
JETBPY-8	8 D3h	Johnson elongated triangular bipyramid J14
JBTPR-8	9 C2v	Biaugmented trigonal prism J50
BTPR-8	10 C2v	Biaugmented trigonal prism
JSD-8	11 D2d	Snub diphenoid J84
TT-8	12 Td	Triakis tetrahedron
Structure [ML8]	: HBPY-8	15.011
	CU-8	8.872
	SAPR-8	1.340
	TDD-8	1.344
	JGBF-8	15.665
	JETBPY-8	26.840
	JBTPR-8	2.433
	BTPR-8	1.861
	JSD-8	4.121
	TT-8	9.619
Dy2:		
HBPY-8	3 D6h	Hexagonal bipyramid
CU-8	4 Oh	Cube
SAPR-8	5 D4d	Square antiprism
TDD-8	6 D2d	Triangular dodecahedron
JGBF-8	7 D2d	Johnson gyrobifastigium J26
JETBPY-8	8 D3h	Johnson elongated triangular bipyramid J14
JBTPR-8	9 C2v	Biaugmented trigonal prism J50
BTPR-8	10 C2v	Biaugmented trigonal prism
JSD-8	11 D2d	Snub diphenoid J84
TT-8	12 Td	Triakis tetrahedron
Structure [ML8]	: HBPY-8	15.922
	CU-8	10.621
	SAPR-8	2.099
	TDD-8	1.067
	JGBF-8	14.168
	JETBPY-8	28.353
	JBTPR-8	2.058
	BTPR-8	1.617
	JSD-8	3.339
	TT-8	11.354

Fig. S1 Packing arrangement of complex 1 along the *c* axis, hydrogen and fluorine atoms are omitted for clarity, the dotted line is the shortest intermolecular Dy-Dy distance.

Fig. S2 Powder XRD analysis of 3. The black line is simulated data from single crystal data of 1.

Fig. S3 Powder XRD analysis of 4. The black line is simulated data from single crystal data of 1.

Fig. S4 Powder XRD analysis of 5. The black line is simulated data from single crystal data of 1.

Fig. S5 Powder XRD analysis of 6. The black line is simulated data from single crystal data of 1.

Fig. S6 Powder XRD analysis of 7. The black line is simulated data from single crystal data of 1.

Fig. S7 Powder XRD analysis of 8. The black line is simulated data from single crystal data of 1.

Fig. S8 Powder XRD analysis of 9. The black line is simulated data from single crystal data of 1.

Fig. S9 $\chi_M T$ versus *T* curve of complex 3, the red line is the best simulation in the temperature range 50-300 K with the parameters of $\lambda = 224.3 \text{ cm}^{-1}$, g = 0.33, $zj' = -2.68 \text{ cm}^{-1}$.

Fig. S10 $\chi_{\rm M}T$ versus *T* curve of complex 4, the red line is the best simulation in the temperature range 2-300 K with the parameters of $\lambda = 346.9$ cm⁻¹, g = 0.79, zj' = 1.38 cm⁻¹.

Fig. S11 Temperature dependence of the in-phase (χ ') and out-of-phase (χ '') components of the alternating-current susceptibilities for complex **2** under zero *dc* field at the frequency of 1000 Hz.

Fig. S12 Temperature dependence of the in-phase (χ ') and out-of-phase (χ '') components of the alternating-current susceptibilities for complex **3** under zero *dc* field at the frequency of 1000 Hz.

Fig. S13 Temperature dependence of the in-phase (χ') and out-of-phase (χ'') components of the alternating-current susceptibilities for complex **4** under zero *dc* field at the frequency of 1000 Hz.

Fig. S14 Temperature dependence of the in-phase (χ') and out-of-phase (χ'') components of the alternating-current susceptibilities for complex **6** under zero *dc* field at the frequency of 1000 Hz.

Fig. S15 Temperature dependence of the in-phase (χ') and out-of-phase (χ'') components of the alternating-current susceptibilities for complex 7 under zero *dc* field at the frequency of 1000 Hz.

Fig. S16 Temperature dependence of the in-phase (χ') and out-of-phase (χ'') components of the alternating-current susceptibilities for complex **8** under zero *dc* field at the frequency of 1000 Hz.

Fig. S17 Temperature dependence of the in-phase (χ ') and out-of-phase (χ '') components of the alternating-current susceptibilities for complex 9 under zero *dc* field at the frequency of 1000 Hz.

Fig. S18 Temperature dependence of the in-phase (χ ') and out-of-phase (χ '') components of the alternating-current susceptibilities for complex 10 under zero *dc* field at the frequency of 1000 Hz.