Supporting information for

Synthesis and Characterization of Phosphorescent Platinum and Iridium Complexes with Cyclometalated Corannulene

John W. Facendola¹, Martin Seifrid¹, Jay Siegel², Peter I. Djurovich¹, Mark E. Thompson^{1,*}

¹ Department of Chemistry, University of Southern California, Los Angeles, California 90089

² School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China

Table of Contents

1. Figure S-1. gCOSY of (corpy)Pt(dpm) in CDCl ₃	S 3
2. Figure S-2. 1D NOESY of (corpy)Pt(dpm) irradiation at 8.5 ppm CDCl ₃	S4
3. Figure S-3. 1D NOESY of (corpy)Ir(ppz) ₂ irradiation at 8.33 ppm in 2:1 CD ₂ Cl ₂ : acetone	S5
4. Figure S-4. gCOSY of (corpy)Ir(ppz) ₂ in 2:1 CD ₂ Cl ₂ : acetone	S6
5. Figure S-5 NOESY of (corpy)Ir(ppz) ₂ in 2:1 CD ₂ Cl ₂ : acetone	S7
6. Figure S-6. 1D NOESY of (corpy)Ir(ppz) ₂ irradiation at 6.50 ppm in 2:1 CD ₂ Cl ₂ : acetone	S8
7. Figure S-7. NMR of (phenpy)Ir(ppz) ₂ in (CD ₃) ₂ SO	S9
8. Figure S-8. VT NMR of (corpy)Pt(dpm)in CD ₂ Cl ₂	S10
9. Figure S-9. VT NMR of (phenpy)Ir(ppz) ₂ in CD ₂ Cl ₂	.S11
10. Figure S-10. VT NMR of (phenpy)Ir(ppz) ₂ in (CD ₃) ₂ SO	.S12
11. Figure S-11. ¹³ C NMR of (corpy)Pt(dpm) in CDCl ₃	.S13
12. Figure S-12. ¹³ C NMR of (corpy)Ir(ppz) ₂ in CDCl ₃	.S14
13. Figure S-13. ¹³ C NMR of (phenpy)Ir(ppz) ₂ in CDCl ₃	.S15
14. Figure S-14. Cyclic Voltammetry of (phenpy)Ir(ppz) ₂ vs Fc/Fc ⁺	S16
15. Figure S-15. Cyclic Voltammetry of (corpy)Ir(ppz) ₂ vs Fc/Fc ⁺	S16
16. Figure S-16. Cyclic Voltammetry of (corpy)Pt(dpm) vs Fc/Fc ⁺	S17
17. Figure S-17. Irradiation of <i>mer</i> to <i>fac</i> (corpy)Ir(ppz) ₂ in MeCN	S17
18. Figure S-18. Erying analysis of VT NMR of (corpy)Ir(ppz) ₂	S18
19. Figure S-19 Emission spectra of corpy and phenpy free ligand in 2-MeTHF	S18
20. Figure S-20-22 Emission Decay Spectra of all complexes	S19-S20
21. Table S1. Orbital contributions calculated for $S_0 \rightarrow T_1$ transition of (corpy)Pt(dpm)	S21

22. Figure S23.	Molecular orbitals for $S_0 \rightarrow T_1$ transition of (corpy)Pt(dpm)	.S21
23. Table S2. Or	bital contributions calculated for $S_0 \rightarrow T_1$ transition of $(corpy)Ir(ppz)_2$.S22
24. Figure S24.	Molecular orbitals for $S_0 \rightarrow T_1$ transition of (corpy)Ir(ppz) ₂ Λ -P	S22
25. Figure S25.	Molecular orbitals for $S_0 \rightarrow T_1$ transition of (corpy)Ir(ppz) ₂ Λ -M	.S23
26. Table S3. Or	bital contributions calculated for $S_0 \rightarrow T_1$ transition of (phenpy)Ir(ppz) ₂	.S23
27. Figure S26.	Molecular orbitals for $S_0 \rightarrow T_1$ transition of (phenpy)Ir(ppz) ₂ Λ -P	.S24
28. Figure S27.	Molecular orbitals for $S_0 \rightarrow T_1$ transition of (phenpy)Ir(ppz) ₂ Λ -M	.S24

S-1. gCOSY of (corpy)Pt(dpm) in CDCl₃.

S-2. 1D NOESY of (corpy)Pt(dpm) irradiation at 8.5 ppm in CDCl₃.

S-3. gCOSY of (corpy)Ir(ppz)₂ in 2:1 CD₂Cl₂: acetone.

. 1D S5 S-4. 1D NOESY of (corpy)Ir(ppz)₂ irradiation at 8.33 ppm in 2:1 CD₂Cl₂: acetone.

S-5 NOESY of (corpy)Ir(ppz)₂ in 2:1 CD₂Cl₂: acetone.

S-6. 1D NOESY of (corpy)Ir(ppz)₂ irradiation at 6.50 ppm in 2:1 CD₂Cl₂: acetone.

S-7. NMR of $(phenpy)Ir(ppz)_2$ in $(CD_3)_2SO$.

S-8. VT NMR of (corpy)Pt(dpm) in CD₂Cl₂.

S-9. VT NMR of (phenpy)Ir(ppz)₂ in CD₂Cl₂.

S-10. VT NMR of (phenpy)Ir(ppz)₂ in (CD₃)₂SO.

S-12. ¹³C NMR of (corpy)Ir(ppz)₂ in CDCl₃.

S-13. ¹³C NMR of (corpy)Ir(ppz)₂ in CDCl₃.

S-14. Cyclic Voltammetry of (phenpy)Ir(ppz)₂ vs Fc/Fc⁺

S-15. Cyclic Voltammetry of (corpy)Ir(ppz)₂ vs Fc/Fc⁺

S-16. Cyclic Voltammetry of (corpy)Pt(dpm) vs Fc/Fc⁺

S-17. Irradiation of mer to fac (corpy)Ir(ppz)₂ in MeCN

S-19 Emission spectra of corpy and phenpy free ligand in 2-MeTHF

S-20. Emission Decay Spectra of (corpy)Ir(ppz)₂ various wavelengths

S-21. Emission Decay Spectra of (phenpy)Ir(ppz)₂

$(\lambda = 581 \text{ nm})$							
tra	transition			assignment			
120	=>	121	88.9	MLCT			
120	=>	122	2.8	MLCT			
119	=>	121	3.0	LC			
119	=>	122	1.9	LC			
118	=>	121	3.4	ML'LCT			

Table S1. Orbital contributions calculated for $S_0 \rightarrow T_1$ transition of (corpy)Pt(dpm).

91.7% MLCT, 4.9% LC, 3.4% ML'LCT

Figure S23. Molecular orbitals for $S_0 \rightarrow T_1$ transition of (corpy)Pt(dpm).

tra	ansiti	on	%	assignment	transition		%	assignment	
168	=>	169	11.4	L'LCT	168	=>	169	4.5	L'LCT
168	=>	170	1.2	L'LCT	167	=>	169	77.7	MLCT
167	=>	169	67.4	MLCT	167	=>	170	7.4	MLCT
167	=>	170	6.6	MLCT	166	=>	169	3.4	L'LCT
166	=>	169	7.4	L'LCT	165	=>	169	2.1	MLCT + LC
165	=>	170	1.3	MLCT + LC	165	=>	170	1.3	MLCT + LC
164	=>	169	4.7	MLCT +LC	163	=>	169	3.5	MLCT + LC

Table S2. Orbital contributions calculated for $S_0 \rightarrow T_1$ transition of $(corpy)Ir(ppz)_2$.

80.0% MLCT, 20.0% L'LCT

 $(\text{corpy})\text{Ir}(\text{ppz})_2 \Lambda$ -P ($\lambda = 558 \text{ nm}$)

91.1% MLCT, 8.9% LLCT

(corpy)Ir(ppz)₂ Λ -M (λ = 565 nm)

Figure S24. Molecular orbitals for $S_0 \rightarrow T_1$ transition of $(\text{corpy})\text{Ir}(\text{ppz})_2 \Lambda$ -P.

Figure S25. Molecular orbitals for $S_0 \rightarrow T_1$ transition of $(\text{corpy})\text{Ir}(\text{ppz})_2 \Lambda$ -M.

Table S3. Orbital contributions calculated for $S_0 \rightarrow T_1$ transition of (phenpy)Ir(ppz)₂.

(phenpy)Ir(ppz)₂ Λ -P (λ = 546 nm)

(phenpy)Ir(ppz)₂ Λ -M (λ = 565 nm)

tra	ansiti	on	%	assignment	transition		%	assignment	
150	=>	151	25.0	L'LCT	150	=>	151	76.5	MLCT
149	=>	151	69.2	MLCT	150	=>	154	2.1	MLCT
149	=>	154	1.7	MLCT	149	=>	151	18.8	L'LCT
148	=>	151	1.9	L'LCT	148	=>	151	2.5	L'LCT
146	=>	151	2.1	L'LCT					

70.9% MLCT, 29.1% L'LCT

78.6% MLCT, 21.4% L'LCT

Figure S26. Molecular orbitals for $S_0 \rightarrow T_1$ transition of (phenpy)Ir(ppz)₂ A-P.

Figure S27. Molecular orbitals for $S_0 \rightarrow T_1$ transition of (phenpy)Ir(ppz)₂ A-M.

