Supporting Information for

O–H Bond Oxidation by a Monomeric Mn^{III}–OMe Complex

Gayan B. Wijeratne, Victor W. Day, and Timothy A. Jackson*

[†]Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, Kansas 66045

RECEIVED DATE

*To whom correspondence should be addressed:

Timothy A. Jackson 1251 Wescoe Hall Drive Lawrence, KS 66045 Phone: (785) 864-3968 Fax: (785) 864-5396 taj@ku.edu

Empirical formula	C50 H46 F6 Mn2 N1	C50 H46 F6 Mn2 N10 O10.73 S2		
Formula weight	1246.73	1246.73		
Temperature	100(2) K	100(2) K		
Wavelength	1.54178 Å			
Crystal system	Orthorhombic			
Space group	Pna2(1)			
Unit cell dimensions	a = 13.6388(4) Å	a= 90°.		
	b = 26.1547(7) Å	b=90°.		
	c = 15.1412(4) Å	$g = 90^{\circ}$.		
Volume	5401.1(3) Å ³			
Z	4			
Density (calculated)	1.533 Mg/m ³			
Absorption coefficient	5.306 mm ⁻¹			
F(000)	2552	2552		
Crystal size	0.20 x 0.09 x 0.06 mm	0.20 x 0.09 x 0.06 mm ³		
Theta range for data collection	3.37 to 70.01°.	3.37 to 70.01°.		
Index ranges	-16<=h<=16, -30<=k	-16<=h<=16, -30<=k<=29, -15<=l<=17		
Reflections collected	50470	50470		
Independent reflections	8511 [R(int) = 0.0247	8511 [R(int) = 0.0247]		
Completeness to theta = 66.00°	97.7 %	97.7 %		
Absorption correction	Multi-scan	Multi-scan		
Max. and min. transmission	1.000 and 0.715	1.000 and 0.715		
Refinement method	Full-matrix least-squa	Full-matrix least-squares on F ²		
Data / restraints / parameters	8511 / 211 / 826	8511 / 211 / 826		
Goodness-of-fit on F ²	1.051			
Final R indices [I>2sigma(I)]	R1 = 0.0748, wR2 = 0	R1 = 0.0748, $wR2 = 0.2117$		
R indices (all data)	R1 = 0.0757, wR2 = 0	R1 = 0.0757, wR2 = 0.2131		
Absolute structure parameter	0(3)	0(3)		
Largest diff. peak and hole	1.177 and -0.773 e.Å ⁻	1.177 and -0.773 e.Å ⁻³		

Table S1. Crystal Data and Structure Refinement for [Mn^{III}(OMe)(dpaq)](OTf).

 $R_{1} = \Sigma ||F_{O}| - |F_{C}|| / \Sigma |F_{O}|$ $wR_{2} = \{ \Sigma [w(F_{O}^{2} - F_{C}^{2})^{2}] / \Sigma [w(F_{O}^{2})^{2}] \}^{1/2}$

Figure S1. ESI mass spectra of A) $[Mn^{III}(OMe)(dpaq)]^+$ in MeOH and B) $[Mn^{III}(OMe)(dpaq)]^+$ dissolved in H₂O, showing full conversion to $[Mn^{III}(OH)(dpaq)]^+$.

$[Mn^{III}(OMe)(dpaq)]^+(B)$					
Mn–O2	1.814(5)	O2–Mn–N2	178.0(3)		
Mn-N2	1.982(6)	N4-Mn-N5	153.8(2)		
Mn-N1	2.086(11)	N1-Mn-N3	156.5(4)		
Mn-N3	2.169(6)	N4-Mn-N2	86.8(2)		
Mn–N4	2.154(7)	N1-Mn-N2	74.5(2)		
Mn-N5	2.195(6)	N3-Mn-N2	82.1(3)		

Table S2. Selected Bond Lengths (Å) and Angles (deg) for One of the Two $[Mn^{III}(OMe)(dpaq)]^+$ Cations in the X-ray Diffraction Structure of $[Mn^{III}(OMe)(dpaq)]^+$.

Figure S2. Cyclic voltammogram of $[Mn^{III}(OMe)(dpaq)]^+$ in acetonitrile (12.89 mg in 10 ml) at 298 K (Scan rate = 100 mV s⁻¹; starting potential = 1.13 V) under an argon atmosphere. The electrochemical cell consisted of a glassy carbon working electrode, a platinum auxiliary electrode, and a AgCl/Ag reference electrode along with a 0.1 M acetonitrile solution of Bu₄N(PF₆) as the supporting electrolyte.

NOTE: The irreversible redox event at $E_{p,c} = -0.88$ V is attributed to the Mn^{III}/Mn^{II} couple which is 0.22 V lower than that of [Mn^{III}(OH)(dpaq)]⁺ (-0.6 V vs Fc⁺/Fc).¹ The multiple oxidation events between $E_{pa} = +0.5$ and -0.4 V are possibly due to the redox activity of the 8aminoquinolinyl moiety of the supporting ligand, as previously observed for ruthenium(II) complexes supported by 8-aminoquinoline.²

Figure S3. A) 5 K EPR spectra of the final products of A) TEMPOH and B) $^{4-t-butyl}$ ArOH oxidation by $[Mn^{III}(OMe)(dpaq)]^+$ in MeCN. The intense features centered at g = 2.04 has been previously observed for both TEMPO and $^{4-t-butyl}$ ArO· radicals.^{3, 4} Parallel-mode EPR experiments were performed on both of these samples, but no features were observed.

$[Mn^{III}(OMe)(dpaq)]^+_0$	[^{4-t-butyl} ArOH] ₀	AU ₆₂₈ (final)	$[^{4-t-butyl}ArO\cdot]_{f}$	Percent
$(\mathbf{m}\mathbf{M})^{a}$	$(\mathrm{mM})^{a}$		$(\mathrm{mM})^{b}$	conversion ^c
1.25	12.5	0.36	0.90	72%
1.25	62.5	0.38	0.95	76%
1.25	93.8	0.36	0.90	72%
1.25	125	0.38	0.95	76%
1.25	156	0.39	0.98	79%

Table S3. Yields of ^{4-t-butyl}ArO[•] from the Oxidation of ^{4-t-butyl}ArOH by [Mn^{III}(OMe)(dpaq)]⁺ at 50 °C in MeCN at Variable Concentrations of the Phenol.

^{*a*} Initial concentration at t = 0 s. ^{*b*} Final concentration of phenoxyl radical determined using the extinction coefficient of ^{4-*t*-butyl}ArO· at 25 °C in MeCN.⁵ ^{*c*} Percent conversion of phenoxyl radical relative to initial concentration of [Mn^{III}(OMe)(dpaq)]⁺.

Figure S4. Observed pseudo-first order rate constants (k_{obs}) as a function of substrate concentration for the oxidation of ^{4-t-butyl}ArOH by $[Mn^{III}(OMe)(dpaq)]^+$ in MeCN and in MeOH at 50 °C.

Figure S5. Observed pseudo-first order rate constants (k_{obs}) as a function of phenol concentration for reactions of ^{4-OMe}ArOH, ^{4-Me}ArOH, and ^{4-H}ArOH with [Mn^{III}(OMe)(dpaq)]⁺ in MeCN at 50 °C.

Figure S6. The decay of electronic absorption features of a 1.25 mM MeCN solution of $[Mn^{III}(OMe)(dpaq)]^+$ upon the addition of 250 equiv. xanthene at 50 °C under argon. Inset: Time evolution of the absorption signal at 550 nm. The pseudo-first order rate constant for this reaction was determined using the method of initial rates.

References

- 1. G. B. Wijeratne, B. Corzine, V. W. Day and T. A. Jackson, *Inorg. Chem.*, 2014, **53**, 7622-7634.
- 2. M. K. O'Neill, A. F. Trappey, P. Battle, C. L. Boswell and D. N. Blauch, *Dalton Trans.*, 2009, 3391-3394.
- 3. M. F. Ottaviani, M. Garcia-Garibay and N. J. Turro, *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 1993, **72**, 321-332.
- 4. A. T. Fiedler and L. Que, Inorg. Chem., 2009, 48, 11038-11047.
- 5. V. W. Manner, T. F. Markle, J. H. Freudenthal, J. P. Roth and J. M. Mayer, *Chem. Commun.* (*Cambridge*, U. K.), 2008, 256-258.