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Table S1. Crystal Data and Structure Refinement for [Mn
III

(OMe)(dpaq)](OTf). 
 

Empirical formula  C50 H46 F6 Mn2 N10 O10.73 S2 

Formula weight  1246.73 

Temperature  100(2) K 

Wavelength  1.54178 Å 

Crystal system  Orthorhombic 

Space group  Pna2(1) 

Unit cell dimensions a = 13.6388(4) Å a= 90°. 

 b = 26.1547(7) Å b= 90°. 

 c = 15.1412(4) Å g = 90°. 

Volume 5401.1(3) Å3 

Z 4 

Density (calculated) 1.533 Mg/m3 

Absorption coefficient 5.306 mm-1 

F(000) 2552 

Crystal size 0.20 x 0.09 x 0.06 mm3 

Theta range for data collection 3.37 to 70.01°. 

Index ranges -16<=h<=16, -30<=k<=29, -15<=l<=17 

Reflections collected 50470 

Independent reflections 8511 [R(int) = 0.0247] 

Completeness to theta = 66.00° 97.7 %  

Absorption correction Multi-scan 

Max. and min. transmission 1.000 and 0.715 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 8511 / 211 / 826 

Goodness-of-fit on F2 1.051 

Final R indices [I>2sigma(I)] R1 = 0.0748, wR2 = 0.2117 

R indices (all data) R1 = 0.0757, wR2 = 0.2131 

Absolute structure parameter 0(3) 

Largest diff. peak and hole 1.177 and -0.773 e.Å-3 
 
 
 

R1 =  ||Fo| - |Fc|| /  |Fo|  
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Figure S1. ESI mass spectra of A) [Mn
III

(OMe)(dpaq)]
+
 in MeOH and B) [Mn

III
(OMe)(dpaq)]

+
 

dissolved in H2O, showing full conversion to [Mn
III

(OH)(dpaq)]
+
. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MnII_dpaq_O2_MeCN_H2O_in_MeOH

m/z
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

%

0

100

L101913 9 (0.957) Cm (6:16) 1: TOF MS ES+ 
1.23e7468.1219

469.1301

 

MnIII_OH_MeOH_H2O

m/z
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

%

0

100

L110847 9 (0.957) Cm (7:21) 1: TOF MS ES+ 
8.50e6454.0902

455.0959
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Table S2. Selected Bond Lengths (Å) and Angles (deg) for One of the Two [Mn
III

(OMe)(dpaq)]
+
 

Cations in the X-ray Diffraction Structure of [Mn
III

(OMe)(dpaq)]
+
. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2. Cyclic voltammogram of [Mn
III

(OMe)(dpaq)]
+
 in acetonitrile (12.89 mg in 10 ml) at 

298 K (Scan rate = 100 mV s
-1

; starting potential = 1.13 V) under an argon atmosphere. The 

electrochemical cell consisted of a glassy carbon working electrode, a platinum auxiliary 

electrode, and a AgCl/Ag reference electrode along with a 0.1 M acetonitrile solution of 

Bu4N(PF6) as the supporting electrolyte.  

 

 

NOTE: The irreversible redox event at Ep,c = -0.88 V is attributed to the Mn
III

/Mn
II
 couple which 

is 0.22 V lower than that of [Mn
III

(OH)(dpaq)]
+
 (-0.6 V vs Fc

+
/Fc).

1
 The multiple oxidation 

events between Epa = +0.5 and -0.4 V are possibly due to the redox activity of the 8-

aminoquinolinyl moiety of the supporting ligand, as previously observed for ruthenium(II) 

complexes supported by 8-aminoquinoline.
2
 

 

 

[Mn
III

(OMe)(dpaq)]
+
 (B) 

MnO2 1.814(5) O2MnN2 178.0(3) 

MnN2 1.982(6) N4MnN5 153.8(2) 

MnN1 2.086(11) N1MnN3 156.5(4) 

MnN3 2.169(6) N4MnN2 86.8(2) 

MnN4 2.154(7) N1MnN2 74.5(2) 

MnN5 2.195(6) N3MnN2 82.1(3) 
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Figure S3. A) 5 K EPR spectra of the final products of A) TEMPOH and B) 
4-t-butyl

ArOH 

oxidation by [Mn
III

(OMe)(dpaq)]
+
 in MeCN.  The intense features centered at g = 2.04 has been 

previously observed for both TEMPO and 
4-t-butyl

ArO· radicals.
3, 4

 Parallel-mode EPR 

experiments were performed on both of these samples, but no features were observed. 

 

 

 

 

 

Table S3. Yields of 
4-t-butyl

ArO

 from the Oxidation of 

4-t-butyl
ArOH by [Mn

III
(OMe)(dpaq)]

+
 at 50 

ºC in MeCN at Variable Concentrations of the Phenol. 

 [Mn
III

(OMe)(dpaq)]
+

0 

(mM) 
a

 

[
4-t-butyl

ArOH]0 

(mM) 
a 

AU628 (final) [
4-t-butyl

ArO·]f 

(mM) 
b 

Percent 

conversion 
c 

1.25 12.5 0.36 0.90 72% 

1.25 62.5 0.38 0.95 76% 

1.25 93.8 0.36 0.90 72% 

1.25 125 0.38 0.95 76% 

1.25 156 0.39 0.98 79% 
a
 Initial concentration at t = 0 s. 

b
 Final concentration of phenoxyl radical determined using the 

extinction coefficient of 
4-t-butyl

ArO· at 25 ºC in MeCN.
5
 
c 
Percent conversion of phenoxyl radical 

relative to initial concentration of [Mn
III

(OMe)(dpaq)]
+
. 
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Figure S4. Observed pseudo-first order rate constants (kobs) as a function of substrate 

concentration for the oxidation of 
4-t-butyl

ArOH by [Mn
III

(OMe)(dpaq)]
+
 in MeCN and in MeOH 

at 50 ºC. 
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Figure S5. Observed pseudo-first order rate constants (kobs) as a function of phenol concentration 

for reactions of 
4-OMe

ArOH, 
4-Me

ArOH, and 
4-H

ArOH with [Mn
III

(OMe)(dpaq)]
+
 in MeCN at 50 

ºC. 
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Figure S6. The decay of electronic absorption features of a 1.25 mM MeCN solution of 

[Mn
III

(OMe)(dpaq)]
+
 upon the addition of 250 equiv. xanthene at 50 ºC under argon.  Inset: Time 

evolution of the absorption signal at 550 nm. The pseudo-first order rate constant for this 

reaction was determined using the method of initial rates. 
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