Synthesis and structural characterization of several salts of 3,5dinitro-1H-1,2,4-triazole

R. Haiges,* G. Belanger-Chabot, S. M. Kaplan, and K. O. Christe

Supporting Information

Content

1	Ехр	erimental	2		
2	Crystallographic details				
	2.1	Crystal Structure Report for LiDNT·2H2O	11		
	2.2	Crystal Structure Report for NaDNT·2H ₂ O	16		
	2.3	Crystal Structure Report for KDNT	21		
	2.4	Crystal Structure Report for KDNT·2H ₂ O	29		
	2.5	Crystal Structure Report for RbDNT	35		
	2.6	Crystal Structure Report for CsDNT	40		
	2.7	Crystal Structure Report for Sr(DNT) ₂ ·6H ₂ O	46		
	2.8	Crystal Structure Report for Ba(DNT) ₂ ·11H ₂ O	56		
	2.9	Crystal structure report for [Ag(NH ₃)][DNT]	62		
	2.10	Crystal Structure Report for [NH ₄][DNT]	67		
	2.11	Crystal Structure Report for [C(NH ₂) ₃][DNT]	72		
	2.12	Crystal Structure Report for [aminoguanidine][DNT]	76		
	2.13	Crystal Structure Report for [HNEt ₃][DNT]	83		
	2.14	Crystal Structure Report for monoclinic [H ₂ NEt ₂][DNT]	90		
	2.15	Crystal Structure Report for triclinic [H ₂ NEt ₂][DNT]	96		
	2.16	Crystal Structure Report for $[C_5H_6N][DNT]$	102		
	2.17	Crystal Structure Report for [CH4N5][DNT]	109		
	2.18	Crystal Structure Report for [PPh4][DNT]	117		
	2.19	Crystal Structure Report for [PNP][DNT]	126		
	2.20	Crystal Structure Report for [TMA][DNT]	136		
	2.21	Crystal Structure Report for [TMA][DNT]·HDNT	142		
3	Ref	erences	149		

1 Experimental

Caution! The compounds of this work are energetic materials that might explode under certain conditions (e.g. elevated temperatures, impact, friction or electric discharge). Appropriate safety precautions,¹ such as the use of shields or barricades in a fume hood and personal protection equipment (safety glasses, face shields, ear plugs, as well as gloves and suits made from leather and/or Kevlar) should be taken all the time when handling these materials. **Ignoring safety precautions may lead to serious injuries!**

Unless otherwise specified, all chemicals were used as purchased from Alfa Aesar or Sigma-Aldrich without further purification. NMR spectra were recorded on Varian VNMRS-600S spectrometer or Bruker AMX-500 spectrometers. ¹³C NMR spectra were referenced to the deuterated solvent signal and ¹H spectra were referenced to the residual protic signal. ¹⁴N spectra were referenced to neat nitromethane and ³¹P spectra were referenced to neat H₃PO₄. Raman spectra were recorded at ambient temperature in Pyrex glass melting point capillaries or J.Young NMR tubes on a Bruker Equinox 55 FT-RA spectrometer using a Nd:YAG laser at 1064 nm. Infrared spectra were recorded between 4000 and 400 cm–1 on Midac, M Series or Bruker Optics Alpha FT-IR spectrometers. The samples were either as KBr pellets or AgCl pellets or the neat solid on a ATR module (Bruker). KBr pellets were prepared with an Econo minipress (Barnes Engineering Co.). Differential thermal analysis (DTA) curves were recorded on an OZM Research DTA 552-Ex instrument under a dry nitrogen gas flow with a heating rate of 5 °C using the Meavy 2.2.0 software. Sensitivity measurements were performed on an OZM Research BAM fall hammer BFH-10 and an OZM Research BAM friction apparatus FSKM-10.

The single-crystal X-ray diffraction data were collected on Bruker SMART APEX or APEX DUO diffractometers. The SMART APEX instrument was equipped with an APEX CCD detector and a Crvo Industries low-temperature device. This diffractometer was using graphite monochromatized Mo Ka radiation from a finefocus tube. The APEX DUO diffractometer was equipped with an APEX II CCD detector and an Oxford Cryostream 700 apparatus for lowtemperature data collection. The diffractometer was using Mo Ka radiation (Triumph curvedcrystal monochromator) from a finefocus tube or Cu Ka radiation (multi-layer optics) from an IµS microsource). The collected frames were integrated with the SAINT algorithm² to give the hkl files corrected for Lp/decay. Absorption correction was performed with the SADABS program.³ The structures were solved by direct methods or intrinsic phasing and refined on F^2 by use of the Bruker SHELXTL software package.⁴⁻⁷ All non-hydrogen atoms were refined anisotropically. Unless noted otherwise, the positions of hydrogen atoms have been located from the difference electron density map. ORTEP drawings were prepared with the ORTEP-III for Windows V2.02 program.⁸ Short-contact, hydrogen-bonding and crystal packing drawings of most inorganic salts were prepared with the Mercury 3.1 Development (Build RC5) software.9 Further crystallographic details can be obtained from the Cambridge Crystallographic Data Centre (CCDC, 12 Union Road, Cambridge CB21EZ, UK (Fax: (+44) 1223-336-033; e-mail:

deposit@ccdc.cam.ac.uk) on quoting the deposition no. CCDC 1006182 ([HNEt₃][DNT]), ([H₂NEt₂][DNT] monoclinic) 1013941 $([H_2NEt_2][DNT])$ triclinic), 1006181 1006639 ([CH₆N₃][DNT]), 1014382 $([CH_7N_4][DNT]),$ 1006408 $([C_{5}H_{6}N][DNT]),$ 1009537 ([PPh₄][DNT]), 1006184 ([PPN][DNT]), 1031353 ([NMe₄][DNT]), and 1006180 ([NMe₄][DNT]) ·HDNT) from the Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (Fax: (+49) 7247-808-666, e-mail: crysdata@fiz-karlsruhe.de, http://www.fizkarlsruhe.de/request for deposited data.html) on quoting the deposition numbers CSD 427905 (LiDNT·2H₂O), 427851 (NaDNT·2H₂O), 427971 (KDNT), 427853 (KDNT·2H₂O), 427852 (RbDNT), 427854 (CsDNT), 428080 (Sr(DNT)₂·6H₂O), 428122 (Ba(DNT)₂·11H₂O), 427855 (Ag(NH₃)DNT), 428079 (NH₄DNT·2H₂O), 427856 ([CH₄N₅][DNT]·H₂O).

3,5-dinitro-1H-1,2,4-triazole (HDNT) was prepared according to a modified literature method.^{10,} ¹¹ All yields are reported with respect to the HDNT starting material. In all cases, the purity of the materials was assessed by ¹H and ¹³C NMR spectroscopy.

Preparation of LiDNT·2H₂O (1·2H₂O). A solution of HDNT (0.318 g, 1.5 mmol) in acetone (5 mL) was added to Li₂CO₃ (0.370 g, 5.00 mmol). The remaining suspension was stirred for 2 hours and then filtered. The yellow filtrate was taken to dryness by evaporation in air, resulting in the formation of yellow crystals of LiDNT·2H₂O formed (yield: 0.230 g, 95 %). DTA: 280 °C decomposition. NMR (CD₃CN) δ (ppm): ¹³C (100.54 MHz) 163.8 (s, *C*-NO₂); ¹⁴N (36.14 MHz) - 21.6 (s, v_{1/2} = 110 Hz, C-*N*O₂), -57 (s, v_{1/2} > 500 Hz, DNT⁻).

IR (ATR, 20°C) \tilde{v} /cm⁻¹: 3533 (s), 3364 (s), 3250 (m), 2920 (w), 2854 (w), 2774 (w), 2710 (w), 2677 (w), 2480 (w), 2425 (w), 2395 (w), 2217 (w), 2163 (w), 1639 (m), 1542 (s), 1497 (s), 1418 (w), 1395 (s), 1357 (s), 1305 (s), 1115 (m), 1049 (m), 830 (s), 642 (w), 617 (w), 542 (s), 503 (w), 416 (w).

Preparation of NaDNT·2H₂O (2·2H₂O). A solution of HDNT (0.233 g, 1.47 mmol) in acetone (5 mL) was added to a suspension of Na₂CO₃ (0.844 g, 7.96 mmol) (Macron) in acetone (30 mL), resulting in effervescence and a color change of the Na₂CO₃ from white to yellow. Water (~0.5 mL) was added and the suspension was stirred vigorously for three days. The suspension was then vacuum filtered. The pale yellow filtrate was was taken to dryness by evaporation in air, resulting in the formation of pale yellow crystals. The crystals were dried in an evacuated desiccator for two hours resulting in pale yellow to dark orange microcrystalline NaDNT·2H₂O (yield: 0.321 g, 100 %). DTA: 260 °C decomposition. NMR (DMSO-*d*₆) δ (ppm): ¹³C (125.76 MHz) 163.0 (*C*-NO₂); ¹⁴N(36.14 MHz) -20.7 (s, v_{1/2} = 200Hz, C-*N*O₂), -52(s, v_{1/2} = 1000 Hz, DNT⁻), -145 (s, v_{1/2} = 800 Hz, DNT⁻).

IR (ATR, 20°C) \tilde{v} /cm⁻¹: 3554 (s), 3353 (s), 3260 (m), 3087 (w), 3060 (w), 2923 (w), 2851 (w), 2762 (w), 2699 (w), 2672 (w), 2472 (w), 2147 (w), 1641 (s), 1587 (w), 1537 (s), 1480 (s), 1439 (s), 1394 (m), 1377 (w), 1341 (s), 1307 (s), 1286 (w), 1191 (w), 1164 (w), 1107 (s), 1052 (m),

1037 (w), 1026 (w), 996 (m), 828 (s), 764 (w), 750 (w), 719 (m), 698 (w), 685 (s), 646 (w), 614 (w), 523 (s), 428 (w).

Preparation of KDNT (3). HDNT (1.095 g, 6.90 mmol) in acetone (10 mL) was added to a K₂CO₃ (6.119 g, 44.30 mmol) suspension in acetone (60 mL), resulting in the immediate orange coloration of the carbonate. The suspension was sonicated and then stirred overnight. The suspension was filtered and the orange solid washed with acetone, and the resulting pale yellow filtrate was taken to dryness by evaporation in air. Colorless needles of KDNT (**3**) crystallized out of the acetone solution. The solid residue was dried in a high vacuum at 50 °C overnight, resulting in colorless to pale yellow KDNT (yield: 1.279 g, 94 %). DTA: 265 °C decomposition. NMR (CD₃CN) δ (ppm): ¹³C (125.76 MHz) 164.3 (C-NO₂);¹⁴N (36.14 MHz) -20.3 (s, v_{1/2} = 65Hz, 2N, C-NO₂), -52 (s, v_{1/2} = 500 Hz, DNT⁻).

Raman (200 mW) ũ/cm⁻¹: 1545 (0.3), 1500 (0.2), 1425 (0.2), 1403 (10.0), 1388 (0.4), 1359 (1.6), 1310 (0.3), 1107 (0.3), 1100 (6.1), 1067 (0.1), 1028 (0.3), 834 (0.8), 769 (0.4), 515 (0.2). IR (ATR) ũ/cm⁻¹: 3604 (m), 3414 (m), 3327 (w), 3233 (w), 2749 (w), 2694 (w), 2663 (w), 2459 (w), 2144 (w), 1672 (w), 1643 (m), 1552 (w), 1536 (s), 1493 (s), 1440 (w), 1415 (w), 1388 (s), 1354 (s), 1341 (w), 1299 (s), 1109 (m), 1100 (w), 1067 (w), 1050 (m), 997 (w), 877 (w), 846 (s), 835 (w), 770 (w), 749 (w), 684 (w), 648 (s), 605 (w), 515 (m), 502 (w), 483 (w), 472 (w), 457 (w), 404 (w).

IR (AgCl pellet) \tilde{v} /cm⁻¹: 2757 (w), 2754 (w), 2748 (w), 2691 (w), 2658 (w), 2457 (m), 2399 (w), 2186 (w), 2158 (w), 2139 (w), 1563 (w), 1556 (s), 1540 (w), 1504 (s), 1439 (w), 1414 (m), 1392 (s), 1359 (s), 1343 (w), 1320 (w), 1310 (m), 1301 (s), 1296 (m), 1107 (w), 1100 (s), 1066 (w), 1050 (m), 1044 (m), 1019 (w), 850 (s), 837 (s), 831 (m), 771 (m), 768 (w), 652 (s), 606 (m), 519 (w), 515 (w).

Upon standing in air, the crystals of KDNT picked up moisture and turned yellow-orange.

Preparation of (3·2H₂O). KDNT (0.100 g, 0.51 mmol) was dissolved in water (5 mL). The yellow-orange solution was allowed to evaporate to dryness in the air, resulting in orange crystals of KDNT·2H₂O (yield: 0.118 g, 100 %).

Preparation of RbDNT (4). A solution of HDNT (0.244 g, 1.53 mmol) in acetone (5 mL) was added to a suspension of Rb₂CO₃ (1.885 g, 8.16 mmol) in acetone (30 mL) resulting in effervescence and a color change of the Rb₂CO₃ to yellow-orange. Water (~0.5 mL) was added and the suspension was stirred vigorously for 24 hours. The suspension was vacuum filtered and the pale yellow filtrate was allowed to evaporate to dryness. The resulting crystals were dried in an evacuated desiccator, yielding a colorless solid of RbDNT (0.369 g, 99 %). DTA : 170 °C melting, 250°C decomposition. NMR (DMSO-*d*₆) δ (ppm): ¹³C (100.54 MHz) 162.9 (s, *C*-NO₂); ¹⁴N (36.14 MHz) -21.0 (s, v_{1/2} = 220 Hz, *N*O₂), -50 (s, v_{1/2} > 1000 Hz, DNT⁻), -145 (s, v_{1/2} > 1000 Hz, DNT⁻).

IR (ATR, 20°C) \tilde{v} /cm⁻¹: 3396 (w), 2924 (m), 2852 (w), 2748 (w), 2684 (w), 2655 (w), 2449 (w), 2390 (w), 2147 (m), 1712 (w), 1526 (s), 1489 (s), 1444 (w), 1407 (w), 1381 (s), 1352 (s), 1340 (w), 1307 (w), 1293 (s), 1171 (w), 1098 (s), 1079 (w), 1041 (s), 984 (w), 873 (w), 845 (w), 835 (s), 770 (m), 674 (w), 658 (s), 593 (w), 515 (w), 436 (w).

Synthesis of CsDNT (5). A solution of HDNT (0.228 g, 1.43 mmol) in acetone (5 mL) was added to a suspension of Cs₂CO₃ (2.515 g, 7.72 mmol) in acetone (30 mL) resulting in effervescence and a color change of the Cs₂CO₃ to yellow-orange. Water (~0.5 mL) was added and the suspension was stirred vigorously for 24 hours. The suspension was then vacuum filtered and the solvent of the filtrate allowed to evaporate, yielding a pale yellow solid of CsDNT (0.408 g, 98%). DTA : 250 °C decomposition. NMR (DMSO-*d*₆) δ (ppm): ¹³C (100.54 MHz) 162.9 (s, *C*-NO₂); ¹⁴N (36.14 MHz) -20.5 (s, v_{1/2} = 170 Hz, *N*O₂), -49 (s, v_{1/2} > 1000 Hz, DNT⁻), -146 (s, v_{1/2} > 800 Hz, DNT⁻).

IR (ATR, 20°C) ũ/cm⁻¹: 2922 (w), 2851 (w), 2744 (w), 2685 (w), 2654 (w), 2449 (w), 2390 (w), 1548 (s), 1537 (w), 1488 (s), 1407 (m), 1384 (s), 1351 (s), 1339 (w), 1304 (w), 1294 (s), 1097 (s), 1042 (m), 1014 (w), 872 (w), 843 (s), 829 (s), 772 (w), 650 (s), 603 (m), 513 (w).

Preparation of Sr(DNT)₂·6H₂O (6·6H₂O). A solution of HDNT (0.212 g, 1.34 mmol) in acetone (5 mL) was added to a suspension of SrCO₃ (1.018 g, 6.90 mmol) in acetone (30 mL). Water (~0.5 mL) was added, and the suspension was stirred vigorously for 24 hours. The suspension was vacuum filtered. The filtrate was was taken to dryness by evaporation in air resulting in an off-white solid of Sr(DNT)₂·6H₂O (0.320 g, 46.8%). DTA: 290 °C explosion. NMR (DMSO-*d*₆) δ (ppm): ¹³C (100.54 MHz) 162.9 (s, *C*-NO₂); ¹⁴N (36.14 MHz) -21.1 (s, v_{1/2} = 200 Hz, C-*N*O₂), - 50 (s, v_{1/2} >1000 Hz, DNT⁻), -147 (s, v_{1/2} >700 Hz, DNT⁻).

IR (ATR, 20°C) \tilde{v} /cm⁻¹: 3589 (m), 3393 (s), 2922 (s), 2853 (m), 2483 (w), 2167 (w), 2159 (w), 2020 (w), 1737 (w), 1648 (s), 1556 (s), 1499 (s), 1419 (w), 1394 (s), 1349 (s), 1301 (s), 1125 (m), 1054 (m), 848 (s), 836 (w), 769 (w), 644 (s), 517 (w), 435 (w).

Preparation of Ba(DNT)₂·11H₂O (7·11H₂O). A solution of HDNT (0.318 g, 2.00 mmol) in acetone (5 mL) was added to a suspension of BaCO₃ (1.200 g, 3.18 mmol) in acetone (10 mL). The suspension was stirred vigorously for one hour and then vacuum filtered. The pale yellow filtrate was taken to dryness by evaporation in air resulting in a pale yellow solid of Ba(DNT)₂·11H₂O (yield: 0.567 g, 87 %). DTA: 245 °C decomposition. NMR (DMSO-*d*₆) δ (ppm): ¹³C (100.54 MHz) 162.9 (s, C-NO₂); ¹⁴N(36.14 MHz) 21.2 (s, v_{1/2} = 220 Hz, *N*O₂), -53 (s, v_{1/2} >1000 Hz, DNT⁻), -147 (s, v_{1/2} = 800 Hz, DNT⁻).

IR (ATR, 20°C) \tilde{v} /cm⁻¹: 3577 (w), 3415 (w), 2141 (w), 1727 (w), 1626 (w), 1555 (s), 1499 (s), 1384 (m), 1343 (s), 1296 (s), 1135 (w), 1055 (m), 847 (s), 833 (w), 767 (w), 645 (s), 596 (w), 584 (w), 516 (w).

Preparation of AgDNT (8). *Caution: AgDNT is an impact and friction sensitive explosive compound!* A solution of AgNO₃ (0.357 g, 2.10 mmol) in water (10 mL) was added tp a solution of HDNT (0.318 g, 2.00 mmol) in water (5 mL), resulting in the formation of a white precipitate. The suspension was carefully filtered and the filtration residue washed with water. The solid was dried in a vacuum in darkness, resulting in colorless AgDNT (yield: 0.253 g, 95 %). DTA: 240 °C decomposition.

IR (ATR, 20°C) ũ/cm⁻¹: 3377 (s), 2148 (w), 1644 (w), 1551 (s), 1494 (s), 1401 (m), 1364 (m), 1312 (s), 1130 (w), 1066 (w), 843 (s), 828 (w), 643 (m), 606 (w), 520 (w).

Preparation of [Ag(NH₃)][DNT] (9). A solution of AgNO₃ (0.357 g, 2.10 mmol) in water (10 mL) was added tp a solution of HDNT (0.318 g, 2.00 mmol) in water (5 mL), resulting in the formation of a white precipitate. The suspension was carefully filtered and the filtration residue washed with water. The filtration residue was then dissolved in concentrated aqueous ammonia (5 mL), and the solution was allowed to slowly evaporate in the air under exclusion of light, resulting in crystalline [Ag(NH₃)][DNT] (yield: 0.526 g; 93 %). DTA: 155 °C (endotherm, loss of NH₃), 245 °C decomposition. NMR (DMSO-*d*₆) δ (ppm): ¹H (399.80 MHz) 3.34 (s, NH₃); ¹³C (100.54 MHz) 162.12 (s, *C*-NO₂); ¹⁴N (36.14 MHz) -22.9 (s, v_{1/2} = 300Hz, *N*O₂), -382 (s, v_{1/2} = 800 Hz, *N*H₃).

IR (ATR, 20°C) \tilde{v} /cm⁻¹: 3387 (m), 3297 (m), 2856 (w), 2488 (w), 2144 (w), 1607 (w), 1549 (s), 1492 (s), 1428 (w), 1400 (w), 1382 (m), 1358 (s), 1345 (w), 1304 (s), 1204 (w), 1158 (s), 1129 (m), 1063 (m), 1018 (w), 883 (w), 844 (s), 827 (m), 767 (w), 644 (s), 609 (w), 590 (w), 559 (m), 458 (w), 441 (w), 421 (w).

Preparation of NH₄DNT·2H₂O (10·2H₂O). Concentrated aqueous ammonia (2 mL) was added to solution of HDNT (0.204 g, 1.31 mmol) water (5 mL). The solution was allowed to evaporate to dryness in air, resulting in colorless crystals of NH₄DNT·2H₂O (0.259 g, 93 %). DTA: 140 °C decomposition. NMR (DMSO-*d*₆) δ (ppm): ¹H (399.80 MHz) 7.13 (s, NH₄⁺); ¹³C (100.54 MHz) 162.9 (*C*-NO₂); ¹⁴N (36.14 MHz) -20.9 (s, v_{1/2} = 200Hz, NO₂), -50 (s, v_{1/2} = 1000 Hz, DNT⁻), -147 (s, v_{1/2} = 800 Hz, DNT⁻), -358.5 (s, v_{1/2} = 5 Hz, NH₄⁺).

IR (ATR, 20°C) \tilde{v} /cm⁻¹: 3591 (m), 3290 (s), 3172 (s), 3051 (s), 2872 (s), 2465 (w), 2140 (w), 1634 (m), 1535 (s), 1494 (s), 1436 (s), 1389 (s), 1352 (s), 1300 (s), 1109 (s), 1049 (m), 1029 (w), 877 (w), 843 (s), 830 (m), 769 (w), 691 (w), 643 (s), 519 (w), 495 (s), 426 (w), 404 (w).

Preparation of [HNEt₃][DNT] (11). Triethylamine (1.50 g, 14.84 mmol) was added to a solution of HDNT (0.398 g, 2.50 mmol) in water (5 ml). The solvent of the resulting yellow to orange solution was slowly evaporated in air, resulting in an orange crystalline solid of [HNEt₃][DNT] (yield 0.593 g, 92 %). DTA: 100 °C melting, 190 °C decomposition. NMR (DMSO-*d*₆) δ (ppm): ¹H (399.80 MHz) 8.88 (bs, 1H, N*H*⁺), 3.10 (q, ³*J*(¹H¹H) = 7 Hz, 6H, NC*H*₂CH₃), 1.17 (t, ³*J*(¹H¹H) = 7 Hz, 9H, NCH₂CH₃); ¹³C (100.54 MHz) 162.9 (s, *C*-NO₂), 45.8

(s, NCH₂CH₃), 40.2 (s,NCH₂CH₃); ¹⁴N (36.14 MHz) -20.9 (s, $v_{1/2} = 180$ Hz, NO_2), -51 (s, $v_{1/2} = 1000$ Hz, DNT⁻), -147 (s, $v_{1/2} = 700$ Hz, DNT⁻), -325 (s, $v_{1/2} = 300$ Hz, HNEt₃⁺).

IR (ATR, 20°C) \tilde{v} /cm⁻¹: 3011 (m), 2780 (w), 2707 (m), 2509 (w), 2456 (w), 1529 (s), 1487 (s), 1473 (w), 1405 (w), 1378 (s), 1346 (s), 1334 (w), 1304 (w), 1292 (s), 1163 (m), 1108 (m), 1073 (w), 1062 (w), 1047 (w), 1030 (s), 1012 (w), 903 (w), 866 (w), 840 (s), 828 (w), 796 (m), 770 (w), 750 (w), 648 (s), 598 (w), 554 (s), 510 (s), 466 (s), 454 (w).

Preparation of [H₂NEt₂][DNT] (12). Diethylamine (1.50 g, 20.54 mmol) was added to a solution of HDNT (0.398 g, 2.50 mmol) in water (5 ml). The solvent of the resulting yellow to orange solution was slowly evaporated in the air, resulting in an orange crystalline solid of monoclinic [HNEt₃][DNT] (12a) (yield 0.551 g, 95 %).

Crystals of the triclinic polymorph (12b) were obtained when a saturated solution of $[H_2NEt_2][DNT]$ in diethylamine was evaporated in the air.

DTA: 150 °C melting, 190 °C decomposition. NMR (CD₃CN) δ (ppm): ¹H (399.80 MHz) δ (ppm) 6.78 and 6.22 (bs, 2H, NH₂⁺), 3.09 (m, 4H, NCH₂CH₃), 1.26 (m, 6H, NCH₂CH₃); ¹³C (100.54 MHz) 163.9 (s, *C*-NO₂), 43.7 (s, NCH₂CH₃), 11.6 (s, NCH₂CH₃); ¹⁴N (36.14 MHz) -21.5 (s, v_{1/2} = 80 Hz, NO₂), -330.2(s, v_{1/2} = 100 Hz, H₂NEt₂⁺).

IR (ATR, 20°C) \tilde{v} /cm⁻¹: 3008 (m), 2933 (w), 2863 (w), 2822 (m), 2518 (m), 2420 (w), 2132 (w), 1682 (w), 1623 (m), 1543 (s), 1494 (s), 1476 (m), 1452 (w), 1416 (w), 1381 (s), 1352 (s), 1338 (w), 1297 (s), 1159 (m), 1124 (m), 1048 (w), 970 (w), 915 (w), 862 (w), 841 (s), 828 (m), 800 (m), 770 (w), 750 (w), 646 (s), 604 (w), 538 (w), 511 (m), 491 (w), 432 (w), 412 (w).

Preparation of guanidinium DNT (13). A solution of HDNT (0.318 g, 2.00 mmol) in ethanol (5 mL) was added to a suspension of guanidinium carbonate (0.901 g, 5.00 mmol) in ethanol (5 mL). The suspension was stirred for 4 hours and then filtered. The yellow filtrate was taken to dryness by evaporation in air, resulting in colorless to yellow crystals of $[CH_6N_3][DNT]$ (yield: 0.371 g, 85 %). DTA: 200 °C melting and decomposition. NMR (DMSO-*d*₆) δ (ppm): ¹H (500.14 MHz) 6.94 (s, C(NH₂)₃⁺), ¹³C (125.76 MHz) 162.9 (2C, *C*-NO₂), 158.0 (*C*(NH₂)₃⁺); ¹⁴N (36.14 MHz) -20.9 (s, v_{1/2} = 200 Hz, NO₂), -50 (s, v_{1/2} >1000 Hz, DNT⁻), -147 (s, v_{1/2} = 800Hz, DNT⁻), -301(s, v_{1/2} = 2000Hz, C(NH₂)₃⁺).

IR (ATR, 20°C) \tilde{v} /cm⁻¹: 3470 (s), 3400 (m), 3357 (m), 3293 (w), 3268 (w), 3190 (m), 2790 (w), 2693 (w), 2464 (w), 2418 (w), 2230 (w), 2148 (w), 1647 (s), 1579 (w), 1526 (s), 1477 (s), 1413 (m), 1387 (s), 1339 (s), 1306 (w), 1294 (s), 1144 (w), 1120 (m), 1048 (m), 1015 (w), 922 (w), 871 (w), 845 (s), 832 (w), 819 (w), 768 (w), 737 (m), 646 (m), 554 (m), 533 (s), 432 (m).

Preparation of aminoguanidinium DNT (14). A solution of HDNT (0.513 g, 3.22 mmol) in ethanol (5 mL) was added to a suspension of aminoguanidine bicarbonate (0.438 g, 3.22 mmol) in ethanol (20 mL), resulting in effervescence. The suspension was stirred vigorously for two

days and then vacuum filtered. The pale yellow filtrate was taken to dryness by evaporation of the solvent in air, resulting in a pale yellow solid of $[CH_7N_4][DNT]$ (yield: 0.603 g, 80 %) as an orange-yellow crystalline material. DTA: 200 °C (sharp exotherm) decomposition. NMR (DMSO-*d*₆) δ (ppm): ¹H (399.80 MHz) 8.54 (s, 1H, NH-NH₂), 7.24 (bs, 2H, C-NH₂) 6.72 (bs, 2H, C-NH₂), 4.68 (s, 2H, NH-NH₂); ¹³C (100.54 MHz) 162.9 (*C*-NO₂), 158.8 (*C*H₇N₃⁺); ¹⁴N (36.14 MHz) -21.1(s, v_{1/2} = 200 Hz, NO₂), -53 (s, v_{1/2} = 1000 Hz, DNT⁻), -149 (s, v_{1/2} = 1000 Hz, DNT⁻).

IR (ATR, 20°C) \tilde{v} /cm⁻¹: 3469 (w), 3418 (s), 3363 (w), 3326 (m), 3293 (w), 3217 (m), 2922 (m), 2852 (w), 2740 (w), 2693 (w), 2647 (w), 2468 (w), 2418 (w), 2147 (w), 1670 (s), 1543 (w), 1529 (s), 1484 (s), 1412 (w), 1386 (s), 1340 (s), 1308 (m), 1294 (m), 1198 (m), 1121 (w), 1078 (m), 1044 (w), 947 (s), 876 (w), 843 (s), 829 (w), 766 (w), 737 (w), 687 (w), 645 (m), 620 (w), 604 (w), 581 (m), 513 (w), 471 (m).

Preparation of $[C_5H_6N][DNT]$ ·H₂O (15·H₂O). Pyridine (1.50 g, 18.97 mmol) was added to a solution of HDNT (0.398 g, 2.50 mmol) in water (5 ml). The resulting yellow to orange solution was taken to dryness by evaporation of the solvent in air, resulting in an orange crystalline solid of $[C_5H_6N][DNT]$ ·H₂O (yield: 0.621 g, 97 %). DTA: 120 °C melting, 160 °C decomposition. NMR (DMSO-*d*₆) δ (ppm): ¹H (399.80 MHz) 8.94 (m, 2H, pyridinium), 8.61 (m, 1H, pyridinium), 8.08 (m, 2H, pyridinium), 6.2 (vbs, 1H, py-*H*). ¹³C (100.54 MHz) 162.9 (s, *C*-NO₂), 146.2 (s, pyridinium), 142.4 (s, pyridinium), 127.2 (s, pyridinium); ¹⁴N (36.14 MHz) -20.9 (s, $v_{1/2} = 160$ Hz, NO_2), -51 (s, $v_{1/2} = 800$ Hz, DNT⁻), -146 (s, $v_{1/2} = 500$ Hz, DNT⁻), -168.8 (s, $v_{1/2} = 90$ Hz, pyridinium).

IR (ATR, 20°C) \tilde{v} /cm⁻¹: 3349 (m), 3141 (w), 3103 (m), 3075 (w), 2160 (m), 2040 (w), 1998 (w), 1724 (m), 1637 (m), 1537 (s), 1486 (s), 1410 (m), 1382 (s), 1348 (s), 1306 (m), 1294 (m), 1257 (m), 1198 (m), 1159 (m), 1120 (m), 1050 (m), 1023 (m), 999 (s), 947 (m), 864 (m), 839 (m), 827 (s), 757 (s), 682 (s), 648 (m), 580 (s).

Preparation of [CH₄N₅][DNT]·H₂O (16·H₂O). A solution of HDNT (0.232 g, 1.46 mmol) in water (5 mL) was added to a suspension of aminotetrazole (0.124 g, 1.46 mmol) in water (10 mL), which led to the complete consumption of the aminotetrazole. The clear colorless solution was taken to dryness by evaporation of the solvent in air, resulting in colorless crystals of [CH₄N₅][DNT]·H₂O (yield 0.367 g, 96 %). DTA: 160 °C (sharp exotherm) decomposition. NMR (DMSO-*d*₆) δ (ppm): ¹H (500.14 MHz) 9.00 (bs, 4H, C*H*₄N₅⁺); ¹³C (125.76 MHz) 162.5 (*C*-NO₂), 154.2 (s, *C*H₄N₅⁺); ¹⁴N (36.14 MHz) -22.1 (s, v_{1/2} = 250Hz, *N*O₂), -58 (s, $\tau_{1/2}v_{1/2}$ = 2000Hz, DNT⁻).

IR (ATR, 20°C) \tilde{v} /cm⁻¹: 3529 (m), 3316 (w), 3252 (w), 3135 (m), 2972 (w), 2825 (w), 2674 (w), 2160 (w), 1693 (s), 1657 (w), 1558 (w), 1541 (s), 1501 (s), 1398 (m), 1362 (m), 1306 (s), 1136 (m), 1105 (w), 1075 (w), 1037 (m), 986 (m), 896 (w), 844 (s), 826 (m), 770 (w), 736 (w), 673 (w), 643 (s), 609 (w), 516 (m).

Preparation of [PPh₄][DNT] (17). A solution of HDNT (0.159 g, 1.00 mmol) in water (5 mL) was added to a solution of PPh₄Cl (0.450 g, 1.20 mmol) in water (10 mL), resulting in the precipitation of a white solid. The mixture was filtered and the filtration residue washed with plenty of water. The solid was dried in a vacuum, resulting in an amorphous solid of [PPh₄][DNT] (yield: 0.487 g, 98 %). Single crystals suitable for crystal structure determination were grown from an acetone solution. DTA: 180 °C melting, 350 °C decomposition. NMR (CD₃CN) δ (ppm): ¹H (599.81 MHz) 7.7 (m, 16H), 7.9 (m, 4H); ¹³C (150.84 MHz) 164.3 (*C*-NO₂), 136.3 (PPh₄), 135.6 (PPh₄), 131.3 (PPh₄), 118.9 (d, ¹J(¹³C³¹P) = 90 Hz, PPh₄); ¹⁴N (36.14 MHz) -19.8(s, v_{1/2} = 60 Hz NO₂), -51 (s, v_{1/2} = 500 Hz, DNT⁻); ³¹P{¹H}an (242.82 MHz) 22.9 (s).

IR (ATR, 20°C) \tilde{v} /cm⁻¹: 3086 (w), 3059 (w), 3026 (w), 1587 (m), 1535 (s), 1479 (s), 1434 (s), 1396 (w), 1377 (s), 1339 (s), 1326 (w), 1299 (w), 1285 (m), 1190 (m), 1164 (m), 1107 (s), 1037 (w), 1026 (w), 996 (m), 938 (w), 862 (w), 836 (s), 827 (w), 764 (m), 750 (s), 720 (s), 699 (m), 686 (s), 651 (w), 615 (m), 525 (s), 470 (w), 441 (w), 428 (w), 409 (w).

Preparation of [PNP][DNT] (18). A solution of HDNT (0.875 g; 5.50 mmol) in water (20 mL) was added to solution of PNPCl (3.158 g ; 5.501 mmol) in water (300 mL), resulting in the precipitation of a white solid. The mixture was vacuum filtered, and the filtration residue suspended in water (300 mL) and vacuum filtered again. The obtained solid was dried in a vacuum for 12 hours, resulting in a white amorphous solid of [PNP][DNT] (3.075 g, 80 %). Crystals suitable for X-ray diffraction were grown from an acetone solution. DTA: 150 °C melting, 340 °C decomposition. NMR (CD₃CN) δ (ppm): ¹H (599.81 MHz) 7.5 (m, 12H), 7.6 (m, 12H), 7.7 (m, 6H); ¹³C (150.84 MHz) 164.5 (s, *C*-NO₂), 134.6 (PPh₃), 133.2 (PPh₃), 130.3 (PPh₃), 128.8 (PPh₃); ¹⁴N (36.14 MHz) -19.9 (s, v_{1/2} = 50 Hz, NO₂), -51 (s, v_{1/2} = 300 Hz, DNT⁻) ³¹P {¹H} (242.82 MHz) 20.8.

Raman (20 °C, 200 mW) $\tilde{\nu}$ /cm⁻¹ 3172 (0.12), 3147 (0.16), 3068 (0.17), 3060 (5.18), 3011 (0.11), 2957 (0.11), 1588 (2.09), 1576 (0.20), 1524 (0.56), 1483 (0.42), 1387 (10.00), 1369 (0.28), 1341 (1.33), 1329 (0.14), 1298 (0.36), 1284 (0.28), 1189 (0.29), 1161 (0.64), 1110 (0.31), 1096 (7.04), 1028 (1.22), 1004 (3.47), 829 (0.84), 767 (0.22), 727 (0.17), 667 (1.33), 616 (0.70), 509 (0.14).

IR (ATR, 20°C) \tilde{v} /cm⁻¹: 3052 (w), 2917 (w), 2038 (w), 1969 (w), 1910 (w), 1828 (w), 1586 (m), 1530 (s), 1479 (s), 1436 (s), 1397 (w), 1374 (m), 1339 (m), 1327 (w), 1296 (w), 1281 (m), 1237 (s), 1180 (m), 1161 (w), 1111 (s), 1075 (w), 1038 (w), 1024 (m), 996 (m), 932 (w), 856 (w), 839 (m), 827 (m), 802 (m), 759 (w), 746 (s), 721 (s), 689 (s), 615 (w), 552 (m), 526 (s), 497 (s), 486 (m), 461 (m), 450 (w), 437 (m).

Preparation of [TMA][DNT] (19). A solution of $[TMA][OH] \cdot 5H_2O$ (0.725 g, 4.00 mmol) in water (20 mL) was added to a solution of HDNT (0.636 g, 4.00 mmol) in water (20 mL). The bright yellow solution was taken to dryness on a rotary evaporator. The yellow residue was recrystallized from ethanol, yielding colorless crystals of [TMA][DNT] (0.780 g, 84%). DTA:

225 °C melting, 235 °C decomposition. NMR (acetone- d_6) δ (ppm): ¹H (599.81 MHz) 3.51 (12H); ¹³C (150.84 MHz) 164.5 (s, *C*-NO₂), 56.0 (t, ¹*J*(¹³C¹⁴N) = 4 Hz, N*Me*₄); ¹⁴N (36.14 MHz) -19.8 (s, $v_{1/2} = 50$ Hz, *NO*₂), -51 (s, $v_{1/2} = 400$ Hz, DNT⁻), -148 (s, $v_{1/2} = 300$ Hz, DNT⁻).

Raman (20 °C, 200 mW) ũ/cm⁻¹: 3037 (0.8), 2987 (0.4), 2963 (0.2), 2929 (0.4), 1536 (0.5), 1451 (0.2), 1391 (10.0), 1341 (0.6), 1331 (0.6), 1301 (0.3), 1286 (0.5), 1097 (7.1), 1010 (0.4), 952 (0.3), 832 (1.0), 769 (0.1), 759 (1.2), 510 (0.2), 299 (0.3).

IR (ATR, 20°C) \tilde{v} /cm⁻¹: 3039 (w), 2961 (vw), 2666 (vw), 2430 (w), 2374 (vw), 1539 (vs), 1518 (m), 1483 (vs), 1451 (w sh), 1418 (vw), 1397 (w), 1376 (s), 1342 (s), 1331 (s), 1298 (m), 1284 (m), 1095 (m), 1038 (w), 951 (s), 841 (vs), 828 (s), 771 (w), 648 (s), 599 (w), 457 (w).

Vibrational Data for 3,5-dinitro-1*H*-1,2,4-triazole (HDNT)

IR (ATR, 20°C) \tilde{v} /cm⁻¹: 3039 (vw), 2992 (vw), 2934 (vw), 2883 (vw), 2839 (vw), 2802 (vw), 2748 (vw), 2639 (vw), 2557 (vw), 2162 (vw), 1698 (vw), 1563 (vs), 1530 (s sh), 1485 (s), 1430 (w), 1377 (s sh), 1363 (s sh), 1313 (vs), 1281 (m sh), 1174 (m), 1038 (m), 1023 (m sh), 1008 (m sh), 839 (vs), 825 (vs), 764 (vw), 730 (vw), 649 (m), 634 (m sh), 593 (m), 509 (m), 500 (m sh).

2 Crystallographic details

2.1 Crystal Structure Report for LiDNT·2H₂O

Figure S- 1: The solid-state structure of $LiDNT \cdot 2H_2O$. Thermal ellipsoids are shown at the 50% probability level. Hydrogen atom positions were determined from the electron density map and are depicted as spheres of arbitrary radius.

Figure S- 2: Projection of the packing in $LiDNT \cdot 2H_2O$ along the *a* axis.

Figure S- 2 : Projection of the packing in $LiDNT \cdot 2H_2O$ along the **b** axis.

Figure S- 3: Projection of the packing in LiDNT \cdot 2H₂O along the **c** axis.

Table S- 1: Sample and crystal data for $LiDNT \cdot 2H_2O$.

Identification code	LiDNT		
Chemical formula	C2H4LiN5O6		
Formula weight	201.04		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal size	0.198 x 0.579 x 0.590 mm		
Crystal habit	clear yellow prism		
Crystal system	monoclinic		
Space group	C 1 2/c 1		
Unit cell dimensions	a = 15.342(2) Å	$\alpha = 90^{\circ}$	
	b = 8.3048(11) Å	$\beta = 113.079(2)^{\circ}$	
	c = 6.3573(8) Å	$\gamma = 90^{\circ}$	
Volume	745.17(17) Å3		
Ζ	4		
Density (calculated)	1.792 g/cm3		
Absorption coefficient	0.172 mm-1		
F(000)	408		

Table S- 2: Data collection and structure refinement for $LiDNT \cdot 2H_2O$.

Diffractometer	Bruker APEX DUO		
Radiation source	fine-focus tube, MoKα		
Theta range for data collection	2.85 to 30.53°		
Index ranges	-21<=h<=21, -11<=	=k<=11, -9<=l<=9	
Reflections collected	8446		
Independent reflections	1124 [R(int) = 0.02]	69]	
Absorption correction	multi-scan		
Max. and min. transmission	0.9670 and 0.9050		
Structure solution technique	direct methods		
Structure solution program	SHELXTL XT 2013/6 (Sheldrick, 2013)		
Refinement method	Full-matrix least-squares on F2		
Refinement program	SHELXTL XLMP 2014/1 (Bruker AXS, 2013)		
Function minimized	$\Sigma w(Fo2 - Fc2)2$		
Data / restraints / parameters	1124 / 0 / 71		
Goodness-of-fit on F2	1.077		
Final R indices	991 data; I>2σ(I)	R1 = 0.0311, $wR2 = 0.0850$	
	all data	R1 = 0.0359, wR2 = 0.0894	
Weighting scheme	$w=1/[\sigma 2(Fo2)+(0.0488P)2+0.4470P]$		
weighting scheme	where $P=(Fo2+2Fc2)/3$		
Largest diff. peak and hole	0.365 and -0.291 eÅ-3		
R.M.S. deviation from mean	0.072 eÅ-3		

Table S- 3: Atomic coordinates and equivalent isotropic atomic displacement parameters (Å²) for LiDNT \cdot 2H₂O

 $U(\mbox{eq})$ is defined as one third of the trace of the orthogonalized $U_{\mbox{ij}}$ tensor.

	x/a	y/b	z/c	U(eq)
C1	0.56778(6)	0.42525(10)	0.76357(14)	0.01048(19)
Li1	0.5	0.0625(3)	0.75	0.0425(9)
N1	0.54592(5)	0.58127(9)	0.75943(12)	0.01112(18)
N2	0.5	0.31978(13)	0.75	0.0111(2)
N3	0.66007(5)	0.37365(10)	0.77706(13)	0.01309(18)
01	0.67360(5)	0.22857(9)	0.77381(14)	0.0238(2)
O2	0.71789(5)	0.47932(9)	0.78882(13)	0.01921(19)
O3	0.58355(6)	0.91065(10)	0.66968(16)	0.0243(2)

C1-N1	1.3360(11)	C1-N2	1.3362(11)
C1-N3	1.4494(11)	C1-C1	2.0183(17)
Li1-03	2.002(2)	Li1-03	2.002(2)
Li1-N2	2.136(3)	Li1-03	2.4758(10)
Li1-03	2.4758(10)	Li1-Li1	3.3441(18)
Li1-Li1	3.3441(18)	N1-N1	1.3665(15)
N2-C1	1.3362(11)	N3-O1	1.2241(11)
N3-O2	1.2291(11)	O3-Li1	2.4758(10)
O3-H1	0.857(17)	O3-H2	0.828(17)

Table S- 4: Bond lengths (Å) for $LiDNT \cdot 2H_2O$.

Table S- 5: Bond angles (°) for $LiDNT \cdot 2H_2O$.

N1-C1-N2	116.84(8)	N1-C1-N3	121.31(8)
N2-C1-N3	121.83(8)	N1-C1-C1	75.88(5)
N2-C1-C1	40.96(5)	N3-C1-C1	162.76(5)
O3-Li1-O3	101.89(14)	O3-Li1-N2	129.06(7)
O3-Li1-N2	129.06(7)	O3-Li1-O3	83.95(5)
O3-Li1-O3	102.63(6)	N2-Li1-O3	84.84(7)
O3-Li1-O3	102.63(6)	O3-Li1-O3	83.95(5)
N2-Li1-O3	84.84(7)	O3-Li1-O3	169.68(14)
O3-Li1-Li1	106.57(12)	O3-Li1-Li1	47.41(5)
N2-Li1-Li1	108.10(9)	O3-Li1-Li1	149.24(7)
O3-Li1-Li1	36.54(2)	O3-Li1-Li1	47.41(5)
O3-Li1-Li1	106.57(12)	N2-Li1-Li1	108.10(9)
O3-Li1-Li1	36.54(2)	O3-Li1-Li1	149.24(7)
Li1-Li1-Li1	143.80(19)	C1-N1-N1	104.12(5)
C1-N2-C1	98.09(10)	C1-N2-Li1	130.96(5)
C1-N2-Li1	130.96(5)	O1-N3-O2	125.50(8)
O1-N3-C1	117.27(8)	O2-N3-C1	117.23(8)
Li1-O3-Li1	96.05(5)	Li1-O3-H1	116.4(11)
Li1-O3-H1	110.3(11)	Li1-O3-H2	119.4(11)
Li1-O3-H2	109.6(11)	H1-O3-H2	104.7(16)

Table S- 6: Anisotropic atomic displacement parameters (Å²) for LiDNT \cdot 2H₂O.

The anisotropic atomic displacement factor exponent takes the form: $-2\pi^2$ [$h^2 a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}$]

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C1	0.0113(4)	0.0105(4)	0.0100(4)	-0.0001(3)	0.0045(3)	0.0006(3)
Li1	0.056(2)	0.0085(12)	0.090(3)	0	0.058(2)	0
N1	0.0113(4)	0.0105(4)	0.0120(3)	-0.0001(3)	0.0050(3)	0.0001(3)
N2	0.0129(5)	0.0101(5)	0.0106(5)	0	0.0049(4)	0
N3	0.0128(4)	0.0125(4)	0.0143(4)	0.0003(3)	0.0057(3)	0.0014(3)
01	0.0206(4)	0.0125(4)	0.0381(5)	-0.0022(3)	0.0113(3)	0.0042(3)
O2	0.0146(3)	0.0174(4)	0.0281(4)	0.0024(3)	0.0110(3)	-0.0012(3)
O3	0.0191(4)	0.0119(4)	0.0457(5)	-0.0007(3)	0.0169(3)	-0.0033(3)

Table S- 7: Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å²) for LiDNT \cdot 2H₂O.

	x/a	y/b	z/c	U(eq)
H1	0.5832(11)	-0.188(2)	0.710(3)	0.029
H2	0.6403(12)	-0.067(2)	0.708(3)	0.029

2.2 Crystal Structure Report for NaDNT·2H₂O

Figure S- 4: Projection of the packing in NaDNT \cdot 2H₂O down the a axis.

Figure S- 5: Projection of the packing in NaDNT \cdot 2H₂O down the b axis.

Figure S- 6: Projection of the packing in NaDNT \cdot 2H₂O down the c axis.

Table S- 8: Sample and crystal data for NaDNT \cdot 2H₂O.

NaDNT_2H2O		
$C_4H_8N_{10}Na_2O_{12}$		
434.18		
100(2) K		
0.71073 Å		
0.174 x 0.373 x 0.511 mm	l	
clear colourless prism		
monoclinic		
C 1 2/c 1		
a = 15.3444(7) Å	$\alpha = 90^{\circ}$	
b = 8.7270(4) Å	$\beta = 114.9340(6)^{\circ}$	
c = 6.6379(3) Å	$\gamma = 90^{\circ}$	
806.04(6) Å ³		
2		
1.789 g/cm ³		
0.216 mm ⁻¹		
440		
	NaDNT_2H2O $C_4H_8N_{10}Na_2O_{12}$ 434.18 100(2) K 0.71073 Å 0.174 x 0.373 x 0.511 mm clear colourless prism monoclinic C 1 2/c 1 a = 15.3444(7) Å b = 8.7270(4) Å c = 6.6379(3) Å 806.04(6) Å^3 2 1.789 g/cm ³ 0.216 mm ⁻¹ 440	

Table S- 9: Data collection and structure refinement for NaDNT \cdot 2H₂O.

Diffractometer	Bruker APEX DUO		
Radiation source	fine-focus tube, MoKa		
Theta range for data collection	2.75 to 30.45°		
Index ranges	-21<=h<=21, -12<=k	<=12, -9<=l<=9	
Reflections collected	9609		
Independent reflections	1231 [R(int) = 0.020]	7]	
Absorption correction	multi-scan		
Max. and min. transmission	0.9630 and 0.8980		
Structure solution technique	direct methods		
Structure solution program	SHELXTL XS 2013/1 (Sheldrick, 2013)		
Refinement method	Full-matrix least-squares on F ²		
Refinement program	SHELXTL XLMP 2014/1 (Bruker AXS, 2013)		
Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$		
Data / restraints / parameters	1231 / 0 / 72		
Goodness-of-fit on F ²	1.095		
Δ/σ_{max}	0.001		
Final R indices	1159 data; I>2σ(I)	R1 = 0.0237, wR2 = 0.0662	
	all data	R1 = 0.0254, WR2 = 0.0673	
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.0342) where P=(F_o^2 +2 F_c^2)/3	2P) ² +0.4360P] 3	
Extinction coefficient	0.0089(13)		
Largest diff. peak and hole	0.411 and -0.255 eÅ-	3	
R.M.S. deviation from mean	0.046 eÅ ⁻³		

Table S- 10: Atomic coordinates and equivalent isotropic atomic displacement parameters (Å²) for NaDNT·2H₂O.U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x/a	y/b	z/c	U(eq)
C1	0.43262(5)	0.44351(8)	0.62868(12)	0.01140(15)
N1	0.45432(4)	0.59200(7)	0.66789(10)	0.01180(14)
N2	0.5	0.34382(10)	0.75	0.01218(18)
N3	0.34129(5)	0.39166(8)	0.45896(11)	0.01477(15)
Na1	0.5	0.07107(5)	0.75	0.01607(13)
01	0.32948(5)	0.25310(7)	0.42985(11)	0.02269(16)
O2	0.28254(4)	0.49061(8)	0.35416(11)	0.02148(16)
O3	0.59192(4)	0.89595(7)	0.02433(10)	0.01538(14)

Table S- 11: Bond lengths (Å) for NaDNT \cdot 2H₂O.

C1-N2	1.3313(9)	C1-N1	1.3360(9)
C1-N3	1.4515(10)	C1-C1	2.0155(14)
N1-N1	1.3657(13)	N2-C1	1.3313(9)
N2-Na1	2.3803(10)	N3-O1	1.2259(9)
N3-O2	1.2303(9)	Na1-O3	2.3400(7)
Na1-O3	2.3400(7)	Na1-O3	2.4693(6)

Na1-O3	2.4693(6)	Na1-Na1	3.5432(3)
Nal-Nal	3.5432(3)	O3-Na1	2.4693(6)
O3-H1	0.793(13)	O3-H2	0.853(13)

Table S- 12: Bond angles (°) for NaDNT \cdot 2H₂O.

N2-C1-N1	116.73(7)	N2-C1-N3	121.02(7)
N1-C1-N3	122.24(7)	N2-C1-C1	40.80(4)
N1-C1-C1	75.93(4)	N3-C1-C1	161.79(4)
C1-N1-N1	104.07(4)	C1-N2-C1	98.39(9)
C1-N2-Na1	130.80(4)	C1-N2-Na1	130.80(4)
O1-N3-O2	125.37(7)	O1-N3-C1	117.39(7)
O2-N3-C1	117.23(7)	O3-Na1-O3	98.44(3)
O3-Na1-N2	130.778(17)	O3-Na1-N2	130.778(17)
O3-Na1-O3	103.72(2)	O3-Na1-O3	85.13(2)
N2-Na1-O3	83.305(17)	O3-Na1-O3	85.13(2)
O3-Na1-O3	103.72(2)	N2-Na1-O3	83.305(17)
O3-Na1-O3	166.61(3)	O3-Na1-Na1	105.20(2)
O3-Na1-Na1	43.980(16)	N2-Na1-Na1	110.493(14)
O3-Na1-Na1	41.150(14)	O3-Na1-Na1	146.576(17)
O3-Na1-Na1	43.980(16)	O3-Na1-Na1	105.20(2)
N2-Na1-Na1	110.493(14)	O3-Na1-Na1	146.576(17)
O3-Na1-Na1	41.150(14)	Na1-Na1-Na1	139.01(3)
Na1-O3-Na1	94.87(2)	Na1-O3-H1	115.2(9)
Na1-O3-H1	110.8(9)	Na1-O3-H2	120.5(8)
Na1-O3-H2	109.2(8)	H1-O3-H2	105.6(12)

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C1	0.0123(3)	0.0112(3)	0.0115(3)	-0.0007(2)	0.0058(3)	-0.0012(2)
N1 N2	0.0122(3) 0.0144(4)	0.0107(3) 0.0101(4)	0.0126(3) 0.0139(4)	0.0001(2) 0	0.0053(2) 0.0077(3)	-0.0002(2) 0
N3	0.0142(3)	0.0167(3)	0.0143(3)	-0.0024(2)	0.0069(2)	-0.0036(2)
Na1	0.0246(3)	0.0095(2)	0.0162(2)	0	0.01070(19)	0
01	0.0244(3)	0.0165(3)	0.0268(3)	-0.0070(2)	0.0104(3)	-0.0086(2)
02	0.0154(3)	0.0236(3)	0.0197(3)	0.0013(2)	0.0018(2)	0.0004(2)
03	0.0145(3)	0.0117(3)	0.0180(3)	-0.0015(2)	0.0050(2)	-0.00141(19)

Table S- 13: Anisotropic atomic displacement parameters (Å²) for NaDNT \cdot 2H₂O.

Table S- 14: Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å²) for NaDNT \cdot 2H₂O.

	x/a	y/b	z/c	U(eq)
H1	0.5893(9)	-0.1901(15)	0.984(2)	0.018
H2	0.6513(9)	-0.0869(14)	1.105(2)	0.018

2.3 Crystal Structure Report for KDNT

Figure S- 7: Projection of the packing in KDNT down the a axis.

Figure S- 8: Projection of the packing in KDNT down the b axis.

Table S-	15:	Sample a	and cry	stal data	for	KDNT.
----------	-----	----------	---------	-----------	-----	-------

Identification code	XGC4_144_imported	
Chemical formula	C ₂ KN ₅ O ₄	
Formula weight	197.17	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal size	0.076 x 0.234 x 0.353 mm	l
Crystal habit	colorless blade	
Crystal system	monoclinic	
Space group	P 1 21/n 1	
Unit cell dimensions	a = 6.741(2) Å	$\alpha = 90^{\circ}$
	b = 12.997(4) Å	$\beta = 97.697(5)^{\circ}$
	c = 14.749(5) Å	$\gamma = 90^{\circ}$
Volume	1280.6(7) Å ³	
Z	8	
Density (calculated)	2.045 g/cm ³	
Absorption coefficient	0.813 mm ⁻¹	
F(000)	784	

Table S- 16: Data collection and structure refinement for KDNT.

Diffractometer

Bruker APEX DUO

Radiation source	fine-focus tube, MoKa
Theta range for data collection	2.10 to 30.35°
Index ranges	-9<=h<=9, -18<=k<=18, -20<=l<=17
Reflections collected	14946
Independent reflections	3713 [R(int) = 0.0395]
Coverage of independent reflections	96.3%
Absorption correction	multi-scan
Max. and min. transmission	0.9510 and 0.7990
Structure solution technique	direct methods
Structure solution program	SHELXTL XS 2013/1 (Bruker AXS)
Refinement method	Full-matrix least-squares on F ²
Refinement program	SHELXL-2013 (Sheldrick, 2013)
Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$
Data / restraints / parameters	3713 / 0 / 217
Goodness-of-fit on F ²	1.277
Final R indices	3121 data; I> $2\sigma(I)$ R1 = 0.0764, wR2 = 0.1578
	all data $R1 = 0.0900, wR2 = 0.1620$
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +7.1292P] where P=(F_o^2 +2 F_c^2)/3
Absolute structure parameter	0.0(0)
Largest diff. peak and hole	1.247 and -0.759 eÅ ⁻³
R.M.S. deviation from mean	0.120 eÅ ⁻³

Table S- 17: Atomic	coordinates and	d equivalent	isotropic	atomic	displacement	parameters	$(Å^2)$
for KDNT.							

 $U(\mbox{eq})$ is defined as one third of the trace of the orthogonalized $U_{\mbox{ij}}$ tensor.

	x/a	y/b	z/c	U(eq)
C1	0.4481(6)	0.4771(3)	0.1382(3)	0.0205(8)
C2	0.3623(6)	0.3658(3)	0.2178(3)	0.0184(7)
N1	0.3694(5)	0.2839(3)	0.2844(2)	0.0199(7)
N2	0.1901(5)	0.4029(3)	0.1757(2)	0.0214(7)
N3	0.2497(6)	0.4793(3)	0.1216(2)	0.0218(7)
N4	0.5708(6)	0.5465(3)	0.0927(2)	0.0257(8)
N5	0.5297(5)	0.4079(3)	0.1979(2)	0.0207(7)
01	0.5344(5)	0.2584(3)	0.3232(2)	0.0268(7)
O2	0.2123(5)	0.2445(2)	0.2993(2)	0.0257(7)
O3	0.4875(6)	0.6157(3)	0.0474(2)	0.0332(8)
O4	0.7524(5)	0.5294(3)	0.1015(2)	0.0330(8)
C3	0.7157(6)	0.5984(3)	0.4349(3)	0.0169(7)
C4	0.7598(6)	0.4840(3)	0.5259(3)	0.0225(8)
N6	0.6938(5)	0.6574(3)	0.3511(2)	0.0226(7)
N7	0.6991(6)	0.6436(3)	0.5139(2)	0.0264(8)
N8	0.7310(7)	0.5654(3)	0.5756(3)	0.0298(9)
N9	0.7969(6)	0.3829(3)	0.5656(3)	0.0333(9)
N10	0.7533(5)	0.4984(3)	0.4370(3)	0.0239(7)
O5	0.8019(8)	0.3088(3)	0.5161(4)	0.0597(13)

	x/a	y/b	z/c	U(eq)
06	0.8210(9)	0.3782(4)	0.6457(3)	0.0651(14)
O7	0.6544(5)	0.7486(3)	0.3561(2)	0.0285(7)
08	0.7142(6)	0.6122(3)	0.2806(2)	0.0406(9)
K1	0.89451(14)	0.38058(9)	0.29755(6)	0.0280(2)
K2	0.55209(17)	0.85028(7)	0.51763(6)	0.0271(2)

Table S- 18: Bond lengths (Å) for KDNT.

C1-N5	1.325(5)	C1-N3	1.327(5)
C1-N4	1.448(5)	C2-N5	1.322(5)
C2-N2	1.332(5)	C2-N1	1.444(5)
C2-K1	3.515(4)	N1-O2	1.222(5)
N1-O1	1.227(5)	N1-K2	3.381(4)
N1-K1	3.468(4)	N2-N3	1.368(5)
N2-K1	2.871(4)	N2-K2	3.164(4)
N3-K2	2.913(4)	N3-K2	3.170(4)
N4-O3	1.212(5)	N4-O4	1.234(5)
N5-K1	2.714(4)	O1-K2	2.865(3)
01-K1	2.967(4)	O2-K1	2.775(3)
O2-K2	3.191(3)	O3-K2	2.942(4)
O4-K2	2.955(4)	O4-K2	3.296(4)
C3-N7	1.322(5)	C3-N10	1.325(5)
C3-N6	1.445(5)	C4-N8	1.316(6)
C4-N10	1.320(6)	C4-N9	1.447(6)
N6-08	1.217(5)	N6-07	1.220(5)
N7-N8	1.362(5)	N7-K2	2.866(4)
N8-K1	3.017(5)	N9-O6	1.173(6)
N9-O5	1.211(6)	N10-K1	2.829(4)
O5-K2	3.147(5)	O7-K1	2.826(3)
O7-K2	2.887(4)	O8-K1	3.244(4)
K1-O2	2.775(3)	K1-O7	2.826(3)
K1-N2	2.871(4)	K1-N8	3.017(5)
K1-N1	3.468(4)	K1-C2	3.515(4)
K1-K2	4.7265(19)	K2-O1	2.866(3)
K2-N3	2.913(4)	K2-O3	2.942(4)
K2-O4	2.954(4)	K2-O5	3.147(5)
K2-N2	3.164(4)	K2-N3	3.170(4)
K2-O2	3.191(3)	K2-O4	3.296(4)
K2-N1	3.381(4)		

Table S- 19: Bond angles (°) for KDNT.

N5-C1-N3	117.1(4)	N5-C1-N4	121.2(4)
N3-C1-N4	121.6(4)	N5-C2-N2	117.6(4)
N5-C2-N1	120.3(4)	N2-C2-N1	122.1(4)
N5-C2-K1	151.9(3)	N2-C2-K1	51.1(2)

N1-C2-K1	76.2(2)	O2-N1-O1	123.8(4)
O2-N1-C2	118.7(3)	O1-N1-C2	117.5(3)
O2-N1-K2	70.6(2)	O1-N1-K2	55.3(2)
C2-N1-K2	162.6(3)	O2-N1-K1	46.6(2)
O1-N1-K1	149.1(3)	C2-N1-K1	79.9(2)
K2-N1-K1	100.23(9)	C2-N2-N3	103.2(3)
C2-N2-K1	107.8(2)	N3-N2-K1	136.2(3)
C2-N2-K2	130.9(3)	N3-N2-K2	77.7(2)
K1-N2-K2	102.98(11)	C1-N3-N2	104.1(3)
C1-N3-K2	119.5(3)	N2-N3-K2	135.2(3)
C1-N3-K2	130.7(3)	N2-N3-K2	77.3(2)
K2-N3-K2	81.53(10)	O3-N4-O4	124.9(4)
O3-N4-C1	117.8(4)	O4-N4-C1	117.3(4)
C2-N5-C1	97.9(3)	C2-N5-K1	124.3(3)
C1-N5-K1	135.5(3)	N1-O1-K2	104.1(2)
N1-O1-K1	120.1(3)	K2-O1-K1	128.91(12)
N1-O2-K1	114.7(3)	N1-O2-K2	88.2(2)
K1-O2-K2	123.37(11)	N4-O3-K2	125.0(3)
N4-O4-K2	125.8(3)	N4-O4-K2	122.2(3)
K2-O4-K2	78.81(9)	N7-C3-N10	117.1(4)
N7-C3-N6	120.5(4)	N10-C3-N6	122.5(4)
N8-C4-N10	116.9(4)	N8-C4-N9	122.3(4)
N10-C4-N9	120.8(4)	08-N6-07	124.8(4)
O8-N6-C3	117.7(4)	O7-N6-C3	117.5(3)
C3-N7-N8	103.5(3)	C3-N7-K2	120.2(3)
N8-N7-K2	135.3(3)	C4-N8-N7	104.4(4)
C4-N8-K1	111.0(3)	N7-N8-K1	106.6(3)
O6-N9-O5	123.7(5)	O6-N9-C4	116.6(5)
O5-N9-C4	119.7(5)	C4-N10-C3	98.1(4)
C4-N10-K1	132.6(3)	C3-N10-K1	126.7(3)
N9-O5-K2	122.4(4)	N6-O7-K1	123.0(3)
N6-O7-K2	124.9(3)	K1-O7-K2	111.64(12)
N6-O8-K1	117.8(3)	N5-K1-O2	136.94(11)
N5-K1-O7	69.21(11)	O2-K1-O7	68.15(10)
N5-K1-N10	87.38(11)	O2-K1-N10	132.27(11)
O7-K1-N10	153.75(11)	N5-K1-N2	107.58(11)
O2-K1-N2	58.04(10)	O7-K1-N2	64.88(10)
N10-K1-N2	136.86(11)	N5-K1-O1	56.06(10)
O2-K1-O1	107.55(10)	O7-K1-O1	76.59(10)
N10-K1-O1	80.57(10)	N2-K1-O1	141.46(10)
N5-K1-N8	158.09(12)	O2-K1-N8	64.00(11)
O7-K1-N8	129.53(11)	N10-K1-N8	76.02(11)
N2-K1-N8	76.79(11)	O1-K1-N8	132.55(10)
N5-K1-O8	62.22(11)	O2-K1-O8	150.80(10)
O7-K1-O8	119.96(10)	N10-K1-O8	52.73(10)
N2-K1-O8	98.19(10)	O1-K1-O8	101.65(10)
N8-K1-O8	96.07(11)	N5-K1-N1	142.49(10)
O2-K1-N1	18.68(9)	O7-K1-N1	75.22(9)
N10-K1-N1	129.76(10)	N2-K1-N1	43.82(9)

01-K1-N1	126.19(9)	N8-K1-N1	54.32(10)
O8-K1-N1	132.14(10)	N5-K1-C2	127.90(10)
O2-K1-C2	40.74(9)	O7-K1-C2	73.27(10)
N10-K1-C2	132.61(11)	N2-K1-C2	21.14(10)
O1-K1-C2	143.07(10)	N8-K1-C2	60.42(10)
O8-K1-C2	111.63(10)	N1-K1-C2	23.86(8)
N5-K1-K2	70.19(8)	O2-K1-K2	78.21(7)
O7-K1-K2	34.60(7)	N10-K1-K2	146.86(9)
N2-K1-K2	40.72(8)	O1-K1-K2	104.62(7)
N8-K1-K2	117.49(8)	O8-K1-K2	94.52(6)
N1-K1-K2	73.89(6)	C2-K1-K2	58.44(7)
O1-K2-N7	70.28(10)	O1-K2-O7	123.20(10)
N7-K2-O7	55.52(10)	O1-K2-N3	94.17(10)
N7-K2-N3	125.99(12)	O7-K2-N3	129.73(11)
O1-K2-O3	105.07(10)	N7-K2-O3	78.64(11)
O7-K2-O3	81.28(10)	N3-K2-O3	55.27(10)
O1-K2-O4	72.09(10)	N7-K2-O4	139.63(11)
O7-K2-O4	147.15(10)	N3-K2-O4	70.57(11)
O3-K2-O4	125.61(11)	O1-K2-O5	64.67(12)
N7-K2-O5	68.77(12)	O7-K2-O5	80.14(12)
N3-K2-O5	150.09(12)	O3-K2-O5	147.41(11)
O4-K2-O5	82.39(12)	O1-K2-N2	135.02(10)
N7-K2-N2	108.86(10)	O7-K2-N2	60.46(9)
N3-K2-N2	117.02(10)	O3-K2-N2	119.09(10)
O4-K2-N2	87.91(10)	O5-K2-N2	73.19(11)
O1-K2-N3	127.43(10)	N7-K2-N3	132.61(11)
O7-K2-N3	84.91(9)	N3-K2-N3	98.47(10)
O3-K2-N3	123.94(10)	O4-K2-N3	64.87(9)
O5-K2-N3	80.67(11)	N2-K2-N3	24.94(9)
O1-K2-O2	41.36(9)	N7-K2-O2	61.32(10)
O7-K2-O2	112.00(9)	N3-K2-O2	73.00(10)
O3-K2-O2	63.77(9)	O4-K2-O2	98.10(9)
O5-K2-O2	99.26(11)	N2-K2-O2	169.74(9)
N3-K2-O2	162.91(9)	O1-K2-O4	157.61(10)
N7-K2-O4	119.18(10)	O7-K2-O4	74.13(9)
N3-K2-O4	63.65(10)	O3-K2-O4	60.75(9)
O4-K2-O4	101.19(9)	O5-K2-O4	136.79(12)
N2-K2-O4	64.03(9)	N3-K2-O4	63.20(9)
O2-K2-O4	122.31(9)	O1-K2-N1	20.60(9)
N7-K2-N1	61.22(9)	O7-K2-N1	116.69(9)
N3-K2-N1	86.00(10)	O3-K2-N1	84.88(9)
O4-K2-N1	87.04(9)	O5-K2-N1	79.93(11)
N2-K2-N1	153.07(10)	N3-K2-N1	147.65(10)
O2-K2-N1	21.18(8)	O4-K2-N1	142.85(9)

Table S- 20: Anisotropic atomic displacement parameters (Å²) for KDNT.

The anisotropic atomic displacement factor exponent takes the form: -2 π^2 [h² a^{*2} U₁₁ + ... + 2 h k a^{*} b^{*} U₁₂]

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C1	0.023(2)	0.024(2)	0.0154(17)	-0.0005(15)	0.0064(15)	-0.0020(16)
C2 N1	0.0240(19) 0.0235(17)	0.0185(18) 0.0194(16)	0.0137(16) 0.0179(16)	0.0002(14) 0.0004(13)	0.0060(14) 0.0065(13)	0.0002(15) 0.0011(13)
N2	0.0236(17)	0.0202(17)	0.0217(16)	0.0024(13)	0.0079(14)	-0.0001(14)
N3	0.0259(18)	0.0218(17)	0.0190(16)	0.0025(13)	0.0073(14)	-0.0018(14)
N4	0.033(2)	0.0288(19)	0.0170(16)	-0.0036(14)	0.0078(15)	-0.0095(16)
N5	0.0201(16)	0.0247(17)	0.0177(15)	-0.0014(13)	0.0046(13)	-0.0033(14)
01	0.0254(16)	0.0308(17)	0.0246(15)	0.0053(13)	0.0049(12)	0.0062(13)
02	0.0260(15)	0.0243(15)	0.0292(16)	0.0033(13)	0.0125(13)	-0.0006(13)
03	0.047(2)	0.0262(16)	0.0278(16)	0.0032(14)	0.0109(15)	-0.0026(16)
04	0.0320(18)	0.044(2)	0.0241(16)	-0.0035(14)	0.0063(14)	-0.0119(16)
C3	0.0150(17)	0.0171(17)	0.0190(17)	-0.0005(14)	0.0035(14)	-0.0018(14)
C4	0.0127(17)	0.0194(19)	0.036(2)	0.0054(17)	0.0071(16)	0.0008(15)
N6	0.0234(18)	0.0263(18)	0.0181(16)	-0.0001(14)	0.0031(13)	-0.0028(15)
N7 N8 N9	0.045(2) 0.045(2) 0.0237(19)	0.0174(17) 0.0230(18) 0.032(2)	0.0181(16) 0.0231(18) 0.044(2)	0.0025(13) 0.0058(15) 0.0116(19)	0.0083(15) 0.0117(17) 0.0065(17)	0.0043(16) 0.0043(17) 0.0050(17)
N10	0.0200(17)	0.0194(17)	0.0326(19)	-0.0024(15)	0.0039(15)	0.0021(14)
O5 O6 O7	0.070(3) 0.109(4) 0.0359(18)	0.029(2) 0.042(2) 0.0260(16)	0.075(3) 0.047(3) 0.0237(15)	-0.006(2) 0.008(2) 0.0065(13)	-0.012(3) 0.020(3) 0.0043(13)	0.016(2) 0.015(3) 0.0023(14)
08	0.058(2)	0.046(2)	0.0200(16)	-0.0098(15)	0.0125(16)	-0.0052(19)
K1 K2	0.0201(4) 0.0437(6)	0.0442(6) 0.0158(4)	0.0201(4) 0.0217(4)	-0.0106(4) -0.0002(3)	0.0045(3) 0.0045(4)	0.0029(4) 0.0061(4)

2.4 Crystal Structure Report for KDNT·2H₂O

Figure S- 10 : Projection of the packing in KDNT·2H₂O approximately down the a axis.

Figure S-11: Projection of the packing in KDNT·2H₂O approximately down the b axis.

Figure S-12: Projection of the packing in KDNT \cdot 2H₂O approximately down the c axis.

Table S- 21: Sample and crystal data for KDNT \cdot 2H₂O.

Identification code	KDNT2H2O_2	
Chemical formula	C ₂ H ₄ KN ₅ O ₆	
Formula weight	233.20	
Temperature	130(2) K	
Wavelength	0.71073 Å	
Crystal size	0.110 x 0.150 x 0.360 mm	
Crystal habit	clear orange prism	
Crystal system	triclinic	
Space group	P 1	
Unit cell dimensions	a = 4.5220(15) Å	$\alpha = 96.093(4)^{\circ}$
	b = 6.355(2) Å	$\beta = 92.533(4)^{\circ}$
	c = 7.770(3) Å	$\gamma = 108.569(4)^{\circ}$
Volume	209.75(12) Å ³	
Z	1	
Density (calculated)	1.846 g/cm ³	
Absorption coefficient	0.652 mm ⁻¹	
F(000)	118	

Table S- 22: Data collection and structure refinement for KDNT \cdot 2H₂O.

Diffractometer	Bruker SMART APEX
Radiation source	fine-focus tube, MoKa
Theta range for data collection	2.65 to 27.48°
Index ranges	-5<=h<=5, -8<=k<=7, -9<=l<=9
Reflections collected	2303
Independent reflections	1445 [R(int) = 0.0228]
Coverage of independent reflections	95.9%
Absorption correction	multi-scan
Max. and min. transmission	0.9320 and 0.7990
Structure solution technique	direct methods
Structure solution program	SHELXTL XT 2013/6 (Sheldrick, 2013)
Refinement method	Full-matrix least-squares on F ²
Refinement program	SHELXTL XLMP 2014/1 (Bruker AXS, 2013)
Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$
Data / restraints / parameters	1445 / 3 / 127
Goodness-of-fit on F ²	1.138
Δ/σ_{max}	0.011
Final R indices	1416 data; I> $2\sigma(I)$ R1 = 0.0255, wR2 = 0.0714
	all data $R1 = 0.0263, wR2 = 0.0725$
Weighting scheme	$w=1/[\sigma^2(F_o^2)+(0.0385P)^2+0.0115P]$ where $P=(F_o^2+2F_o^2)/3$
Absolute structure parameter	0.1(0)
Largest diff. peak and hole	0.219 and -0.233 eÅ ⁻³
R.M.S. deviation from mean	0.057 eÅ ⁻³

Table S- 23: Atomic coordinates and equivalent isotropic atomic displacement parameters (Å²) for KDNT \cdot 2H₂O.U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x/a	y/b	z/c	U(eq)
C1	0.5258(7)	0.1469(5)	0.6173(4)	0.0230(6)
C2	0.4075(7)	0.3987(5)	0.7418(4)	0.0224(6)
K1	0.75879(7)	0.62090(6)	0.19420(6)	0.03001(19)
N1	0.5705(6)	0.3413(5)	0.8631(3)	0.0253(5)
N2	0.6514(7)	0.1710(4)	0.7801(3)	0.0253(6)
N3	0.3686(7)	0.2854(5)	0.5840(3)	0.0247(5)
N4	0.5607(7)	0.9799(5)	0.4855(3)	0.0277(6)
N5	0.2739(7)	0.5753(5)	0.7795(4)	0.0261(6)
01	0.4193(7)	0.9549(5)	0.3415(3)	0.0397(6)
02	0.7292(6)	0.8719(4)	0.5244(3)	0.0351(6)
03	0.1286(6)	0.6225(4)	0.6622(3)	0.0334(6)
04	0.3145(6)	0.6685(4)	0.9311(3)	0.0352(6)
05	0.9768(6)	0.9883(4)	0.0163(3)	0.0320(5)
06	0.1379(7)	0.3789(4)	0.2572(3)	0.0358(6)

Table S- 24: Bond lengths (Å) for KDNT \cdot 2H₂O.

C1-N3	1.333(4)	C1-N2	1.337(4)
C1-N4	1.445(4)	C2-N1	1.321(4)
C2-N3	1.329(4)	C2-N5	1.445(4)
K1-O6	2.703(3)	K1-O5	2.771(2)
K1-O6	2.832(3)	K1-N1	2.894(3)
K1-O2	2.906(3)	K1-O4	2.909(3)
K1-O1	3.143(3)	K1-O1	3.144(3)
K1-O4	3.269(3)	K1-N4	3.393(3)
K1-K1	4.5220(15)	K1-K1	4.5220(15)
K1-H2	3.0281	N1-N2	1.359(4)
N1-K1	2.894(3)	N4-O2	1.225(4)
N4-01	1.233(4)	N5-O3	1.218(4)
N5-O4	1.239(4)	01-K1	3.143(3)
O4-K1	2.909(3)	O4-K1	3.269(3)
O5-H1	0.795	O5-H2	0.809
O6-K1	2.832(3)	O6-H3	0.808
O6-H4	0.8062		

Table S- 25: Bond angles (°) for KDNT \cdot 2H₂O.

N3-C1-N2	116.2(3)	N3-C1-N4	122.3(3)
N2-C1-N4	121.4(3)	N1-C2-N3	117.2(3)
N1-C2-N5	121.5(3)	N3-C2-N5	121.3(3)
O6-K1-O5	119.02(8)	O6-K1-O6	109.55(9)
O5-K1-O6	129.63(7)	O6-K1-N1	86.69(8)
O5-K1-N1	88.59(8)	O6-K1-N1	81.36(8)
O6-K1-O2	106.41(7)	O5-K1-O2	96.26(8)
O6-K1-O2	81.64(8)	N1-K1-O2	161.28(8)
O6-K1-O4	142.15(7)	O5-K1-O4	64.51(7)
O6-K1-O4	69.36(7)	N1-K1-O4	55.48(8)
O2-K1-O4	110.65(7)	O6-K1-O1	71.86(8)
O5-K1-O1	65.65(7)	O6-K1-O1	148.34(7)
N1-K1-O1	129.74(8)	O2-K1-O1	68.21(7)
O4-K1-O1	129.64(8)	O6-K1-O1	148.19(7)
O5-K1-O1	75.23(8)	O6-K1-O1	70.28(8)
N1-K1-O1	123.62(8)	O2-K1-O1	41.84(7)
O4-K1-O1	68.99(7)	01-K1-01	91.98(7)
O6-K1-O4	65.53(7)	O5-K1-O4	57.71(7)
O6-K1-O4	146.03(7)	N1-K1-O4	65.04(7)
O2-K1-O4	132.33(7)	O4-K1-O4	93.93(7)
O1-K1-O4	64.71(7)	O1-K1-O4	132.53(7)
O6-K1-N4	127.01(8)	O5-K1-N4	84.59(7)
O6-K1-N4	76.36(7)	N1-K1-N4	144.25(8)
O2-K1-N4	20.61(7)	O4-K1-N4	90.29(7)
01-K1-N4	78.36(7)	01-K1-N4	21.31(7)
O4-K1-N4	134.95(6)	O6-K1-K1	143.84(6)
O5-K1-K1	96.28(5)	O6-K1-K1	34.29(6)
N1-K1-K1	86.59(6)	O2-K1-K1	74.93(6)

O4-K1-K1	46.15(5)	O1-K1-K1	135.98(5)
O1-K1-K1	44.00(5)	O4-K1-K1	140.08(5)
N4-K1-K1	59.50(5)	O6-K1-K1	36.16(6)
O5-K1-K1	83.72(5)	O6-K1-K1	145.71(6)
N1-K1-K1	93.41(6)	O2-K1-K1	105.07(5)
O4-K1-K1	133.85(5)	O1-K1-K1	44.02(5)
O1-K1-K1	135.99(5)	O4-K1-K1	39.92(5)
N4-K1-K1	120.50(5)	K1-K1-K1	180.0
O6-K1-H2	104.3	O5-K1-H2	15.2
O6-K1-H2	141.9	N1-K1-H2	83.6
O2-K1-H2	105.3	O4-K1-H2	73.2
O1-K1-H2	60.1	O1-K1-H2	89.9
O4-K1-H2	42.7	N4-K1-H2	97.0
K1-K1-H2	110.2	K1-K1-H2	69.8
C2-N1-N2	104.3(3)	C2-N1-K1	119.6(2)
N2-N1-K1	135.1(2)	C1-N2-N1	104.2(3)
C2-N3-C1	98.1(3)	O2-N4-O1	124.2(3)
O2-N4-C1	117.7(3)	O1-N4-C1	118.1(3)
O2-N4-K1	56.63(17)	O1-N4-K1	67.89(18)
C1-N4-K1	171.5(2)	O3-N5-O4	124.2(3)
O3-N5-C2	118.6(3)	O4-N5-C2	117.2(3)
N4-O1-K1	130.0(2)	N4-01-K1	90.8(2)
K1-O1-K1	91.98(7)	N4-O2-K1	102.76(19)
N5-O4-K1	124.2(2)	N5-O4-K1	124.3(2)
K1-O4-K1	93.93(7)	K1-O5-H1	132.8
K1-O5-H2	100.8	H1-O5-H2	101.4
K1-O6-K1	109.55(9)	K1-O6-H3	114.5
K1-O6-H3	102.9	K1-O6-H4	128.8
K1-06-H4	96 1	H3-O6-H4	101.1

Table S- 26: Anisotropic atomic displacement parameters (Å²) for KDNT·2H₂O.The anisotropic atomic displacement factor exponent takes the form: - $2\pi^2$ [h² a^{*2} U₁₁ + ... + 2 h k a^{*} b^{*} U₁₂]

	U_{11}	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C1	0.0244(15)	0.0234(14)	0.0217(13)	0.0011(11)	-0.0008(11)	0.0094(12)
C2	0.0206(14)	0.0228(14)	0.0244(14)	0.0034(11)	0.0000(11)	0.0079(11)
K1	0.0351(4)	0.0306(4)	0.0260(3)	-0.0016(2)	-0.0024(3)	0.0152(3)
N1	0.0260(14)	0.0278(14)	0.0240(12)	0.0029(10)	-0.0005(10)	0.0119(11)
N2	0.0280(14)	0.0264(14)	0.0231(12)	0.0018(10)	-0.0011(10)	0.0118(11)
N3	0.0270(13)	0.0263(13)	0.0221(11)	0.0024(10)	0.0007(10)	0.0109(10)
N4	0.0293(15)	0.0261(14)	0.0268(14)	0.0003(11)	0.0020(11)	0.0090(11)
N5	0.0251(14)	0.0251(13)	0.0291(13)	0.0032(10)	-0.0009(11)	0.0102(11)
01	0.0552(17)	0.0406(14)	0.0248(11)	-0.0043(10)	-0.0067(11)	0.0216(13)
O2	0.0389(15)	0.0332(13)	0.0390(13)	-0.0016(10)	-0.0002(11)	0.0223(11)
O3	0.0344(14)	0.0340(13)	0.0357(13)	0.0074(10)	-0.0029(10)	0.0162(11)
O4	0.0373(14)	0.0368(13)	0.0328(12)	-0.0074(10)	-0.0035(10)	0.0185(11)
05	0.0317(13)	0.0332(13)	0.0349(12)	0.0070(10)	0.0000(10)	0.0155(11)
06	0.0479(16)	0.0360(13)	0.0257(11)	0.0043(10)	-0.0066(10)	0.0178(12)
	. ,	. ,	• •			. ,

Table S- 27: Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å²) for KDNT \cdot 2H₂O.

x/a	y/b	z/c	U(eq)
0.9038	0.0286	-0.0639	0.038
1.1282	-0.0338	-0.0235	0.038
1.1008	-0.7362	0.1924	0.043
1.1827	-0.6592	0.3478	0.043
	x/a 0.9038 1.1282 1.1008 1.1827	x/ay/b0.90380.02861.1282-0.03381.1008-0.73621.1827-0.6592	x/ay/bz/c0.90380.0286-0.06391.1282-0.0338-0.02351.1008-0.73620.19241.1827-0.65920.3478

2.5 Crystal Structure Report for RbDNT

Figure S- 13: Projection of the packing of RbDNT down the a axis.

Figure S- 14: Projection of the packing of RbDNT down the b axis.

Figure S- 15: Projection of the packing of RbDNT down the c axis.

Table S- 28: Sample and crystal data for RbDNT.

Identification code	RbDNT	
Chemical formula	$C_2N_5O_4Rb$	
Formula weight	243.54	
Temperature	140(2) K	
Wavelength	0.71073 Å	
Crystal size	0.040 x 0.200 x 0.220 mm	
Crystal habit	clear yellow plate	
Crystal system	orthorhombic	
Space group	P 21 21 21	
Unit cell dimensions	a = 7.6561(12) Å	$\alpha = 90^{\circ}$
	b = 7.8172(12) Å	$\beta = 90^{\circ}$
	c = 11.0946(17) Å	γ = 90°
Volume	664.00(18) Å ³	
Ζ	4	
Density (calculated)	2.436 g/cm ³	
Absorption coefficient	7.440 mm ⁻¹	
F(000)	464	

Table S- 29: Data collection and structure refinement for RbDNT.

Diffractometer

Bruker SMART APEX

Radiation source	fine-focus tube, MoKa			
Theta range for data collection	3.19 to 28.72°			
Index ranges	-9<=h<=10, -10<=k<=10, -14<=l<=9			
Reflections collected	4210			
Independent reflections	1583 [R(int) = 0.0400]			
Coverage of independent reflections	94.2%			
Absorption correction	multi-scan			
Max. and min. transmission	0.7550 and 0.2910			
Structure solution technique	direct methods			
Structure solution program	SHELXTL XT 2013/6 (Sheldrick, 2013)			
Refinement method	Full-matrix least-squares on F ²			
Refinement program	SHELXTL XLMP 2014/1 (Bruker AXS, 2013)			
Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$			
Data / restraints / parameters	1583 / 0 / 109			
Goodness-of-fit on F ²	0.998			
Δ/σ_{max}	0.001			
Final R indices	1421 data; I> $2\sigma(I)$ R1 = 0.0335, wR2 = 0.0703			
	all data $R1 = 0.0399$, $wR2 = 0.0729$			
Weighting scheme	$w=1/[\sigma^2(F_o^2)+(0.0277P)^2]$			
weighting scheme	where $P = (F_o^2 + 2F_c^2)/3$			
Absolute structure parameter	0.0(0)			
Largest diff. peak and hole	0.858 and -0.796 eÅ ⁻³			
R.M.S. deviation from mean	0.123 eÅ ⁻³			

Table S- 30: Atomic coordinates and equivalent isotropic atomic displacement parameters (Å²) for RbDNT.U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

x/a	y/b	z/c	U(eq)
0.6039(7)	0.6239(7)	0.7206(5)	0.0191(12)
0.6133(7)	0.6031(7)	0.5403(5)	0.0181(11)
0.7600(6)	0.6879(7)	0.5689(5)	0.0255(12)
0.7538(6)	0.7007(7)	0.6904(5)	0.0239(11)
0.5098(5)	0.5578(6)	0.6299(4)	0.0199(10)
0.5480(6)	0.6150(6)	0.8436(4)	0.0215(11)
0.5708(5)	0.5651(6)	0.4173(5)	0.0196(11)
0.4023(6)	0.5518(7)	0.8631(4)	0.0466(14)
0.6435(5)	0.6683(5)	0.9236(4)	0.0234(9)
0.4630(5)	0.4509(5)	0.3977(4)	0.0268(10)
0.6442(5)	0.6468(5)	0.3364(3)	0.0240(9)
0.37462(6)	0.52819(7)	0.13279(5)	0.02106(16)
	x/a 0.6039(7) 0.6133(7) 0.7600(6) 0.7538(6) 0.5098(5) 0.5480(6) 0.5708(5) 0.4023(6) 0.6435(5) 0.4630(5) 0.6442(5) 0.37462(6)	x/ay/b0.6039(7)0.6239(7)0.6133(7)0.6031(7)0.7600(6)0.6879(7)0.7538(6)0.7007(7)0.5098(5)0.5578(6)0.5480(6)0.6150(6)0.5708(5)0.5651(6)0.4023(6)0.5518(7)0.6435(5)0.6683(5)0.4630(5)0.4509(5)0.6442(5)0.6468(5)0.37462(6)0.52819(7)	x/a y/b z/c $0.6039(7)$ $0.6239(7)$ $0.7206(5)$ $0.6133(7)$ $0.6031(7)$ $0.5403(5)$ $0.7600(6)$ $0.6879(7)$ $0.5689(5)$ $0.7538(6)$ $0.7007(7)$ $0.6904(5)$ $0.5098(5)$ $0.5578(6)$ $0.6299(4)$ $0.5480(6)$ $0.6150(6)$ $0.8436(4)$ $0.5708(5)$ $0.5651(6)$ $0.4173(5)$ $0.4023(6)$ $0.5518(7)$ $0.8631(4)$ $0.6435(5)$ $0.6683(5)$ $0.9236(4)$ $0.4630(5)$ $0.4509(5)$ $0.3977(4)$ $0.6442(5)$ $0.6468(5)$ $0.3364(3)$ $0.37462(6)$ $0.52819(7)$ $0.13279(5)$

Table	S- 1	31:	Bond	lengths	(Å)	for RbDNT.
1 4010	υ.	51.	Dona	ionguis	(11)	

C1-N2	1.338(7)	C1-N3	1.341(7)
C1-N4	1.431(7)	C1-C2	2.009(8)
C2-N3	1.319(7)	C2-N1	1.343(7)
C2-N5	1.433(7)	N1-N2	1.353(7)
N1-Rb1	3.344(5)	N1-Rb1	3.626(6)
--------	----------	--------	----------
N2-Rb1	3.032(5)	N2-Rb1	3.421(5)
N3-Rb1	3.019(4)	N4-O2	1.224(6)
N4-O1	1.239(6)	N4-Rb1	3.538(5)
N5-O3	1.235(6)	N5-O4	1.237(6)
N5-Rb1	3.508(5)	O1-Rb1	3.005(4)
O1-Rb1	3.379(4)	O2-Rb1	3.025(4)
O2-Rb1	3.290(4)	O3-Rb1	3.076(4)
O3-Rb1	3.547(4)	O4-Rb1	3.005(4)
O4-Rb1	3.197(4)	Rb1-O4	3.005(4)
Rb1-N3	3.019(4)	Rb1-O2	3.025(4)
Rb1-N2	3.032(5)	Rb1-O3	3.076(4)
Rb1-O4	3.197(4)	Rb1-N1	3.344(5)
Rb1-O1	3.379(4)	Rb1-N2	3.421(5)
Rb1-N5	3.508(5)		

Table S- 32: Bond angles (°) for RbDNT.

N2-C1-N3	116.4(5)	N2-C1-N4	121.1(5)
N3-C1-N4	122.4(5)	N2-C1-C2	75.9(4)
N3-C1-C2	40.6(3)	N4-C1-C2	163.0(5)
N3-C2-N1	117.2(5)	N3-C2-N5	121.7(5)
N1-C2-N5	121.2(5)	N3-C2-C1	41.4(3)
N1-C2-C1	75.8(4)	N5-C2-C1	163.0(5)
C2-N1-N2	104.1(5)	C2-N1-Rb1	120.1(4)
N2-N1-Rb1	81.7(4)	C2-N1-Rb1	88.8(3)
N2-N1-Rb1	123.4(4)	Rb1-N1-Rb1	137.67(15)
C1-N2-N1	104.3(5)	C1-N2-Rb1	114.4(4)
N1-N2-Rb1	133.3(4)	C1-N2-Rb1	121.7(4)
N1-N2-Rb1	75.3(3)	Rb1-N2-Rb1	103.46(13)
C2-N3-C1	98.0(4)	C2-N3-Rb1	130.8(4)
C1-N3-Rb1	126.9(4)	O2-N4-O1	123.2(5)
O2-N4-C1	119.8(4)	O1-N4-C1	117.1(5)
O2-N4-Rb1	68.4(3)	O1-N4-Rb1	55.0(3)
C1-N4-Rb1	170.3(4)	O3-N5-O4	123.3(5)
O3-N5-C2	118.0(5)	O4-N5-C2	118.7(4)
O3-N5-Rb1	59.7(3)	O4-N5-Rb1	65.4(3)
C2-N5-Rb1	166.1(3)	N4-O1-Rb1	105.2(3)
N4-O1-Rb1	120.4(3)	Rb1-O1-Rb1	134.23(13)
N4-O2-Rb1	117.8(3)	N4-O2-Rb1	91.4(3)
Rb1-O2-Rb1	140.63(13)	N5-O3-Rb1	100.0(3)
N5-O3-Rb1	117.1(3)	Rb1-O3-Rb1	99.72(11)
N5-O4-Rb1	114.1(3)	N5-O4-Rb1	94.0(3)
Rb1-O4-Rb1	109.71(12)	O4-Rb1-O1	100.23(12)
O4-Rb1-N3	74.55(11)	O1-Rb1-N3	94.11(12)
O4-Rb1-O2	140.70(12)	O1-Rb1-O2	77.71(13)
N3-Rb1-O2	66.56(11)	O4-Rb1-N2	127.25(13)
O1-Rb1-N2	128.51(15)	N3-Rb1-N2	82.26(13)

O2-Rb1-N2	53.65(12)	O4-Rb1-O3	72.95(10)
O1-Rb1-O3	161.43(12)	N3-Rb1-O3	100.42(12)
O2-Rb1-O3	118.71(11)	N2-Rb1-O3	65.55(12)
O4-Rb1-O4	103.78(8)	O1-Rb1-O4	129.81(11)
N3-Rb1-O4	134.55(12)	O2-Rb1-O4	107.24(11)
N2-Rb1-O4	62.43(11)	O3-Rb1-O4	40.52(10)
O4-Rb1-O2	116.14(10)	O1-Rb1-O2	39.93(11)
N3-Rb1-O2	132.58(12)	O2-Rb1-O2	87.65(5)
N2-Rb1-O2	114.49(12)	O3-Rb1-O2	127.00(10)
O4-Rb1-O2	89.88(10)	O4-Rb1-N1	64.08(11)
O1-Rb1-N1	76.17(13)	N3-Rb1-N1	134.49(12)
O2-Rb1-N1	147.31(12)	N2-Rb1-N1	138.19(13)
O3-Rb1-N1	85.38(12)	O4-Rb1-N1	75.89(11)
O2-Rb1-N1	59.68(11)	O4-Rb1-O1	72.56(12)
O1-Rb1-O1	143.96(6)	N3-Rb1-O1	49.86(11)
O2-Rb1-O1	86.25(12)	N2-Rb1-O1	56.54(14)
O3-Rb1-O1	51.60(9)	O4-Rb1-O1	85.66(10)
O2-Rb1-O1	171.03(12)	N1-Rb1-O1	126.28(13)
O4-Rb1-N2	59.96(11)	O1-Rb1-N2	99.18(13)
N3-Rb1-N2	134.12(12)	O2-Rb1-N2	159.27(11)
N2-Rb1-N2	119.89(7)	O3-Rb1-N2	62.35(11)
O4-Rb1-N2	58.86(11)	O2-Rb1-N2	77.62(11)
N1-Rb1-N2	23.03(13)	O1-Rb1-N2	106.48(12)
O4-Rb1-N5	89.97(10)	O1-Rb1-N5	149.40(11)
N3-Rb1-N5	116.45(12)	O2-Rb1-N5	111.85(11)
N2-Rb1-N5	59.40(12)	O3-Rb1-N5	20.29(10)
O4-Rb1-N5	20.59(9)	O2-Rb1-N5	109.84(10)
N1-Rb1-N5	82.77(11)	O1-Rb1-N5	66.62(10)
N2-Rb1-N5	61.23(11)		

Table S- 33: Anisotropic atomic displacement parameters (Å²) for RbDNT.The anisotropic atomic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2} U₁₁ + ... + 2 h k a^{*} b^{*} U₁₂]

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C1	0.015(3)	0.019(3)	0.024(3)	0.001(2)	0.000(2)	0.003(2)
C2	0.016(2)	0.017(3)	0.021(3)	0.000(2)	-0.003(2)	0.002(3)
N1	0.020(3)	0.030(3)	0.027(3)	-0.002(3)	0.004(2)	-0.008(2)
N2	0.017(2)	0.029(3)	0.026(3)	0.000(2)	0.002(2)	-0.005(2)
N3	0.0142(19)	0.023(3)	0.023(3)	-0.003(2)	0.002(2)	-0.0018(16)
N4	0.020(2)	0.021(3)	0.023(3)	0.002(2)	0.003(2)	0.0007(19)
N5	0.015(2)	0.021(3)	0.022(3)	-0.001(2)	0.0027(19)	0.0032(17)
01	0.031(2)	0.082(4)	0.027(3)	-0.003(3)	0.006(2)	-0.031(2)
O2	0.025(2)	0.023(2)	0.022(2)	-0.0028(17)	-0.0012(19)	0.001(2)
O3	0.0215(19)	0.029(2)	0.030(3)	-0.002(2)	-0.0036(17)	-0.0050(17)
O4	0.024(2)	0.026(2)	0.022(2)	0.0029(17)	0.0036(19)	0.0003(19)
Rb1	0.0177(2)	0.0244(3)	0.0212(3)	-0.0015(2)	0.0012(2)	0.0025(2)

2.6 Crystal Structure Report for CsDNT

Figure S-16 : Projection of the packing in CsDNT down the a axis.

Figure S- 17: Projection of the packing in CsDNT down the b axis.

Figure S-18 : Projection of the packing in CsDNT down the c axis.

Table S- 34: Sample and crystal data for CsDNT.

Identification code	CsDNT_2	
Chemical formula	$C_2CsN_5O_4$	
Formula weight	290.98	
Temperature	133(2) K	
Wavelength	0.71073 Å	
Crystal size	0.040 x 0.190 x 0.290 mm	n
Crystal habit	clear pale orange plate	
Crystal system	monoclinic	
Space group	P 1 21/n 1	
Unit cell dimensions	a = 7.974(3) Å	$\alpha = 90^{\circ}$
	b = 10.088(3) Å	$\beta = 109.941(4)^{\circ}$
	c = 9.267(3) Å	$\gamma = 90^{\circ}$
Volume	700.8(4) Å ³	
Z	4	
Density (calculated)	2.758 g/cm ³	
Absorption coefficient	5.269 mm ⁻¹	
F(000)	536	

Table S- 35: Data collection and structure refinement for CsDNT.

Diffractometer	Bruker SMART APEX
Radiation source	fine-focus tube, MoKα
Theta range for data collection	2.92 to 28.63°
Index ranges	-9<=h<=10, -13<=k<=10, -12<=l<=12
Reflections collected	3944
Independent reflections	1589 [R(int) = 0.1014]
Coverage of independent reflections	88.2%
Absorption correction	multi-scan
Max. and min. transmission	0.8170 and 0.3100
Structure solution technique	direct methods
Structure solution program	SHELXTL XT 2013/6 (Sheldrick, 2013)
Refinement method	Full-matrix least-squares on F ²
Refinement program	SHELXTL XLMP 2014/1 (Bruker AXS, 2013)
Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$
Data / restraints / parameters	1589 / 0 / 109
Goodness-of-fit on F ²	1.040
Final R indices	1433 data; I> 2σ (I) R1 = 0.0332, wR2 = 0.0848
	all data $R1 = 0.0357, wR2 = 0.0869$
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.0434P) ²] where P=(F_o^2 +2 F_c^2)/3
Largest diff. peak and hole	1.170 and -1.327 eÅ ⁻³
R.M.S. deviation from mean	0.222 eÅ ⁻³

Table S- 36: Atomic coordinates and equivalent isotropic atomic displacement parameters (Å²) for **CsDNT**.U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x/a	y/b	z/c	U(eq)
C1	0.4253(6)	0.4374(3)	0.6360(4)	0.0187(8)
C2	0.2914(5)	0.2697(3)	0.5558(4)	0.0202(7)
Cs1	0.96841(3)	0.43708(2)	0.74916(3)	0.02347(13)
N1	0.4624(4)	0.2360(3)	0.5860(4)	0.0219(6)
N2	0.5531(4)	0.3504(3)	0.6399(3)	0.0223(6)
N3	0.2577(4)	0.3941(3)	0.5834(3)	0.0195(6)
N4	0.4664(5)	0.5723(3)	0.6867(4)	0.0204(7)
N5	0.1491(4)	0.1750(3)	0.4930(3)	0.0235(6)
01	0.3432(4)	0.6427(3)	0.6934(3)	0.0303(6)
02	0.6214(4)	0.6120(3)	0.7186(3)	0.0266(6)
03	0.9950(4)	0.2154(3)	0.4538(3)	0.0327(7)
04	0.1917(5)	0.0583(2)	0.4816(4)	0.0297(7)

Table S- 37: Bond lengths (Å) for CsDNT.

C1-N3	1.331(5)	C1-N2	1.336(5)
C1-N4	1.440(4)	C2-N3	1.326(4)
C2-N1	1.339(4)	C2-N5	1.445(5)
Cs1-N3	3.207(3)	Cs1-O2	3.212(3)
Cs1-O4	3.233(3)	Cs1-N2	3.236(3)
Cs1-O1	3.288(3)	Cs1-N1	3.340(3)
Cs1-O2	3.391(3)	Cs1-N3	3.444(3)
Cs1-O4	3.571(4)	Cs1-N1	3.591(3)
Cs1-O3	3.597(3)	Cs1-N4	3.736(3)
N1-N2	1.364(4)	N1-Cs1	3.340(3)
N1-Cs1	3.591(3)	N2-Cs1	3.236(3)
N3-Cs1	3.444(3)	N4-O1	1.230(4)
N4-O2	1.236(5)	N4-Cs1	3.736(3)
N5-O3	1.226(4)	N5-O4	1.240(4)
O1-Cs1	3.288(3)	O2-Cs1	3.212(3)
O2-Cs1	3.391(3)	O4-Cs1	3.233(3)
O4-Cs1	3.571(4)		

Tab	le S-	- 38:	Bond	angles	5 (°)	for	CSDNT.
-----	-------	-------	------	--------	-------	-----	--------

N3-C1-N2	117.1(3)	N3-C1-N4	121.2(3)
N2-C1-N4	121.7(4)	N3-C2-N1	117.3(3)
N3-C2-N5	121.4(3)	N1-C2-N5	121.3(3)
N3-Cs1-O2	140.42(7)	N3-Cs1-O4	82.55(9)
O2-Cs1-O4	109.29(8)	N3-Cs1-N2	129.80(8)
O2-Cs1-N2	50.35(7)	O4-Cs1-N2	147.43(9)
N3-Cs1-O1	65.92(7)	O2-Cs1-O1	147.42(7)
O4-Cs1-O1	90.02(7)	N2-Cs1-O1	99.72(7)
N3-Cs1-N1	107.92(8)	O2-Cs1-N1	63.08(7)
O4-Cs1-N1	48.80(7)	N2-Cs1-N1	112.26(7)
01-Cs1-N1	138.26(8)	N3-Cs1-O2	96.85(7)
O2-Cs1-O2	109.74(4)	O4-Cs1-O2	116.38(6)
N2-Cs1-O2	62.74(7)	O1-Cs1-O2	37.90(6)
N1-Cs1-O2	147.08(7)	N3-Cs1-N3	83.16(8)
O2-Cs1-N3	58.45(7)	O4-Cs1-N3	123.28(7)
N2-Cs1-N3	71.71(7)	O1-Cs1-N3	131.49(7)
N1-Cs1-N3	85.25(7)	O2-Cs1-N3	119.70(7)
N3-Cs1-O4	169.73(7)	O2-Cs1-O4	49.85(7)
O4-Cs1-O4	93.29(9)	N2-Cs1-O4	54.21(8)
O1-Cs1-O4	104.84(6)	N1-Cs1-O4	75.64(7)
O2-Cs1-O4	76.52(6)	N3-Cs1-O4	106.90(8)
N3-Cs1-N1	125.14(8)	O2-Cs1-N1	94.44(7)
O4-Cs1-N1	76.66(8)	N2-Cs1-N1	79.92(7)
O1-Cs1-N1	63.95(7)	N1-Cs1-N1	95.18(7)
O2-Cs1-N1	52.22(7)	N3-Cs1-N1	149.34(7)
O4-Cs1-N1	44.59(7)	N3-Cs1-O3	46.58(7)
O2-Cs1-O3	123.17(7)	O4-Cs1-O3	124.83(8)
N2-Cs1-O3	85.04(7)	O1-Cs1-O3	54.51(7)
N1-Cs1-O3	150.02(7)	O2-Cs1-O3	62.28(7)
N3-Cs1-O3	77.02(7)	O4-Cs1-O3	132.53(6)
N1-Cs1-O3	112.39(7)	N3-Cs1-N4	81.89(8)
O2-Cs1-N4	128.63(8)	O4-Cs1-N4	102.43(7)
N2-Cs1-N4	81.70(8)	O1-Cs1-N4	18.82(7)
N1-Cs1-N4	145.51(7)	O2-Cs1-N4	19.19(8)
N3-Cs1-N4	129.17(7)	O4-Cs1-N4	89.89(6)
N1-Cs1-N4	54.92(7)	O3-Cs1-N4	57.81(7)
C2-N1-N2	103.7(3)	C2-N1-Cs1	108.8(2)
N2-N1-Cs1	127.8(2)	C2-N1-Cs1	104.9(2)
N2-N1-Cs1	124.6(2)	Cs1-N1-Cs1	84.82(7)
C1-N2-N1	104.0(3)	C1-N2-Cs1	121.4(2)
N1-N2-Cs1	134.6(2)	C2-N3-C1	97.9(3)
C2-N3-Cs1	116.5(2)	C1-N3-Cs1	125.2(2)
C2-N3-Cs1	112.0(2)	C1-N3-Cs1	108.6(2)
Cs1-N3-Cs1	96.84(8)	O1-N4-O2	123.4(3)
O1-N4-C1	117.7(3)	O2-N4-C1	118.8(3)
O1-N4-Cs1	59.56(17)	O2-N4-Cs1	64.44(17)
C1-N4-Cs1	170.5(2)	O3-N5-O4	124.5(3)

O3-N5-C2	118.0(3)	O4-N5-C2	117.5(3)
N4-O1-Cs1	101.6(2)	N4-O2-Cs1	127.2(2)
N4-O2-Cs1	96.4(2)	Cs1-O2-Cs1	136.46(9)
N5-O3-Cs1	107.1(2)	N5-O4-Cs1	118.4(2)
N5-O4-Cs1	106.4(2)	Cs1-O4-Cs1	86.71(9)

Table S- 39: Anisotropic atomic displacement parameters (Å²) for CsDNT.

The anisotropic atomic displacement factor exponent takes the form: -2 π^2 [h² a^{*2} U₁₁ + ... + 2 h k a^{*} b^{*} U₁₂]

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C1	0.0249(19)	0.0143(17)	0.0215(18)	0.0003(12)	0.0137(16)	0.0020(12)
C2	0.0253(17)	0.0167(15)	0.0222(16)	0.0007(14)	0.0127(14)	0.0013(14)
Cs1	0.02321(18)	0.01906(18)	0.03195(19)	-0.00085(8)	0.01432(12)	0.00045(7)
N1	0.0231(14)	0.0172(14)	0.0279(14)	-0.0001(13)	0.0121(13)	0.0013(12)
N2	0.0243(15)	0.0190(13)	0.0269(14)	-0.0020(13)	0.0130(13)	0.0001(12)
N3	0.0240(15)	0.0150(13)	0.0224(14)	0.0009(12)	0.0115(12)	0.0011(12)
N4	0.0263(17)	0.0169(15)	0.0213(17)	-0.0001(11)	0.0125(15)	0.0006(11)
N5	0.0266(16)	0.0209(15)	0.0236(14)	-0.0005(13)	0.0095(13)	-0.0018(12)
01	0.0303(14)	0.0221(13)	0.0425(15)	-0.0059(13)	0.0177(13)	0.0045(11)
02	0.0271(14)	0.0202(13)	0.0339(14)	0.0002(12)	0.0121(11)	-0.0025(11)
03	0.0230(14)	0.0311(15)	0.0416(16)	-0.0074(13)	0.0082(12)	-0.0008(12)
04	0.0355(17)	0.0187(14)	0.0339(16)	-0.0014(10)	0.0104(15)	0.0006(10)

2.7 Crystal Structure Report for Sr(DNT)₂·6H₂O

Figure S- 19: Projection of the packing of $Sr(DNT)_2 \cdot 6H2O$ down the a axis.

Figure S- 20: Projection of the packing of Sr(DNT)₂·6H2O approximately down the b axis.

Table S- 40: Sample and crystal data for Sr(DNT)2·6H2C
--

Identification code	SrDNT				
Chemical formula	$C_4H_{12}N_{10}O_{14}Sr$				
Formula weight	511.86				
Temperature	100(2) K				
Wavelength	0.71073 Å				
Crystal size	0.200 x 0.310 x 0.410 mm	1			
Crystal habit	clear yellow-orange prism	l			
Crystal system	triclinic				
Space group	P -1				
Unit cell dimensions	a = 9.2895(3) Å	$\alpha = 108.2150(10)^{\circ}$			
	b = 12.8551(4) Å	$\beta = 90.8870(10)^{\circ}$			
	c = 16.5552(7) Å	$\gamma = 111^{\circ}$			
Volume	1736.03(11) Å ³				
Ζ	4				
Density (calculated)	1.958 g/cm ³				
Absorption coefficient	3.204 mm ⁻¹				
F(000)	1024				

Table S- 41: Data collection and structure refinement for Sr(DNT)2·6H2O.

Diffractometer	Bruker APEX DUO
Radiation source	fine-focus tube, MoKα
Theta range for data collection	1.83 to 30.62°
Index ranges	-13<=h<=13, -18<=k<=18, -23<=l<=23
Reflections collected	42154
Independent reflections	10328 [R(int) = 0.0331]
Absorption correction	multi-scan
Max. and min. transmission	0.5670 and 0.3530
Structure solution technique	direct methods
Structure solution program	SHELXTL XS 2013/1 (Sheldrick, 2013)
Refinement method	Full-matrix least-squares on F ²
Refinement program	SHELXTL XLMP 2014/1 (Bruker AXS, 2013)
Function minimized	$\Sigma \mathrm{w}(\mathrm{F_o}^2 - \mathrm{F_c}^2)^2$
Data / restraints / parameters	10328 / 0 / 619
Goodness-of-fit on F ²	1.032
Δ/σ_{max}	0.001
Final R indices	8672 data; I> 2σ (I) R1 = 0.0240, wR2 = 0.0491
	all data $R1 = 0.0351$, $wR2 = 0.0520$
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.0239P) ² +0.2726P] where P=(F_o^2 +2 F_c^2)/3
Largest diff. peak and hole	0.331 and -0.430 eÅ ⁻³
R.M.S. deviation from mean	0.079 eÅ ⁻³

Table S- 42: Atomic coordinates and equivalent isotropic atomic displacement parameters (Å²) for **Sr(DNT)2·6H2O**.U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x/a	y/b	z/c	U(eq)
C1	0.28742(16)	0.96148(12)	0.50698(9)	0.0124(3)
C2	0.19556(16)	0.06666(12)	0.47739(9)	0.0113(3)
C3	0.34392(17)	0.04502(12)	0.98202(9)	0.0125(3)
C4	0.15622(16)	0.96025(12)	0.02854(9)	0.0116(3)
C5	0.67363(16)	0.45509(12)	0.50591(9)	0.0123(3)
C6	0.86602(16)	0.54876(12)	0.46736(9)	0.0109(3)
C7	0.69557(17)	0.55253(13)	0.98939(9)	0.0134(3)
C8	0.79199(16)	0.44800(12)	0.01756(9)	0.0121(3)
N1	0.23892(14)	0.01506(10)	0.40446(8)	0.0125(2)
N2	0.30156(14)	0.94384(11)	0.42462(8)	0.0131(2)
N3	0.22085(14)	0.03733(10)	0.54542(7)	0.0118(2)
N4	0.34929(14)	0.90381(10)	0.55337(8)	0.0130(2)
N5	0.12493(14)	0.15152(10)	0.48142(8)	0.0125(2)
N6	0.25763(14)	0.03588(10)	0.09834(8)	0.0133(2)
N7	0.38570(14)	0.09296(11)	0.06670(8)	0.0142(2)
N8	0.20134(14)	0.96114(10)	0.95270(8)	0.0124(2)
N9	0.45033(14)	0.08124(11)	0.92371(8)	0.0149(2)
N10	0.00343(14)	0.88310(11)	0.03722(8)	0.0131(2)
N11	0.77002(14)	0.47932(11)	0.39466(8)	0.0132(2)

	x/a	y/b	z/c	U(eq)
N12	0.63871(14)	0.41627(11)	0.42081(8)	0.0137(2)
N13	0.81486(14)	0.53849(10)	0.54036(7)	0.0115(2)
N14	0.56207(14)	0.40906(11)	0.55862(8)	0.0146(2)
N15	0.02161(14)	0.62832(10)	0.46614(8)	0.0121(2)
N16	0.75549(14)	0.50274(11)	0.09176(8)	0.0135(2)
N17	0.68955(15)	0.57301(11)	0.07278(8)	0.0152(2)
N18	0.75880(14)	0.47485(11)	0.94944(8)	0.0129(2)
N19	0.63474(14)	0.61217(11)	0.94431(8)	0.0150(2)
N20	0.86851(14)	0.36664(11)	0.01384(8)	0.0138(2)
01	0.40974(12)	0.83705(9)	0.51289(7)	0.0176(2)
O2	0.33953(13)	0.92763(10)	0.63072(7)	0.0187(2)
O3	0.11355(12)	0.17638(9)	0.41553(6)	0.0160(2)
O4	0.08090(13)	0.19364(9)	0.54853(7)	0.0170(2)
O5	0.58438(12)	0.15158(9)	0.95500(7)	0.0188(2)
06	0.40222(13)	0.03825(11)	0.84651(7)	0.0253(3)
O7	0.97400(12)	0.89160(9)	0.11104(7)	0.0160(2)
08	0.91328(12)	0.81630(9)	0.97161(7)	0.0172(2)
09	0.43035(12)	0.34082(10)	0.52271(7)	0.0207(2)
O10	0.60606(13)	0.44273(11)	0.63614(7)	0.0227(2)
011	0.06115(12)	0.62899(9)	0.39539(6)	0.0147(2)
012	0.10484(12)	0.68849(9)	0.53531(6)	0.0156(2)
013	0.57488(13)	0.67888(9)	0.98636(7)	0.0205(2)
O14	0.64682(13)	0.59144(10)	0.86796(7)	0.0206(2)
015	0.89219(13)	0.34903(9)	0.08110(7)	0.0178(2)
016	0.90613(13)	0.32084(9)	0.94530(7)	0.0181(2)
O17	0.27215(16)	0.27382(11)	0.25204(9)	0.0244(3)
O18	0.47108(13)	0.17794(10)	0.30667(7)	0.0168(2)
019	0.26115(13)	0.88937(10)	0.21139(8)	0.0174(2)
O20	0.91095(14)	0.92716(11)	0.29252(8)	0.0192(2)
O21	0.93339(14)	0.12401(10)	0.22651(8)	0.0178(2)
O22	0.98866(14)	0.71255(10)	0.24853(8)	0.0209(2)
O23	0.15510(13)	0.55040(10)	0.21547(7)	0.0172(2)
O24	0.01381(14)	0.37089(10)	0.28663(7)	0.0178(2)
O25	0.63724(16)	0.29371(11)	0.19526(9)	0.0299(3)
O26	0.67692(15)	0.59784(12)	0.28098(9)	0.0248(3)
O27	0.63755(15)	0.75583(11)	0.20757(8)	0.0221(3)
O28	0.38415(14)	0.77718(11)	0.29102(8)	0.0198(2)
Sr1	0.17257(2)	0.06259(2)	0.25909(2)	0.01000(3)
Sr2	0.86295(2)	0.49550(2)	0.24229(2)	0.01128(3)

Table S- 43: Bond lengths (Å) for **Sr(DNT)2·6H2O**.

C1-N2	1.3272(18)	C1-N3	1.3391(18)
C1-N4	1.4548(18)	C2-N1	1.3287(18)
C2-N3	1.3367(17)	C2-N5	1.4464(18)
C3-N7	1.3298(18)	C3-N8	1.3361(18)
C3-N9	1.4517(18)	C4-N8	1.3319(17)

C4-N6	1.3333(18)	C4-N10	1.4521(18)
C5-N12	1.3304(18)	C5-N13	1.3363(18)
C5-N14	1.4485(18)	C6-N11	1.3294(18)
C6-N13	1.3328(17)	C6-N15	1.4469(18)
C7-N17	1.3282(18)	C7-N18	1.3408(18)
C7-N19	1.4554(18)	C8-N16	1.3274(18)
C8-N18	1.3396(18)	C8-N20	1.4475(18)
N1-N2	1.3615(16)	N1-Sr1	2.7725(12)
N4-01	1.2236(15)	N4-O2	1.2329(15)
N5-O4	1.2211(15)	N5-O3	1.2417(15)
N6-N7	1.3653(16)	N6-Sr1	2.7409(12)
N9-06	1.2260(16)	N9-O5	1.2326(16)
N10-O8	1.2221(15)	N10-O7	1.2364(15)
N11-N12	1.3645(16)	N11-Sr2	2.7237(12)
N14-09	1.2268(16)	N14-O10	1.2295(16)
N15-O12	1.2243(15)	N15-O11	1.2345(15)
N16-N17	1.3626(17)	N16-Sr2	2.7112(12)
N19-O14	1.2232(16)	N19-O13	1.2282(16)
N20-O16	1.2239(15)	N20-O15	1.2350(15)
O3-Sr1	2.7195(10)	O7-Sr1	2.7995(11)
011-Sr2	2.7637(10)	O15-Sr2	2.8261(11)
017-Sr1	2.5788(12)	O17-H1	0.78(3)
O17-H2	0.79(3)	O18-Sr1	2.6027(11)
O18-H3	0.88(3)	O18-H4	0.80(2)
019-Sr1	2.5473(11)	O19-H5	0.87(2)
O19-H6	0.81(2)	O20-Sr1	2.6201(11)
O20-H7	0.85(2)	O20-H8	0.78(2)
O21-Sr1	2.7080(11)	O21-H9	0.79(2)
O21-H10	0.86(2)	O22-Sr2	2.5784(11)
O22-H11	0.89(3)	O22-H12	0.87(3)
O23-Sr2	2.6316(11)	O23-H13	0.81(2)
O23-H14	0.90(3)	O24-Sr2	2.7157(11)
O24-H15	0.86(2)	O24-H16	0.82(2)
O25-Sr2	2.5560(12)	O25-H17	0.83(2)
O25-H18	0.78(2)	O26-Sr2	2.5018(12)
O26-H19	0.76(2)	O26-H20	0.87(3)
O27-H21	0.79(2)	O27-H22	0.81(3)
O28-H23	0.78(2)	O28-H24	0.80(2)
Sr2-H13	2.86(2)		

Table S- 44: Bond angles (°) for **Sr(DNT)2·6H2O**.

N2-C1-N3	117.46(13)	N2-C1-N4	120.27(13)
N3-C1-N4	122.21(12)	N1-C2-N3	117.37(13)
N1-C2-N5	120.25(12)	N3-C2-N5	122.38(12)
N7-C3-N8	117.50(13)	N7-C3-N9	121.15(13)
N8-C3-N9	121.35(12)	N8-C4-N6	116.99(12)
N8-C4-N10	122.90(12)	N6-C4-N10	120.10(12)

N12-C5-N13	117.22(13)	N12-C5-N14	121.05(13)
N13-C5-N14	121.73(12)	N11-C6-N13	117.24(13)
N11-C6-N15	120.81(12)	N13-C6-N15	121.90(12)
N17-C7-N18	117.12(13)	N17-C7-N19	120.68(13)
N18-C7-N19	122.20(13)	N16-C8-N18	116.85(13)
N16-C8-N20	119.86(12)	N18-C8-N20	123.26(12)
C2-N1-N2	104.10(11)	C2-N1-Sr1	118.42(9)
N2-N1-Sr1	137.37(9)	C1-N2-N1	103.96(11)
C2-N3-C1	97.10(11)	O1-N4-O2	125.01(12)
O1-N4-C1	117.40(12)	O2-N4-C1	117.58(12)
O4-N5-O3	124.56(12)	O4-N5-C2	118.43(12)
O3-N5-C2	117.01(11)	C4-N6-N7	104.29(11)
C4-N6-Sr1	120.70(9)	N7-N6-Sr1	134.66(9)
C3-N7-N6	103.61(11)	C4-N8-C3	97.60(11)
O6-N9-O5	124.18(13)	O6-N9-C3	118.02(12)
O5-N9-C3	117.78(12)	O8-N10-O7	125.02(12)
O8-N10-C4	117.97(12)	O7-N10-C4	117.00(12)
C6-N11-N12	104.11(11)	C6-N11-Sr2	119.40(9)
N12-N11-Sr2	136.45(9)	C5-N12-N11	103.86(11)
C6-N13-C5	97.55(11)	O9-N14-O10	125.00(13)
O9-N14-C5	117.53(12)	O10-N14-C5	117.46(12)
O12-N15-O11	124.99(12)	O12-N15-C6	117.47(12)
O11-N15-C6	117.53(11)	C8-N16-N17	104.50(11)
C8-N16-Sr2	121.43(9)	N17-N16-Sr2	132.70(9)
C7-N17-N16	103.98(12)	C8-N18-C7	97.54(12)
O14-N19-O13	125.55(13)	O14-N19-C7	117.49(12)
O13-N19-C7	116.96(12)	O16-N20-O15	124.51(13)
O16-N20-C8	118.47(12)	O15-N20-C8	117.01(12)
N5-O3-Sr1	125.21(8)	N10-O7-Sr1	123.81(8)
N15-O11-Sr2	123.20(8)	N20-O15-Sr2	121.91(9)
Sr1-O17-H1	123.(2)	Sr1-O17-H2	125.8(18)
H1-O17-H2	107.(3)	Sr1-O18-H3	120.2(16)
Sr1-O18-H4	119.1(18)	H3-O18-H4	105.(2)
Sr1-O19-H5	130.0(15)	Sr1-O19-H6	116.0(15)
Н5-О19-Н6	107.(2)	Sr1-O20-H7	125.6(13)
Sr1-O20-H8	122.8(18)	Н7-О20-Н8	107.(2)
Sr1-O21-H9	106.1(17)	Sr1-O21-H10	116.0(15)
H9-O21-H10	104.(2)	Sr2-O22-H11	125.9(16)
Sr2-O22-H12	126.4(16)	H11-O22-H12	107.(2)
Sr2-O23-H13	98.1(17)	Sr2-O23-H14	117.8(15)
H13-O23-H14	109.(2)	Sr2-O24-H15	118.1(14)
Sr2-O24-H16	120.3(14)	H15-O24-H16	107.2(19)
Sr2-O25-H17	124.7(17)	Sr2-O25-H18	131.5(17)
H17-O25-H18	104.(2)	Sr2-O26-H19	129.3(19)
Sr2-O26-H20	125.8(17)	H19-O26-H20	104.(2)
H21-O27-H22	113.(2)	H23-O28-H24	107.(2)
019-Sr1-017	135.11(4)	019-Sr1-018	80.75(4)
017-Sr1-O18	66.28(4)	019-Sr1-O20	90.54(4)
O17-Sr1-O20	133.53(4)	O18-Sr1-O20	146.64(4)

O19-Sr1-O21	140.99(4)	O17-Sr1-O21	68.71(4)
O18-Sr1-O21	134.21(4)	O20-Sr1-O21	68.51(4)
O19-Sr1-O3	130.46(3)	O17-Sr1-O3	81.57(4)
O18-Sr1-O3	91.09(3)	O20-Sr1-O3	70.27(4)
O21-Sr1-O3	74.38(3)	O19-Sr1-N6	70.31(4)
O17-Sr1-N6	75.73(4)	O18-Sr1-N6	82.51(4)
O20-Sr1-N6	124.79(4)	O21-Sr1-N6	94.42(4)
O3-Sr1-N6	157.11(3)	O19-Sr1-N1	72.38(4)
O17-Sr1-N1	122.71(4)	O18-Sr1-N1	74.72(3)
O20-Sr1-N1	71.95(4)	O21-Sr1-N1	126.04(4)
O3-Sr1-N1	58.42(3)	N6-Sr1-N1	138.75(4)
O19-Sr1-O7	71.60(3)	O17-Sr1-O7	113.18(4)
O18-Sr1-O7	137.20(3)	O20-Sr1-O7	66.98(3)
O21-Sr1-O7	69.98(3)	O3-Sr1-O7	131.71(3)
N6-Sr1-O7	57.91(3)	N1-Sr1-O7	123.94(3)
O26-Sr2-O25	90.58(5)	O26-Sr2-O22	69.28(4)
O25-Sr2-O22	151.93(4)	O26-Sr2-O23	137.87(4)
O25-Sr2-O23	129.77(4)	O22-Sr2-O23	68.72(4)
O26-Sr2-N16	75.24(4)	O25-Sr2-N16	82.99(4)
O22-Sr2-N16	73.29(4)	O23-Sr2-N16	95.75(4)
O26-Sr2-O24	146.75(4)	O25-Sr2-O24	81.80(4)
O22-Sr2-O24	125.73(4)	O23-Sr2-O24	63.93(4)
N16-Sr2-O24	134.92(4)	O26-Sr2-N11	71.24(4)
O25-Sr2-N11	77.59(4)	O22-Sr2-N11	111.89(4)
O23-Sr2-N11	122.85(4)	N16-Sr2-N11	140.76(4)
O24-Sr2-N11	75.51(4)	O26-Sr2-O11	93.67(4)
O25-Sr2-O11	131.90(4)	O22-Sr2-O11	70.87(3)
O23-Sr2-O11	69.56(3)	N16-Sr2-O11	144.12(3)
O24-Sr2-O11	69.04(3)	N11-Sr2-O11	58.91(3)
O26-Sr2-O15	130.00(4)	O25-Sr2-O15	69.51(4)
O22-Sr2-O15	108.08(4)	O23-Sr2-O15	67.96(3)
N16-Sr2-O15	57.62(3)	O24-Sr2-O15	77.31(3)
N11-Sr2-O15	139.69(3)	O11-Sr2-O15	134.09(3)
O26-Sr2-H13	151.6(5)	O25-Sr2-H13	117.9(5)
O22-Sr2-H13	83.9(5)	O23-Sr2-H13	16.2(5)
N16-Sr2-H13	106.5(5)	O24-Sr2-H13	47.8(5)
N11-Sr2-H13	112.7(5)	O11-Sr2-H13	68.0(5)
O15-Sr2-H13	66.4(5)		

Table S- 45: Anisotropic atomic displacement parameters (Å²) for Sr(DNT)2·6H2O.

The anisotropic atomic displacement factor exponent takes the form: $-2\pi^2$ [$h^2 a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}$]

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C1	0.0120(7)	0.0125(6)	0.0129(7)	0.0051(5)	0.0010(5)	0.0044(5)
C2	0.0098(6)	0.0099(6)	0.0129(7)	0.0034(5)	0.0008(5)	0.0027(5)
C3	0.0136(7)	0.0126(6)	0.0129(7)	0.0055(5)	0.0027(5)	0.0058(6)

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C4	0.0111(7)	0.0109(6)	0.0132(7)	0.0047(5)	0.0008(5)	0.0042(5)
C5	0.0119(7)	0.0131(6)	0.0137(7)	0.0057(5)	0.0026(5)	0.0055(5)
C6	0.0122(7)	0.0103(6)	0.0114(6)	0.0048(5)	0.0015(5)	0.0046(5)
C7	0.0118(7)	0.0126(7)	0.0134(7)	0.0043(5)	0.0008(5)	0.0022(5)
C8	0.0110(7)	0.0116(6)	0.0119(7)	0.0037(5)	0.0016(5)	0.0024(5)
N1	0.0129(6)	0.0118(6)	0.0122(6)	0.0033(5)	0.0014(5)	0.0047(5)
N2	0.0132(6)	0.0137(6)	0.0138(6)	0.0057(5)	0.0016(5)	0.0059(5)
N3	0.0108(6)	0.0121(6)	0.0118(6)	0.0040(5)	0.0017(4)	0.0036(5)
N4	0.0099(6)	0.0116(6)	0.0163(6)	0.0057(5)	-0.0003(5)	0.0018(5)
N5	0.0119(6)	0.0108(5)	0.0132(6)	0.0031(5)	0.0011(5)	0.0034(5)
N6	0.0136(6)	0.0127(6)	0.0130(6)	0.0048(5)	0.0018(5)	0.0041(5)
N7	0.0139(6)	0.0133(6)	0.0148(6)	0.0061(5)	0.0016(5)	0.0033(5)
N8	0.0129(6)	0.0133(6)	0.0128(6)	0.0051(5)	0.0023(5)	0.0062(5)
N9	0.0138(6)	0.0164(6)	0.0170(6)	0.0084(5)	0.0039(5)	0.0062(5)
N10	0.0129(6)	0.0130(6)	0.0146(6)	0.0050(5)	0.0020(5)	0.0059(5)
N11	0.0121(6)	0.0130(6)	0.0129(6)	0.0047(5)	0.0006(5)	0.0029(5)
N12	0.0117(6)	0.0143(6)	0.0141(6)	0.0059(5)	0.0010(5)	0.0029(5)
N13	0.0116(6)	0.0123(6)	0.0113(6)	0.0044(5)	0.0023(4)	0.0049(5)
N14	0.0139(6)	0.0152(6)	0.0170(6)	0.0072(5)	0.0056(5)	0.0066(5)
N15	0.0130(6)	0.0105(5)	0.0140(6)	0.0049(5)	0.0023(5)	0.0052(5)
N16	0.0142(6)	0.0138(6)	0.0123(6)	0.0042(5)	0.0023(5)	0.0052(5)
N17	0.0161(6)	0.0144(6)	0.0150(6)	0.0054(5)	0.0030(5)	0.0054(5)
N18	0.0118(6)	0.0138(6)	0.0122(6)	0.0045(5)	0.0024(5)	0.0035(5)
N19	0.0121(6)	0.0133(6)	0.0189(6)	0.0074(5)	0.0015(5)	0.0023(5)
N20	0.0120(6)	0.0127(6)	0.0135(6)	0.0029(5)	0.0010(5)	0.0026(5)
01	0.0143(5)	0.0153(5)	0.0250(6)	0.0070(5)	0.0033(4)	0.0073(4)
O2	0.0229(6)	0.0198(5)	0.0144(5)	0.0077(4)	-0.0005(4)	0.0076(5)
O3	0.0217(6)	0.0159(5)	0.0133(5)	0.0068(4)	0.0021(4)	0.0089(4)
O4	0.0213(6)	0.0177(5)	0.0139(5)	0.0036(4)	0.0059(4)	0.0109(5)
O5	0.0124(5)	0.0162(5)	0.0254(6)	0.0069(5)	0.0033(4)	0.0030(4)
06	0.0212(6)	0.0374(7)	0.0143(5)	0.0114(5)	0.0031(5)	0.0053(5)
07	0.0167(5)	0.0194(5)	0.0138(5)	0.0078(4)	0.0055(4)	0.0070(4)
08	0.0135(5)	0.0170(5)	0.0156(5)	0.0026(4)	-0.0020(4)	0.0021(4)
09	0.0121(5)	0.0198(6)	0.0263(6)	0.0077(5)	0.0032(4)	0.0018(4)
O10	0.0215(6)	0.0301(6)	0.0149(5)	0.0096(5)	0.0052(4)	0.0062(5)
011	0.0166(5)	0.0161(5)	0.0132(5)	0.0068(4)	0.0054(4)	0.0066(4)
012	0.0144(5)	0.0144(5)	0.0137(5)	0.0022(4)	-0.0015(4)	0.0030(4)
013	0.0176(6)	0.0167(5)	0.0295(6)	0.0089(5)	0.0060(5)	0.0083(5)
014	0.0226(6)	0.0246(6)	0.0168(5)	0.0111(5)	0.0021(4)	0.0080(5)
015	0.0213(6)	0.0187(5)	0.0155(5)	0.0070(4)	0.0012(4)	0.0089(5)
016	0.0185(6)	0.0193(5)	0.0144(5)	0.0011(4)	0.0045(4)	0.0089(5)
017	0.0263(7)	0.0210(6)	0.0360(7)	0.0174(6)	0.0144(6)	0.0135(5)
018	0.0154(5)	0.0157(5)	0.0189(6)	0.0075(5)	-0.0016(4)	0.0044(5)
019	0.0237(6)	0.0187(5)	0.0148(6)	0.0071(5)	0.0061(5)	0.0125(5)
O20	0.0152(6)	0.0239(6)	0.0123(5)	0.0041(5)	0.0035(5)	0.0020(5)
021	0.0178(6)	0.0177(5)	0.0164(6)	0.0046(5)	-0.0024(5)	0.0061(5)
022	0.0198(6)	0.0151(5)	0.0286(6)	0.0095(5)	0.0068(5)	0.0057(5)
O23	0.0197(6)	0.0193(6)	0.0157(6)	0.0072(5)	0.0053(4)	0.0095(5)

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
O24	0.0248(6)	0.0143(5)	0.0129(5)	0.0033(4)	-0.0003(5)	0.0071(5)
O25	0.0337(8)	0.0233(6)	0.0151(6)	0.0066(5)	-0.0024(5)	-0.0089(6)
O26	0.0271(7)	0.0337(7)	0.0271(7)	0.0185(6)	0.0159(5)	0.0194(6)
O27	0.0192(6)	0.0213(6)	0.0196(6)	-0.0010(5)	0.0032(5)	0.0074(5)
O28	0.0203(6)	0.0171(6)	0.0194(6)	0.0032(5)	0.0038(5)	0.0067(5)
Sr1	0.01103(6)	0.01069(6)	0.00908(6)	0.00391(5)	0.00166(5)	0.00457(5)
Sr2	0.01203(7)	0.01247(6)	0.00890(6)	0.00421(5)	0.00144(5)	0.00368(5)

Table S- 46: Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å²) for **Sr(DNT)2·6H2O**.

	x/a	y/b	z/c	U(eq)
H1	0.222(3)	0.312(3)	0.2591(18)	0.077(10)
H2	0.338(3)	0.299(2)	0.2257(16)	0.054(8)
H3	0.507(3)	0.249(2)	0.3452(15)	0.056(7)
H4	0.522(3)	0.145(2)	0.3190(15)	0.052(8)
H5	0.311(3)	-0.135(2)	0.2411(15)	0.047(7)
H6	0.286(2)	-0.1259(18)	0.1635(14)	0.038(6)
H7	-0.123(2)	-0.0596(17)	0.3403(13)	0.027(5)
H8	-0.162(3)	-0.114(2)	0.2574(15)	0.051(8)
H9	-0.137(3)	0.088(2)	0.2458(15)	0.050(8)
H10	-0.103(3)	0.1027(19)	0.1731(15)	0.044(7)
H11	0.960(3)	0.771(2)	0.2770(16)	0.064(8)
H12	1.060(3)	0.740(2)	0.2191(16)	0.060(8)
H13	1.171(3)	0.500(2)	0.2284(15)	0.055(8)
H14	1.175(3)	0.544(2)	0.1612(16)	0.061(8)
H15	1.056(2)	0.3949(18)	0.3391(14)	0.034(6)
H16	0.974(2)	0.298(2)	0.2704(13)	0.035(6)
H17	0.600(3)	0.256(2)	0.2277(15)	0.055(8)
H18	0.588(3)	0.253(2)	0.1508(15)	0.046(7)
H19	0.614(3)	0.589(2)	0.3099(16)	0.056(8)
H20	0.663(3)	0.646(2)	0.2581(16)	0.066(8)
H21	0.623(2)	0.7144(19)	0.1593(14)	0.032(6)
H22	0.559(3)	0.762(2)	0.2243(15)	0.051(7)
H23	0.321(3)	0.713(2)	0.2793(13)	0.035(6)
H24	0.379(3)	0.813(2)	0.3393(15)	0.047(7)

2.8 Crystal Structure Report for Ba(DNT)₂·11H₂O

Figure S- 22: Projection of the packing of $Ba(DNT)_2 \cdot 11H_2O$ down the a axis.

Figure S- 23: Projection of the packing of Ba(DNT)₂·11H₂O approximately down the b axis.

Figure S- 24: Projection of the packing of $Ba(DNT)_2 \cdot 11H_2O$ approximately down the c axis.

Table S- 47: Sample and crystal data for **Ba(DNT)2·11H2O**.

Identification code	MK16	
Chemical formula	$C_4H_{22}BaN_{10}O_{19}$	
Formula weight	651.65 g/mol	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal size	0.092 x 0.123 x 0.149 mm	
Crystal system	monoclinic	
Space group	P 1 21/m 1	
Unit cell dimensions	a = 6.9239(6) Å	$\alpha = 90^{\circ}$
	b = 18.7743(15) Å	$\beta = 111.6350(10)^{\circ}$
	c = 9.2088(7) Å	$\gamma = 90^{\circ}$
Volume	1112.73(16) Å ³	
Ζ	2	
Density (calculated)	1.945 g/cm ³	
Absorption coefficient	1.891 mm ⁻¹	
F(000)	648	

Table S- 48: Data collection and structure refinement for **Ba(DNT)2·11H2O**.

2.17 to 30.61°		
-9<=h<=9, -26<=k<=26, -13<=l<=13		
26945		
3476 [R(int) = 0.042	24]	
0.8450 and 0.7660		
direct methods		
SHELXTL XS 2013	/1 (Bruker AXS)	
Full-matrix least-squares on F ²		
SHELXL-2014 (Sheldrick, 2014)		
$\Sigma w (F_o^2 - F_c^2)^2$		
3476 / 7 / 178		
1.204		
3214 data; I>2σ(I)	R1 = 0.0370, wR2 = 0.0831	
all data	R1 = 0.0423, $wR2 = 0.0846$	
w=1/[$\sigma^2(F_o^2)$ +6.3309 where P=(F_o^2 +2 F_c^2)/	9P] 3	
0.0(0)		
1.396 and -3.222 eÅ ⁻³		
0.146 eÅ ⁻³		
	2.17 to 30.61° -9<=h<=9, -26<=k< 26945 3476 [R(int) = 0.042 0.8450 and 0.7660 direct methods SHELXTL XS 2013 Full-matrix least-squ SHELXL-2014 (She $\Sigma w(F_o^2 - F_c^2)^2$ 3476 / 7 / 178 1.204 3214 data; I>2 σ (I) all data w=1/[$\sigma^2(F_o^2)$ +6.3309 where P=(F_o^2 +2 F_c^2)/ 0.0(0) 1.396 and -3.222 eÅ 0.146 eÅ ⁻³	

Table S- 49: Atomic coordinates and equivalent isotropic atomic displacement parameters (Å²) for **Ba(DNT)2**·11H2O.

 $U(\mbox{eq})$ is defined as one third of the trace of the orthogonalized $U_{\mbox{ij}}$ tensor.

	x/a	y/b	z/c	U(eq)
Ba01	0.23120(4)	0.25	0.69872(3)	0.01015(7)
C1	0.3504(6)	0.44944(19)	0.6451(5)	0.0208(8)
C2	0.5841(6)	0.4917(2)	0.8279(5)	0.0238(8)
N1	0.4088(5)	0.39700(17)	0.7498(4)	0.0224(7)
N2	0.5658(5)	0.42573(17)	0.8733(4)	0.0240(7)
N3	0.4546(5)	0.51085(17)	0.6860(5)	0.0245(7)
N4	0.1845(5)	0.43961(17)	0.4955(4)	0.0230(7)
N5	0.7383(6)	0.54084(19)	0.9272(5)	0.0289(8)
01	0.1348(5)	0.48993(16)	0.4044(4)	0.0295(7)
O2	0.1022(5)	0.38058(15)	0.4694(4)	0.0271(6)
O3	0.7603(6)	0.59755(17)	0.8700(5)	0.0413(9)
O4	0.8370(5)	0.52184(17)	0.0632(4)	0.0330(7)
05	0.8596(6)	0.25	0.4243(4)	0.0230(8)
06	0.9520(4)	0.34633(15)	0.7605(4)	0.0273(6)
O7	0.3775(7)	0.25	0.0118(5)	0.0431(14)
08	0.6591(5)	0.25	0.8119(5)	0.0196(7)
09	0.3507(5)	0.25	0.4439(4)	0.0160(7)
O10	0.0768(6)	0.25	0.1436(5)	0.0227(8)
011	0.6300(5)	0.35821(16)	0.4813(5)	0.0354(8)
012	0.7864(7)	0.14983(17)	0.1522(4)	0.0387(8)

Table S- 48: Bond lengths (Å) for **Ba(DNT)2·11H2O**.

Ba01-O7	2.681(5)	Ba01-O8	2.755(4)
Ba01-O9	2.761(4)	Ba01-O6	2.853(3)
Ba01-O6	2.853(3)	Ba01-O5	2.865(4)
Ba01-N1	2.987(3)	Ba01-N1	2.987(3)
Ba01-O2	3.143(3)	Ba01-O2	3.143(3)
C1-N1	1.332(5)	C1-N3	1.338(5)
C1-N4	1.444(5)	C2-N2	1.329(5)
C2-N3	1.333(6)	C2-N5	1.451(5)
N1-N2	1.361(5)	N4-O1	1.225(4)
N4-O2	1.229(4)	N5-O3	1.222(5)
N5-04	1.238(5)		

Table S- 49: Bond angles (°) for Ba(DNT)2	2·11H2O.
---	----------

O7-Ba01-O8	70.49(12)	O7-Ba01-O9	143.26(12)
O8-Ba01-O9	72.77(11)	O7-Ba01-O6	78.51(10)
O8-Ba01-O6	129.63(8)	O9-Ba01-O6	127.35(8)
O7-Ba01-O6	78.51(10)	O8-Ba01-O6	129.63(8)
O9-Ba01-O6	127.35(8)	O6-Ba01-O6	78.68(11)
O7-Ba01-O5	143.99(12)	O8-Ba01-O5	145.52(11)
O9-Ba01-O5	72.75(11)	O6-Ba01-O5	73.85(9)
O6-Ba01-O5	73.85(9)	O7-Ba01-N1	81.96(8)
O8-Ba01-N1	67.52(6)	O9-Ba01-N1	84.20(7)
O6-Ba01-N1	69.68(8)	O6-Ba01-N1	145.48(9)
O5-Ba01-N1	108.82(7)	O7-Ba01-N1	81.96(8)
O8-Ba01-N1	67.52(6)	O9-Ba01-N1	84.20(7)
O6-Ba01-N1	145.48(9)	O6-Ba01-N1	69.68(8)
O5-Ba01-N1	108.82(7)	N1-Ba01-N1	135.00(12)
O7-Ba01-O2	128.60(6)	O8-Ba01-O2	104.70(7)
O9-Ba01-O2	61.89(6)	O6-Ba01-O2	66.03(8)
O6-Ba01-O2	125.64(8)	O5-Ba01-O2	57.79(6)
N1-Ba01-O2	51.96(9)	N1-Ba01-O2	145.60(9)
O7-Ba01-O2	128.60(6)	O8-Ba01-O2	104.70(7)
O9-Ba01-O2	61.89(7)	O6-Ba01-O2	125.64(8)
O6-Ba01-O2	66.03(8)	O5-Ba01-O2	57.79(6)
N1-Ba01-O2	145.60(9)	N1-Ba01-O2	51.95(9)
O2-Ba01-O2	102.53(11)	N1-C1-N3	116.4(4)
N1-C1-N4	121.2(3)	N3-C1-N4	122.3(4)
N2-C2-N3	116.9(4)	N2-C2-N5	121.8(4)
N3-C2-N5	121.3(4)	C1-N1-N2	104.3(3)
C1-N1-Ba01	124.8(3)	N2-N1-Ba01	130.8(2)
C2-N2-N1	104.3(3)	C2-N3-C1	98.1(3)
O1-N4-O2	124.7(4)	O1-N4-C1	118.6(3)
O2-N4-C1	116.8(3)	O3-N5-O4	125.2(4)
O3-N5-C2	117.5(4)	O4-N5-C2	117.3(4)
N4-O2-Ba01	125.2(3)		

Table S- 50 : Anisotropic atomic displacement parameters (Å²) for **Ba(DNT)2·11H2O**. The anisotropic atomic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2} U₁₁ + ... + 2 h k a^{*} b^{*} U₁₂]

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Ba01	0.00940(12)	0.00877(11)	0.01259(12)	0	0.00442(9)	0
C1	0.0184(17)	0.0110(15)	0.040(2)	-0.0017(15)	0.0186(16)	-0.0003(13)
C2	0.0195(17)	0.0134(16)	0.046(2)	-0.0050(16)	0.0206(17)	-0.0027(13)
N1	0.0167(14)	0.0141(14)	0.0384(19)	0.0002(13)	0.0126(14)	0.0001(11)
N2	0.0174(15)	0.0141(14)	0.043(2)	-0.0034(14)	0.0138(14)	-0.0003(12)
N3	0.0244(16)	0.0121(14)	0.046(2)	-0.0017(14)	0.0234(16)	-0.0011(12)
N4	0.0231(16)	0.0158(14)	0.0384(19)	0.0011(13)	0.0212(15)	0.0025(12)
N5	0.0234(17)	0.0198(16)	0.052(2)	-0.0109(16)	0.0238(17)	-0.0047(13)
01	0.0364(17)	0.0188(14)	0.0415(18)	0.0066(13)	0.0239(14)	0.0040(12)
O2	0.0267(14)	0.0162(13)	0.0413(17)	0.0014(12)	0.0161(13)	-0.0017(11)
03	0.048(2)	0.0204(15)	0.063(2)	-0.0093(15)	0.0290(19)	-0.0164(14)
O4	0.0247(15)	0.0259(15)	0.052(2)	-0.0111(15)	0.0185(15)	-0.0031(12)
O5	0.0143(17)	0.039(2)	0.0153(18)	0	0.0046(14)	0
O6	0.0216(14)	0.0170(13)	0.0505(19)	-0.0040(13)	0.0216(13)	-0.0005(11)
O7	0.021(2)	0.090(4)	0.021(2)	0	0.0113(18)	0
08	0.0119(16)	0.0229(19)	0.0240(19)	0	0.0064(14)	0
09	0.0138(16)	0.0165(16)	0.0195(18)	0	0.0084(14)	0
O10	0.0143(18)	0.030(2)	0.023(2)	0	0.0055(15)	0
011	0.0188(14)	0.0141(14)	0.070(2)	0.0082(15)	0.0126(15)	0.0019(11)
012	0.065(3)	0.0220(15)	0.042(2)	-0.0056(14)	0.0345(19)	-0.0071(16)

Table S- 51 : Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å²) for **Ba(DNT)2·11H2O**.

	x/a	y/b	z/c	U(eq)
H1	-0.009(6)	0.284(2)	0.126(6)	0.04
H2	0.686(8)	0.330(2)	0.441(6)	0.04
H3	0.591(8)	0.3951(17)	0.430(5)	0.04
H4	0.728(8)	0.127(2)	0.069(3)	0.04
H5	0.847(8)	0.120(2)	0.220(4)	0.04

2.9 Crystal structure report for [Ag(NH₃)][DNT]

Figure S- 25: Projection of the packing of [Ag(NH₃)][DNT] normal to the 001 plane.

Figure S- 26 : Projection of the packing of [Ag(NH₃)][DNT] perpendicular to the 010 plane.

Figure S- 27 Projection of the packing of [Ag(NH₃)][DNT] perpendicular to the 100 plane.

Table S- 52: Sample and crystal data for [Ag(NH₃)][DNT].

Identification code	AgDNT_NH3		
Chemical formula	C ₂ H ₃ AgN ₆ O ₄		
Formula weight	282.97		
Temperature	140(2) K		
Wavelength	0.71073 Å		
Crystal size	0.130 x 0.150 x 0.490 mm		
Crystal habit	clear orange prism		
Crystal system	monoclinic		
Space group	P 1 21/n 1		
Unit cell dimensions	a = 7.8061(19) Å	$\alpha = 90^{\circ}$	
	b = 5.5756(14) Å	$\beta = 101.686(3)^{\circ}$	
	c = 17.034(4) Å	$\gamma = 90^{\circ}$	
Volume	726.0(3) Å ³		
Ζ	4		
Density (calculated)	2.589 g/cm ³		
Absorption coefficient	2.773 mm ⁻¹		
F(000)	544		

Table S- 53: Data collection and structure refinement for [Ag(NH₃)][DNT].

Diffractometer	Bruker SMART APEX		
Radiation source	fine-focus tube, MoKα		
Theta range for data collection	2.44 to 28.45°		
Index ranges	-9<=h<=10, -7<=k<=6, -22<=l<=15		
Reflections collected	4279		
Independent reflections	1688 [R(int) = 0.0176]		
Coverage of independent reflections	91.8%		
Absorption correction	multi-scan		
Max. and min. transmission	0.7140 and 0.3440		
Structure solution technique	direct methods		
Structure solution program	SHELXTL XT 2013/6 (Sheldrick, 2013)		
Refinement method	Full-matrix least-squares on F ²		
Refinement program	SHELXTL XLMP 2014/1 (Bruker AXS, 2013)		
Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$		
Data / restraints / parameters	1688 / 6 / 130		
Goodness-of-fit on F ²	1.084		
Δ/σ_{max}	0.001		
Final R indices	1604 data; I> $2\sigma(I)$ R1 = 0.0185, wR2 = 0.0476		
	all data $R1 = 0.0195, wR2 = 0.0482$		
Weighting scheme	$w=1/[\sigma^2(F_o^2)+(0.0245P)^2+0.4039P]$		
weighting scheme	where $P = (F_o^2 + 2F_c^2)/3$		
Largest diff. peak and hole	0.440 and -0.623 eÅ ⁻³		
R.M.S. deviation from mean	0.080 eÅ ⁻³		

Table S- 54: Atomic coordinates and equivalent isotropic atomic displacement parameters (Å²) for $[Ag(NH_3)][DNT]$.

 $U(\mbox{eq})$ is defined as one third of the trace of the orthogonalized $U_{\mbox{ij}}$ tensor.

	x/a	y/b	z/c	U(eq)
Agl	0.73308(2)	0.20046(3)	0.33930(2)	0.02589(7)
C1	0.0985(2)	0.8952(4)	0.39461(11)	0.0194(3)
C2	0.0798(2)	0.6116(3)	0.32104(11)	0.0188(3)
N1	0.9302(2)	0.7305(3)	0.29534(10)	0.0206(3)
N2	0.9431(2)	0.9230(3)	0.34517(9)	0.0203(3)
N3	0.1911(2)	0.7033(3)	0.38311(10)	0.0209(3)
N4	0.1167(2)	0.3945(3)	0.28107(10)	0.0217(3)
N5	0.1632(2)	0.0719(3)	0.45611(10)	0.0236(3)
N6	0.6132(3)	0.4410(4)	0.41510(12)	0.0325(4)
01	0.2513(2)	0.2850(3)	0.30964(10)	0.0275(3)
02	0.0111(2)	0.3318(3)	0.22105(10)	0.0303(3)
03	0.3108(2)	0.0437(3)	0.49593(10)	0.0366(4)
04	0.0667(2)	0.2395(3)	0.46443(10)	0.0300(3)

Table S- 55: Bond lengths (Å) for [Ag(NH₃)][DNT].

Ag1-N6	2.198(2)	Ag1-N2	2.2415(16)
Ag1-N1	2.3934(18)	C1-N3	1.328(3)
C1-N2	1.338(2)	C1-N5	1.453(2)
C2-N3	1.327(2)	C2-N1	1.337(2)
C2-N4	1.446(3)	N1-N2	1.360(2)
N1-Ag1	2.3934(18)	N4-O1	1.227(2)
N4-O2	1.227(2)	N5-O3	1.223(2)
N5-O4	1.226(2)	N6-H1	0.84(2)
N6-H2	0.83(2)	N6-H3	0.84(2)

Table S- 56: Bond angles (°) for [Ag(NH₃)][DNT].

N6-Ag1-N2	142.14(7)	N6-Ag1-N1	108.21(7)
N2-Ag1-N1	109.51(6)	N3-C1-N2	116.87(17)
N3-C1-N5	122.19(16)	N2-C1-N5	120.92(17)
N3-C2-N1	117.20(17)	N3-C2-N4	122.46(16)
N1-C2-N4	120.34(16)	C2-N1-N2	103.77(15)
C2-N1-Ag1	122.65(13)	N2-N1-Ag1	127.68(12)
C1-N2-N1	104.14(15)	C1-N2-Ag1	132.05(13)
N1-N2-Ag1	123.79(12)	C2-N3-C1	98.03(16)
O1-N4-O2	124.42(17)	O1-N4-C2	117.77(16)
O2-N4-C2	117.81(16)	O3-N5-O4	124.47(18)
O3-N5-C1	117.62(17)	O4-N5-C1	117.91(16)
Ag1-N6-H1	117.(2)	Ag1-N6-H2	108.(3)
H1-N6-H2	109.(2)	Ag1-N6-H3	105.(3)
H1-N6-H3	110.(2)	H2-N6-H3	109.(2)

Table S- 57: Anisotropic atomic displacement parameters (Å²) for [Ag(NH₃)][DNT]. The anisotropic atomic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2} U₁₁ + ... + 2 h k a^{*} b^{*} U₁₂]

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Ag1	0.02276(10)	0.02645(11)	0.02796(11)	-0.00232(5)	0.00395(7)	0.00261(5)
C1	0.0195(8)	0.0210(9)	0.0177(8)	0.0014(7)	0.0038(6)	-0.0010(7)
C2	0.0187(8)	0.0192(9)	0.0198(8)	0.0015(7)	0.0067(6)	-0.0003(7)
N1	0.0198(8)	0.0228(8)	0.0197(8)	-0.0018(6)	0.0047(6)	0.0010(6)
N2	0.0219(7)	0.0217(8)	0.0172(7)	-0.0006(6)	0.0036(6)	0.0011(6)
N3	0.0192(8)	0.0219(8)	0.0216(8)	0.0032(6)	0.0040(6)	0.0010(6)
N4	0.0217(7)	0.0192(8)	0.0260(8)	0.0012(6)	0.0089(6)	-0.0014(6)
N5	0.0255(8)	0.0236(8)	0.0208(8)	0.0006(6)	0.0031(6)	-0.0027(7)
N6	0.0314(9)	0.0322(10)	0.0319(10)	-0.0053(8)	0.0019(8)	0.0080(8)
01	0.0251(7)	0.0251(8)	0.0338(8)	0.0023(6)	0.0098(6)	0.0071(6)
02	0.0301(8)	0.0283(8)	0.0313(8)	-0.0077(6)	0.0036(6)	-0.0007(6)
O3	0.0309(8)	0.0373(9)	0.0354(8)	-0.0047(7)	-0.0081(6)	-0.0015(7)
04	0.0323(8)	0.0274(8)	0.0301(8)	-0.0047(6)	0.0056(6)	0.0006(6)

Table S- 58: Hydrogen atomic coordinates and isotropic atomic displacement parameters ($Å^2$) for [Ag(NH₃)][DNT].

	x/a	y/b	z/c	U(eq)
H1	0.513(3)	1.491(6)	0.3959(18)	0.061(10)
H2	0.679(4)	1.558(5)	0.427(2)	0.076(12)
H3	0.612(5)	1.362(7)	0.4566(18)	0.104(17)

2.10 Crystal Structure Report for [NH₄][DNT]

Figure S- 28 : Projection of the packing of [NH4][DNT] perpendicular to the 001 plane.

Figure S- 29 : Projection of the packing of [NH4][DNT] perpendicular to the 010 plane.

Figure S- 30 : Projection of the packing of **[NH4][DNT]** perpendicular to the 100 plane.

Identification code	NH4DNT	
Chemical formula	$C_2H_8N_6O_6$	
Formula weight	212.14	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal size	0.080 x 0.230 x 0.290 m	ım
Crystal habit	clear orange plate	
Crystal system	triclinic	
Space group	P 1	
Unit cell dimensions	a = 4.653(3) Å	$\alpha = 93.105(7)^{\circ}$
	b = 6.461(4) Å	$\beta = 93.948(7)^{\circ}$
	c = 7.619(4) Å	$\gamma = 108.360(7)^{\circ}$
Volume	216.2(2) Å ³	
Ζ	1	
Density (calculated)	1.630 g/cm ³	
Absorption coefficient	0.158 mm ⁻¹	
F(000)	110	

Table S- 60: Data collection and structure refinement for [NH4][DNT].

Diffractometer	Bruker SMART APEX
Radiation source	fine-focus tube, MoKα
Theta range for data collection	2.69 to 28.49°
Index ranges	-6<=h<=5, -8<=k<=8, -9<=l<=9
Reflections collected	2547
Independent reflections	1599 [R(int) = 0.0122]
Coverage of independent reflections	91.7%
Absorption correction	multi-scan
Max. and min. transmission	0.9880 and 0.9560
Structure solution technique	direct methods
Structure solution program	SHELXTL XT 2013/6 (Sheldrick, 2013)
Refinement method	Full-matrix least-squares on F ²
Refinement program	SHELXTL XLMP 2014/1 (Bruker AXS, 2013)
Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$
Data / restraints / parameters	1599 / 3 / 159
Goodness-of-fit on F ²	1.075
Final R indices	1510 data; I> $2\sigma(I)$ R1 = 0.0264, wR2 = 0.0610
	all data $R1 = 0.0291$, $wR2 = 0.0627$
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.0323P) ² +0.0243P] where P=(F_o^2 +2 F_c^2)/3
Absolute structure parameter	-1.0(7)
Largest diff. peak and hole	0.182 and -0.155 eÅ ⁻³
R.M.S. deviation from mean	0.037 eÅ ⁻³

Table S- 61: Atomic coordinates and equivalent isotropic atomic displacement parameters (Å²) for [**NH4**][**DNT**].U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x/a	y/b	z/c	U(eq)
C1	0.0235(5)	0.1202(4)	0.1594(3)	0.0218(5)
C2	0.1479(5)	0.8759(4)	0.0501(3)	0.0223(5)
N1	0.2711(4)	0.9042(3)	0.2164(3)	0.0245(4)
N2	0.1871(5)	0.0687(3)	0.2909(3)	0.0250(4)
N3	0.9884(5)	0.0060(3)	0.0048(3)	0.0228(4)
N4	0.8892(4)	0.2930(3)	0.1865(3)	0.0249(4)
N5	0.1904(4)	0.7128(3)	0.9260(3)	0.0267(5)
N6	0.3952(5)	0.3379(3)	0.6457(3)	0.0273(5)
01	0.7380(4)	0.3287(3)	0.0606(2)	0.0329(4)
02	0.9359(4)	0.3919(3)	0.3327(2)	0.0322(4)
03	0.0579(5)	0.6860(3)	0.7775(2)	0.0390(5)
04	0.3569(4)	0.6097(3)	0.9779(2)	0.0322(4)
05	0.6036(4)	0.6935(3)	0.4284(2)	0.0282(4)
06	0.7718(4)	0.0695(3)	0.6591(2)	0.0300(4)

Table S- 62: Bond lengths (Å) for [NH4][DNT].

C1-N3	1.327(3)	C1-N2	1.336(3)
C1-N4	1.453(3)	C2-N3	1.329(3)
C2-N1	1.333(3)	C2-N5	1.446(3)
N1-N2	1.353(3)	N4-O2	1.224(3)
N4-01	1.226(3)	N5-O3	1.227(3)
N5-O4	1.230(3)	N6-H1	0.94(4)
N6-H2	0.95(3)	N6-H3	0.91(3)
N6-H4	0.92(3)	O5-H5	0.78(4)
O5-H6	0.94(5)	O6-H7	0.87(3)
O6-H8	0.92(5)		

Table S- 63: Bond angles (°) for [NH4][DNT].

N3-C1-N2	117.1(2)	N3-C1-N4	122.0(2)
N2-C1-N4	120.9(2)	N3-C2-N1	116.6(2)
N3-C2-N5	122.2(2)	N1-C2-N5	121.13(19)
C2-N1-N2	104.54(19)	C1-N2-N1	103.7(2)
C1-N3-C2	98.0(2)	O2-N4-O1	125.0(2)
O2-N4-C1	117.77(18)	O1-N4-C1	117.2(2)
O3-N5-O4	124.6(2)	O3-N5-C2	118.2(2)
O4-N5-C2	117.23(19)	H1-N6-H2	112.(3)
H1-N6-H3	107.(3)	H2-N6-H3	111.(3)
H1-N6-H4	113.(3)	H2-N6-H4	104.(3)
H3-N6-H4	111.(3)	Н5-О5-Н6	118.(4)
H7-O6-H8	103.(3)		

Table S- 64: Anisotropic atomic displacement parameters (Å²) for **[NH4][DNT]**. The anisotropic atomic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2} U₁₁ + ... + 2 h k a^{*} b^{*} U₁₂]

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C1	0.0211(10)	0.0207(10)	0.0238(13)	0.0033(9)	0.0012(9)	0.0071(8)
C2	0.0235(12)	0.0227(9)	0.0206(11)	0.0029(8)	-0.0004(9)	0.0078(8)
N1	0.0281(11)	0.0256(9)	0.0215(10)	0.0015(8)	-0.0005(8)	0.0117(8)
N2	0.0275(10)	0.0271(10)	0.0227(11)	0.0028(8)	0.0012(8)	0.0123(8)
N3	0.0242(9)	0.0218(9)	0.0229(11)	0.0011(8)	0.0002(8)	0.0087(7)
N4	0.0229(10)	0.0250(9)	0.0286(12)	0.0055(9)	0.0009(8)	0.0100(8)
N5	0.0298(11)	0.0264(9)	0.0242(12)	0.0012(8)	0.0020(9)	0.0094(9)
N6	0.0304(12)	0.0270(10)	0.0261(12)	0.0015(9)	0.0017(9)	0.0120(9)
01	0.0342(10)	0.0344(9)	0.0340(11)	0.0071(8)	-0.0020(8)	0.0171(8)
O2	0.0368(10)	0.0304(8)	0.0311(11)	-0.0053(8)	-0.0012(8)	0.0154(7)
O3	0.0531(12)	0.0433(11)	0.0252(11)	-0.0051(8)	-0.0088(9)	0.0257(9)
O4	0.0338(10)	0.0335(9)	0.0344(11)	0.0012(8)	-0.0008(8)	0.0192(8)
O5	0.0294(10)	0.0307(9)	0.0270(10)	0.0061(7)	-0.0016(8)	0.0136(7)
06	0.0380(10)	0.0300(9)	0.0244(10)	0.0018(7)	-0.0043(8)	0.0161(7)

Table S- 65: Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å²) for **[NH4][DNT]**.

	x/a	y/b	z/c	U(eq)
H1	0.524(8)	0.252(6)	0.639(5)	0.049(10)
H2	0.411(6)	0.408(5)	0.761(4)	0.031(8)
H3	0.448(7)	0.438(5)	0.565(4)	0.042(8)
H4	0.194(8)	0.256(5)	0.627(4)	0.040(8)
H5	0.507(9)	0.741(6)	0.364(5)	0.049(11)
H6	0.755(11)	0.644(7)	0.382(6)	0.079(14)
H7	0.722(7)	-0.052(5)	0.592(4)	0.030(8)
H8	0.824(10)	0.028(7)	0.767(6)	0.081(14)

2.11 Crystal Structure Report for [C(NH₂)₃][DNT]

Figure S- 31: Projection of the packing of [C(NH2)3][DNT] perpendicular to the 001 plane.

Figure S- 32 : Projection of the packing of **[C(NH2)3][DNT]** perpendicular to the 010 plane.

Figure S- 33: Projection of the packing of **[C(NH2)3][DNT]** perpendicular to the 100 plane.

Table S- 66: Sample and crystal data for [C(NH2)3][DNT].

Identification code	GuaniDNT	
Chemical formula	$C_3H_6N_8O_4$	
Formula weight	218.16	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal size	0.274 x 0.295 x 0.801 mm	
Crystal system	monoclinic	
Space group	C 1 2/c 1	
Unit cell dimensions	a = 8.3235(7) Å	$\alpha = 90^{\circ}$
	b = 16.7996(14) Å	$\beta = 102.3250(13)^{\circ}$
	c = 12.3068(10) Å	$\gamma = 90^{\circ}$
Volume	1681.2(2) Å ³	
Z	8	
Density (calculated)	1.724 g/cm ³	
Absorption coefficient	0.155 mm ⁻¹	
F(000)	896	

Table S- 67: Data collection and structure refinement for [C(NH2)3][DNT].

Diffractometer	Bruker APEX DUO	
Radiation source	fine-focus tube, MoKa	
Theta range for data collection	2.42 to 30.52°	
Index ranges	-11<=h<=11, -23<=k<=24, -17<=l<=17	
Reflections collected	20271	
Independent reflections	2562 [R(int) = 0.0333]	
Coverage of independent reflections	99.3%	
Absorption correction	multi-scan	
Max. and min. transmission	0.9590 and 0.8860	
Structure solution technique	direct methods	
Structure solution program	SHELXTL XT 2013/6 (Sheldrick, 2013)	
Refinement method	Full-matrix least-squares on F ²	
Refinement program	SHELXTL XLMP 2014/1 (Bruker AXS, 2013)	
Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$	
Data / restraints / parameters	2562 / 0 / 160	
Goodness-of-fit on F ²	1.075	
Final R indices	2221 data; I> $2\sigma(I)$ R1 = 0.0420, wR2 = 0.1147	
	all data $R1 = 0.0486$, $wR2 = 0.1189$	
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.0585P) ² +1.5987P] where P=(F_o^2 +2 F_c^2)/3	
Largest diff. peak and hole	0.486 and -0.262 eÅ ⁻³	
R.M.S. deviation from mean	0.055 eÅ ⁻³	
Table S- 68: Atomic coordinates and equivalent isotropic atomic displacement parameters (Å²) for [C(NH2)3][DNT].

 $U(\mbox{eq})$ is defined as one third of the trace of the orthogonalized $U_{\mbox{ij}}$ tensor.

	x/a	y/b	z/c	U(eq)
C1	0.45529(14)	0.21803(7)	0.55973(10)	0.0183(2)
C2	0.50191(15)	0.31605(7)	0.47779(9)	0.0181(2)
C3	0.22225(14)	0.40070(7)	0.78750(10)	0.0182(2)
N1	0.42001(13)	0.34343(7)	0.55183(9)	0.0212(2)
N2	0.38860(14)	0.27727(7)	0.60685(9)	0.0211(2)
N3	0.52994(13)	0.23721(7)	0.47756(8)	0.0198(2)
N4	0.43571(14)	0.13733(7)	0.59504(9)	0.0219(2)
N5	0.55743(14)	0.36971(7)	0.40095(9)	0.0218(2)
N6	0.28742(15)	0.44451(7)	0.71836(10)	0.0249(2)
N7	0.16520(17)	0.43552(10)	0.86842(12)	0.0322(3)
N8	0.21329(14)	0.32243(7)	0.77699(10)	0.0209(2)
01	0.49918(15)	0.08366(6)	0.55042(10)	0.0341(3)
02	0.35507(13)	0.12595(7)	0.66590(8)	0.0275(2)
03	0.64830(13)	0.34261(7)	0.34287(9)	0.0291(2)
04	0.51029(14)	0.43882(6)	0.39762(9)	0.0301(2)

Table S- 69: Bond lengths (Å) for [C(NH2)3][DNT].

C1-N2	1 3313(16)	C1-N3	1 3345(16)
C1 M4	1.0010(10) 1.4424(10)	C2 N1	1.2211(16)
CI-N4	1.4434(16)	C2-N1	1.3311(16)
C2-N3	1.3450(16)	C2-N5	1.4516(16)
C3-N8	1.3217(17)	C3-N6	1.3256(17)
C3-N7	1.3271(17)	N1-N2	1.3556(16)
N4-O2	1.2237(15)	N4-01	1.2319(16)
N5-O4	1.2234(15)	N5-O3	1.2334(15)
N6-H1	0.78(3)	N6-H2	0.83(2)
N7-H3	0.79(3)	N7-H4	0.77(2)
N8-H5	0.80(2)	N8-H6	0.76(2)

117.03(11)	N2-C1-N4	119.12(11)
123.75(11)	N1-C2-N3	117.14(11)
120.80(11)	N3-C2-N5	122.06(11)
120.78(12)	N8-C3-N7	119.36(13)
119.86(14)	C2-N1-N2	103.89(10)
104.63(10)	C1-N3-C2	97.30(10)
123.78(12)	O2-N4-C1	118.40(11)
117.81(11)	O4-N5-O3	124.26(12)
117.82(11)	O3-N5-C2	117.91(11)
117.8(16)	C3-N6-H2	121.1(16)
121.(2)	C3-N7-H3	117.(2)
119.7(16)	H3-N7-H4	122.(3)
119.2(15)	C3-N8-H6	113.7(15)
127.(2)		
	117.03(11) 123.75(11) 120.80(11) 120.78(12) 119.86(14) 104.63(10) 123.78(12) 117.81(11) 117.82(11) 117.8(16) 121.(2) 119.7(16) 119.2(15) 127.(2)	117.03(11)N2-C1-N4123.75(11)N1-C2-N3120.80(11)N3-C2-N5120.78(12)N8-C3-N7119.86(14)C2-N1-N2104.63(10)C1-N3-C2123.78(12)O2-N4-C1117.81(11)O4-N5-O3117.82(11)O3-N5-C2117.8(16)C3-N6-H2121.(2)C3-N7-H3119.7(16)H3-N7-H4119.2(15)C3-N8-H6127.(2)

Table S- 70: Bond angles (°) for [C(NH2)3][DNT].

Table S- 71: Anisotropic atomic displacement parameters (Å²) for [C(NH2)3][DNT]. The anisotropic atomic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2} U₁₁ + ... + 2 h k a^{*} b^{*} U₁₂]

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C1	0.0169(5)	0.0211(5)	0.0164(5)	-0.0010(4)	0.0023(4)	-0.0003(4)
C2	0.0168(5)	0.0209(5)	0.0159(5)	-0.0003(4)	0.0018(4)	0.0006(4)
C3	0.0144(5)	0.0217(6)	0.0185(5)	-0.0026(4)	0.0033(4)	0.0002(4)
N1	0.0206(5)	0.0241(5)	0.0189(5)	-0.0019(4)	0.0044(4)	0.0011(4)
N2	0.0206(5)	0.0227(5)	0.0195(5)	-0.0026(4)	0.0032(4)	0.0006(4)
N3	0.0187(5)	0.0229(5)	0.0176(5)	-0.0005(4)	0.0035(4)	0.0008(4)
N4	0.0213(5)	0.0244(5)	0.0196(5)	0.0009(4)	0.0033(4)	-0.0017(4)
N5	0.0215(5)	0.0240(5)	0.0194(5)	0.0006(4)	0.0037(4)	0.0012(4)
N6	0.0288(6)	0.0192(5)	0.0280(6)	0.0002(4)	0.0086(5)	-0.0038(4)
N7	0.0346(7)	0.0352(7)	0.0305(6)	-0.0095(5)	0.0153(5)	0.0039(5)
N8	0.0217(5)	0.0203(5)	0.0221(5)	-0.0017(4)	0.0076(4)	-0.0034(4)
01	0.0478(7)	0.0207(5)	0.0393(6)	-0.0009(4)	0.0217(5)	0.0022(4)
02	0.0269(5)	0.0348(5)	0.0219(5)	0.0043(4)	0.0075(4)	-0.0028(4)
03	0.0313(5)	0.0317(5)	0.0283(5)	0.0059(4)	0.0150(4)	0.0065(4)
04	0.0396(6)	0.0203(5)	0.0319(5)	0.0022(4)	0.0111(4)	0.0026(4)

Table S- 72: Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å²) for **[C(NH2)3][DNT]**.

	x/a	y/b	z/c	U(eq)
H1	0.299(3)	0.4901(15)	0.7310(18)	0.046(6)

	x/a	y/b	z/c	U(eq)
H2	0.322(3)	0.4238(14)	0.6664(19)	0.039(6)
H3	0.159(3)	0.482(2)	0.866(2)	0.067(9)
H4	0.120(3)	0.4103(13)	0.9053(18)	0.034(5)
Н5	0.175(3)	0.2971(13)	0.8200(17)	0.034(5)
H6	0.255(2)	0.3062(11)	0.7319(16)	0.024(4)

2.12 Crystal Structure Report for [aminoguanidine][DNT]

Figure S- 34 : Projection of the packing of **[aminoguanidine][DNT]** perpendicular to the 001 plane.

Figure S- 35 : Projection of the packing of [aminoguanidine][DNT] perpendicular to the 010 plane.

Figure S- 36 : Projection of the packing of **[aminoguanidine][DNT]** perpendicular to the 100 plane.

Table S- 73 : Sample and crystal data for [aminoguanidine][DNT].

Identification code	XMK20b_01	
Chemical formula	$C_3H_7N_9O_4$	
Formula weight	233.18 g/mol	
Temperature	100(2) K	
Wavelength	1.54178 Å	
Crystal size	0.096 x 0.116 x 0.182 mm	
Crystal habit	colorless blade	
Crystal system	monoclinic	
Space group	P 1 21/c 1	
Unit cell dimensions	a = 9.0616(3) Å	$\alpha = 90^{\circ}$
	b = 16.2452(5) Å	$\beta = 110.189(3)^{\circ}$
	c = 6.5935(2) Å	$\gamma = 90^{\circ}$
Volume	910.98(5) Å ³	
Z	4	
Density (calculated)	1.700 g/cm ³	
Absorption coefficient	1.338 mm ⁻¹	
F(000)	480	

Table S- 74 : Data collection and structure refinement for [aminoguanidine][DNT].

Diffractometer	Bruker APEX DUO		
Radiation source	IuS microsource, CuKa		
Theta range for data collection	2.72 to 72.18°		
Index ranges	-11<=h<=11, -19<=k<=18, -7<=l<=7		
Reflections collected	12104		
Independent reflections	1692 [R(int) = 0.0474]		
Coverage of independent reflections	93.7%		
Absorption correction	multi-scan		
Max. and min. transmission	0.8820 and 0.7930		
Structure solution technique	direct methods		
Structure solution program	SHELXTL XT 2014/3 (Sheldrick, 2014)		
Refinement method	Full-matrix least-squares on F ²		
Refinement program	SHELXL-2014 (Sheldrick, 2014)		
Function minimized	$\Sigma w(F_o^2 - F_c^2)^2$		
Data / restraints / parameters	1692 / 35 / 201		
Goodness-of-fit on F ²	1.220		
Final R indices	1440 data; I> 2σ (I) R1 = 0.0790, wR2 = 0.2765		
	all data $R1 = 0.0884, wR2 = 0.2846$		
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.1444P) ² +3.2934P] where P=(F_o^2 +2 F_c^2)/3		
Largest diff. peak and hole	0.446 and -0.423 eÅ ⁻³		
R.M.S. deviation from mean	0.111 eÅ ⁻³		
Table S- 75 : Atomic coordinat	es and equivalent isotropic atomic displacement parameters (Å ²)		

for [aminoguanidine][DNT].

 $U(\mbox{eq})$ is defined as one third of the trace of the orthogonalized $U_{\mbox{ij}}$ tensor.

C3 $0.7907(6)$ $0.2022(3)$ $0.4460(8)$ $0.0196(1)$ N6 $0.6410(5)$ $0.2084(3)$ $0.3259(7)$ $0.0266(1)$ N7 $0.8563(5)$ $0.1302(3)$ $0.5165(7)$ $0.0239(1)$ N8 $0.8763(5)$ $0.2710(2)$ $0.4945(7)$ $0.0255(1)$ N9 $0.0367(5)$ $0.2656(3)$ $0.6234(8)$ $0.0288(1)$ C1_a $0.4444(9)$ $0.4319(4)$ $0.180(3)$ $0.0187(1)$ C2_a $0.6420(9)$ $0.4896(4)$ $0.3681(19)$ $0.0191(1)$ N1_a $0.5378(5)$ $0.5500(3)$ $0.2983(7)$ $0.0199(1)$ N2_a $0.4049(5)$ $0.5124(3)$ $0.1712(7)$ $0.0203(1)$ N3_a $0.5908(5)$ $0.4132(3)$ $0.2998(7)$ $0.0191(1)$ N4_a $0.3280(5)$ $0.3735(3)$ $0.0597(9)$ $0.0221(1)$ N5_a $0.7988(5)$ $0.5059(3)$ $0.5178(7)$ $0.0228(1)$ O1_a $0.1973(4)$ $0.4002(3)$ $0.9518(7)$ $0.0283(1)$ O2_a $0.3655(5)$ $0.3006(2)$ $0.0702(8)$ $0.0299(1)$ O3_a $0.8287(5)$ $0.5766(2)$ $0.5855(7)$ $0.0285(1)$ O4_a $0.8913(4)$ $0.4481(2)$ $0.5710(7)$ $0.0288(1)$	
N6 $0.6410(5)$ $0.2084(3)$ $0.3259(7)$ $0.0266(1)$ N7 $0.8563(5)$ $0.1302(3)$ $0.5165(7)$ $0.0239(1)$ N8 $0.8763(5)$ $0.2710(2)$ $0.4945(7)$ $0.0255(1)$ N9 $0.0367(5)$ $0.2656(3)$ $0.6234(8)$ $0.0288(1)$ C1_a $0.4444(9)$ $0.4319(4)$ $0.180(3)$ $0.0187(1)$ C2_a $0.6420(9)$ $0.4896(4)$ $0.3681(19)$ $0.0191(1)$ N1_a $0.5378(5)$ $0.5500(3)$ $0.2983(7)$ $0.0199(1)$ N2_a $0.4049(5)$ $0.5124(3)$ $0.1712(7)$ $0.0203(1)$ N3_a $0.5908(5)$ $0.4132(3)$ $0.2998(7)$ $0.0191(1)$ N4_a $0.3280(5)$ $0.3735(3)$ $0.0597(9)$ $0.0221(1)$ N5_a $0.7988(5)$ $0.5059(3)$ $0.5178(7)$ $0.0212(1)$ O1_a $0.1973(4)$ $0.4002(3)$ $0.9518(7)$ $0.0283(1)$ O2_a $0.3655(5)$ $0.3006(2)$ $0.0702(8)$ $0.0299(1)$ O3_a $0.8287(5)$ $0.5766(2)$ $0.5855(7)$ $0.0285(1)$ O4_a $0.8913(4)$ $0.4481(2)$ $0.5710(7)$ $0.0288(1)$	0)
N7 $0.8563(5)$ $0.1302(3)$ $0.5165(7)$ $0.0239(4)$ N8 $0.8763(5)$ $0.2710(2)$ $0.4945(7)$ $0.0255(4)$ N9 $0.0367(5)$ $0.2656(3)$ $0.6234(8)$ $0.0288(4)$ C1_a $0.4444(9)$ $0.4319(4)$ $0.180(3)$ $0.0187(4)$ C2_a $0.6420(9)$ $0.4896(4)$ $0.3681(19)$ $0.0191(4)$ N1_a $0.5378(5)$ $0.5500(3)$ $0.2983(7)$ $0.0199(4)$ N2_a $0.4049(5)$ $0.5124(3)$ $0.1712(7)$ $0.0203(4)$ N3_a $0.5908(5)$ $0.4132(3)$ $0.2998(7)$ $0.0191(4)$ N4_a $0.3280(5)$ $0.3735(3)$ $0.0597(9)$ $0.0221(4)$ N5_a $0.7988(5)$ $0.5059(3)$ $0.5178(7)$ $0.0212(4)$ O1_a $0.1973(4)$ $0.4002(3)$ $0.9518(7)$ $0.0283(4)$ O2_a $0.3655(5)$ $0.3006(2)$ $0.0702(8)$ $0.0299(4)$ O3_a $0.8287(5)$ $0.5766(2)$ $0.5855(7)$ $0.0285(4)$ O4_a $0.8913(4)$ $0.4481(2)$ $0.5710(7)$ $0.0288(4)$	0)
N8 $0.8763(5)$ $0.2710(2)$ $0.4945(7)$ $0.0255(4)$ N9 $0.0367(5)$ $0.2656(3)$ $0.6234(8)$ $0.0288(4)$ C1_a $0.4444(9)$ $0.4319(4)$ $0.180(3)$ $0.0187(4)$ C2_a $0.6420(9)$ $0.4896(4)$ $0.3681(19)$ $0.0191(4)$ N1_a $0.5378(5)$ $0.5500(3)$ $0.2983(7)$ $0.0199(4)$ N2_a $0.4049(5)$ $0.5124(3)$ $0.1712(7)$ $0.0203(4)$ N3_a $0.5908(5)$ $0.4132(3)$ $0.2998(7)$ $0.0191(4)$ N4_a $0.3280(5)$ $0.3735(3)$ $0.0597(9)$ $0.0221(4)$ N5_a $0.7988(5)$ $0.5059(3)$ $0.5178(7)$ $0.0212(4)$ O1_a $0.1973(4)$ $0.4002(3)$ $0.9518(7)$ $0.0283(4)$ O2_a $0.3655(5)$ $0.3006(2)$ $0.0702(8)$ $0.0299(4)$ O3_a $0.8287(5)$ $0.5766(2)$ $0.5855(7)$ $0.0288(4)$ O4_a $0.8913(4)$ $0.4481(2)$ $0.5710(7)$ $0.0288(4)$	0)
N9 $0.0367(5)$ $0.2656(3)$ $0.6234(8)$ $0.0288(4)$ C1_a $0.4444(9)$ $0.4319(4)$ $0.180(3)$ $0.0187(4)$ C2_a $0.6420(9)$ $0.4896(4)$ $0.3681(19)$ $0.0191(4)$ N1_a $0.5378(5)$ $0.5500(3)$ $0.2983(7)$ $0.0199(4)$ N2_a $0.4049(5)$ $0.5124(3)$ $0.1712(7)$ $0.0203(4)$ N3_a $0.5908(5)$ $0.4132(3)$ $0.2998(7)$ $0.0191(4)$ N4_a $0.3280(5)$ $0.3735(3)$ $0.0597(9)$ $0.0221(4)$ N5_a $0.7988(5)$ $0.5059(3)$ $0.5178(7)$ $0.0212(4)$ O1_a $0.1973(4)$ $0.4002(3)$ $0.9518(7)$ $0.0283(4)$ O2_a $0.3655(5)$ $0.3006(2)$ $0.0702(8)$ $0.0299(1)$ O3_a $0.8287(5)$ $0.5766(2)$ $0.5855(7)$ $0.0285(4)$ O4_a $0.8913(4)$ $0.4481(2)$ $0.5710(7)$ $0.0288(6)$ O1_b $0.464(10)$ $0.431(3)$ $0.19(3)$ $0.0187(4)$	0)
$C1_a$ $0.4444(9)$ $0.4319(4)$ $0.180(3)$ $0.0187(4)$ $C2_a$ $0.6420(9)$ $0.4896(4)$ $0.3681(19)$ $0.0191(4)$ $N1_a$ $0.5378(5)$ $0.5500(3)$ $0.2983(7)$ $0.0199(4)$ $N2_a$ $0.4049(5)$ $0.5124(3)$ $0.1712(7)$ $0.0203(4)$ $N3_a$ $0.5908(5)$ $0.4132(3)$ $0.2998(7)$ $0.0191(4)$ $N4_a$ $0.3280(5)$ $0.3735(3)$ $0.0597(9)$ $0.0221(4)$ $N5_a$ $0.7988(5)$ $0.5059(3)$ $0.5178(7)$ $0.0212(4)$ $O1_a$ $0.1973(4)$ $0.4002(3)$ $0.9518(7)$ $0.0283(4)$ $O2_a$ $0.3655(5)$ $0.3006(2)$ $0.0702(8)$ $0.0299(4)$ $O3_a$ $0.8287(5)$ $0.5766(2)$ $0.5855(7)$ $0.0285(4)$ $O4_a$ $0.8913(4)$ $0.4481(2)$ $0.5710(7)$ $0.0288(4)$ $O1_a$ $0.19(3)$ $0.0187(4)$	1)
$C2_a$ $0.6420(9)$ $0.4896(4)$ $0.3681(19)$ $0.0191(10)$ $N1_a$ $0.5378(5)$ $0.5500(3)$ $0.2983(7)$ $0.0199(10)$ $N2_a$ $0.4049(5)$ $0.5124(3)$ $0.1712(7)$ $0.0203(10)$ $N3_a$ $0.5908(5)$ $0.4132(3)$ $0.2998(7)$ $0.0191(10)$ $N4_a$ $0.3280(5)$ $0.3735(3)$ $0.0597(9)$ $0.0221(10)$ $N5_a$ $0.7988(5)$ $0.5059(3)$ $0.5178(7)$ $0.0212(10)$ $O1_a$ $0.1973(4)$ $0.4002(3)$ $0.9518(7)$ $0.0283(10)$ $O2_a$ $0.3655(5)$ $0.3006(2)$ $0.0702(8)$ $0.0299(10)$ $O3_a$ $0.8287(5)$ $0.5766(2)$ $0.5855(7)$ $0.0288(10)$ $O4_a$ $0.8913(4)$ $0.4481(2)$ $0.5710(7)$ $0.0288(10)$ $O1_a$ $0.1973(4)$ $0.431(3)$ $0.19(3)$ $0.0187(10)$	4)
N1_a 0.5378(5) 0.5500(3) 0.2983(7) 0.0199(1) N2_a 0.4049(5) 0.5124(3) 0.1712(7) 0.0203(1) N3_a 0.5908(5) 0.4132(3) 0.2998(7) 0.0191(1) N4_a 0.3280(5) 0.3735(3) 0.0597(9) 0.0221(1) N5_a 0.7988(5) 0.5059(3) 0.5178(7) 0.0212(1) O1_a 0.1973(4) 0.4002(3) 0.9518(7) 0.0283(1) O2_a 0.3655(5) 0.3006(2) 0.0702(8) 0.0299(1) O3_a 0.8287(5) 0.5766(2) 0.5855(7) 0.0288(1) O4_a 0.8913(4) 0.4481(2) 0.5710(7) 0.0288(1) C1A b 0.464(10) 0.431(3) 0.19(3) 0.0187(1)	5)
N2_a 0.4049(5) 0.5124(3) 0.1712(7) 0.0203(1) N3_a 0.5908(5) 0.4132(3) 0.2998(7) 0.0191(1) N4_a 0.3280(5) 0.3735(3) 0.0597(9) 0.0221(1) N5_a 0.7988(5) 0.5059(3) 0.5178(7) 0.0212(1) O1_a 0.1973(4) 0.4002(3) 0.9518(7) 0.0283(1) O2_a 0.3655(5) 0.3006(2) 0.0702(8) 0.0299(1) O3_a 0.8287(5) 0.5766(2) 0.5855(7) 0.0288(1) O4_a 0.8913(4) 0.4481(2) 0.5710(7) 0.0288(1) C1A b 0.464(10) 0.431(3) 0.19(3) 0.0187(1)	0)
N3_a 0.5908(5) 0.4132(3) 0.2998(7) 0.0191(1) N4_a 0.3280(5) 0.3735(3) 0.0597(9) 0.0221(1) N5_a 0.7988(5) 0.5059(3) 0.5178(7) 0.0212(1) O1_a 0.1973(4) 0.4002(3) 0.9518(7) 0.0283(1) O2_a 0.3655(5) 0.3006(2) 0.0702(8) 0.0299(1) O3_a 0.8287(5) 0.5766(2) 0.5855(7) 0.0288(1) O4_a 0.8913(4) 0.4481(2) 0.5710(7) 0.0288(1) C1A b 0.464(10) 0.431(3) 0.19(3) 0.0187(1)	0)
N4_a 0.3280(5) 0.3735(3) 0.0597(9) 0.0221(1) N5_a 0.7988(5) 0.5059(3) 0.5178(7) 0.0212(1) O1_a 0.1973(4) 0.4002(3) 0.9518(7) 0.0283(1) O2_a 0.3655(5) 0.3006(2) 0.0702(8) 0.0299(1) O3_a 0.8287(5) 0.5766(2) 0.5855(7) 0.0288(1) O4_a 0.8913(4) 0.4481(2) 0.5710(7) 0.0288(1) C1A b 0.464(10) 0.431(3) 0.19(3) 0.0187(1)	0)
N5_a 0.7988(5) 0.5059(3) 0.5178(7) 0.0212(1) O1_a 0.1973(4) 0.4002(3) 0.9518(7) 0.0283(1) O2_a 0.3655(5) 0.3006(2) 0.0702(8) 0.0299(1) O3_a 0.8287(5) 0.5766(2) 0.5855(7) 0.0288(1) O4_a 0.8913(4) 0.4481(2) 0.5710(7) 0.0288(1) C1A b 0.464(10) 0.431(3) 0.19(3) 0.0187(1)	1)
O1_a 0.1973(4) 0.4002(3) 0.9518(7) 0.0283(1) O2_a 0.3655(5) 0.3006(2) 0.0702(8) 0.0299(1) O3_a 0.8287(5) 0.5766(2) 0.5855(7) 0.0285(1) O4_a 0.8913(4) 0.4481(2) 0.5710(7) 0.0288(1) C1A b 0.464(10) 0.431(3) 0.19(3) 0.0187(1)	0)
O2_a 0.3655(5) 0.3006(2) 0.0702(8) 0.0299(1) O3_a 0.8287(5) 0.5766(2) 0.5855(7) 0.0285(1) O4_a 0.8913(4) 0.4481(2) 0.5710(7) 0.0288(1) C1A b 0.464(10) 0.431(3) 0.19(3) 0.0187(1)	0)
O3_a 0.8287(5) 0.5766(2) 0.5855(7) 0.0285(1) O4_a 0.8913(4) 0.4481(2) 0.5710(7) 0.0288(1) C1A b 0.464(10) 0.431(3) 0.19(3) 0.0187(1)	0)
O4_a 0.8913(4) 0.4481(2) 0.5710(7) 0.0288(1 C1A b 0.464(10) 0.431(3) 0.19(3) 0.0187(1)	0)
C1A b 0.464(10) 0.431(3) 0.19(3) 0.0187(1	0)
	4)
C2A_b 0.645(8) 0.495(2) 0.39(2) 0.0191(1	5)
N1A_b 0.702(4) 0.4191(19) 0.398(7) 0.0199(1	0)
N2A_b 0.576(4) 0.3742(19) 0.280(7) 0.0203(1	0)
N3A_b 0.500(4) 0.5084(18) 0.247(7) 0.0191(1	0)
N4A_b 0.313(4) 0.400(2) 0.049(11) 0.0221(1	1)
N5A_b 0.750(4) 0.5623(16) 0.494(7) 0.0212(1	0)
O1A_b 0.307(5) 0.326(2) 0.006(8) 0.0283(1	0)
O2A_b 0.206(4) 0.450(2) 0.974(7) 0.0299(1	0)
O3A_b 0.876(4) 0.545(2) 0.635(7) 0.0285(4)	0)
O4A_b 0.695(4) 0.6315(17) 0.456(7) 0.0288(1	0)

C3-N6	1.317(6)	C3-N7	1.322(6)
C3-N8	1.335(6)	N6-H1	0.86(2)
N6-H2	0.87(2)	N7-H3	0.88(2)
N7-H4	0.87(2)	N8-N9	1.411(6)
N8-H5	0.87(2)	N9-H9	0.89(2)
N9-H10	0.89(2)	C1_a-N3_a	1.323(7)
C1_a-N2_a	1.351(8)	C1_a-N4_a	1.439(7)
C1_a-C2_a	2.021(7)	C2_a-N1_a	1.330(8)
C2_a-N3_a	1.347(7)	C2_a-N5_a	1.447(7)
N1_a-N2_a	1.353(6)	N4_a-O2_a	1.227(6)
N4_a-O1_a	1.231(6)	N5_a-O4_a	1.227(6)
N5_a-O3_a	1.228(6)	C1A_b-N3A_b	1.326(19)
C1A_b-N2A_b	1.35(2)	C1A_b-N4A_b	1.443(19)
C1A_b-C2A_b	2.020(18)	C2A_b-N1A_b	1.33(2)
C2A_b-N3A_b	1.35(2)	C2A_b-N5A_b	1.451(19)
N1A_b-N2A_b	1.351(19)	N4A_b-O2A_b	1.229(19)
N4A_b-O1A_b	1.235(19)	N5A_b-O4A_b	1.219(19)
N5A_b-O3A_b	1.232(19)		

Table S- 76: Bond lengths (Å) for [aminoguanidine][DNT].

Table S- 77 : Bond angles (°) for [aminoguanidine][DNT].

N6-C3-N7	121.6(4)	N6-C3-N8	118.2(4)
N7-C3-N8	120.2(4)	C3-N6-H1	115.(4)
C3-N6-H2	129.(4)	H1-N6-H2	115.(6)
C3-N7-H3	116.(4)	C3-N7-H4	118.(4)
H3-N7-H4	126.(6)	C3-N8-N9	119.0(4)
C3-N8-H5	120.(4)	N9-N8-H5	121.(4)
N8-N9-H9	105.(4)	N8-N9-H10	105.(4)
H9-N9-H10	115.(6)	N3_a-C1_a-N2_a	116.5(5)
N3_a-C1_a-N4_a	124.8(6)	N2_a-C1_a-N4_a	118.7(5)
N3_a-C1_a-C2_a	41.3(3)	N2_a-C1_a-C2_a	75.2(4)
N4_a-C1_a-C2_a	166.0(5)	N1_a-C2_a-N3_a	116.3(5)
N1_a-C2_a-N5_a	120.9(5)	N3_a-C2_a-N5_a	122.7(5)
N1_a-C2_a-C1_a	75.9(4)	N3_a-C2_a-C1_a	40.4(3)

N5_a-C2_a-C1_a	162.9(5)	C2_a-N1_a-N2_a	104.8(4)
C1_a-N2_a-N1_a	104.1(4)	C1_a-N3_a-C2_a	98.4(5)
O2_a-N4_a-O1_a	124.4(4)	O2_a-N4_a-C1_a	118.0(4)
O1_a-N4_a-C1_a	117.6(5)	O4_a-N5_a-O3_a	124.7(4)
O4_a-N5_a-C2_a	117.9(4)	O3_a-N5_a-C2_a	117.5(4)
N3A_b-C1A_b-N2A_b	116.2(18)	N3A_b-C1A_b-N4A_b	127.(3)
N2A_b-C1A_b-N4A_b	117.(3)	N3A_b-C1A_b-C2A_b	41.5(10)
N2A_b-C1A_b-C2A_b	74.7(14)	N4A_b-C1A_b-C2A_b	167.(8)
N1A_b-C2A_b-N3A_b	116.(2)	N1A_b-C2A_b-N5A_b	120.(3)
N3A_b-C2A_b-N5A_b	122.(3)	N1A_b-C2A_b-C1A_b	76.1(15)
N3A_b-C2A_b-C1A_b	40.5(9)	N5A_b-C2A_b-C1A_b	162.(5)
C2A_b-N1A_b-N2A_b	104.0(19)	N1A_b-N2A_b-C1A_b	104.3(19)
C1A_b-N3A_b-C2A_b	98.0(15)	O2A_b-N4A_b-O1A_b	126.(3)
O2A_b-N4A_b-C1A_b	118.(2)	O1A_b-N4A_b-C1A_b	116.(2)
O4A_b-N5A_b-O3A_b	125.(3)	O4A_b-N5A_b-C2A_b	117.(2)
O3A_b-N5A_b-C2A_b	118.(3)		

Table S- 78: Anisotropic atomic displacement parameters (Å²) for **[aminoguanidine][DNT]**. The anisotropic atomic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2} U₁₁ + ... + 2 h k a^{*} b^{*} U₁₂]

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C3	0.019(2)	0.018(2)	0.022(2)	-0.0014(17)	0.0080(18)	-0.0026(17)
N6	0.020(2)	0.022(2)	0.033(2)	0.0019(17)	0.0028(18)	0.0014(16)
N7	0.015(2)	0.0171(19)	0.034(2)	-0.0016(16)	0.0015(17)	-0.0006(15)
N8	0.028(2)	0.015(2)	0.032(2)	-0.0004(16)	0.0079(18)	-0.0024(16)
N9	0.024(2)	0.026(2)	0.034(2)	-0.0056(18)	0.0070(19)	-0.0087(17)
C1_a	0.017(3)	0.016(2)	0.022(3)	-0.0012(17)	0.005(3)	-0.0011(18)
C2_a	0.017(2)	0.018(2)	0.020(4)	-0.0020(19)	0.0039(19)	-0.0008(18)
N1_a	0.018(2)	0.014(2)	0.026(2)	0.0004(17)	0.0050(17)	-0.0020(16)
N2_a	0.015(2)	0.019(2)	0.025(2)	0.0002(17)	0.0040(18)	0.0024(16)
N3_a	0.016(2)	0.016(2)	0.023(2)	-0.0003(17)	0.0042(17)	-0.0025(17)
N4_a	0.013(2)	0.022(3)	0.027(2)	-0.003(2)	0.0023(17)	0.0017(19)
N5_a	0.019(2)	0.015(2)	0.027(2)	0.0001(17)	0.0044(18)	-0.0030(16)
O1_a	0.0141(19)	0.026(2)	0.035(2)	-0.0015(16)	-0.0041(16)	0.0011(15)
O2_a	0.0176(19)	0.0190(19)	0.045(2)	-0.0053(17)	0.0004(17)	0.0014(15)
O3_a	0.027(2)	0.019(2)	0.035(2)	-0.0045(17)	0.0055(19)	-0.0053(16)
O4_a	0.0190(19)	0.0205(19)	0.040(2)	0.0026(16)	0.0009(16)	0.0010(15)
C1A_b	0.017(3)	0.016(2)	0.022(3)	-0.0012(17)	0.005(3)	-0.0011(18)
C2A_b	0.017(2)	0.018(2)	0.020(4)	-0.0020(19)	0.0039(19)	-0.0008(18)
N1A_b	0.018(2)	0.014(2)	0.026(2)	0.0004(17)	0.0050(17)	-0.0020(16)
N2A_b	0.015(2)	0.019(2)	0.025(2)	0.0002(17)	0.0040(18)	0.0024(16)
N3A_b	0.016(2)	0.016(2)	0.023(2)	-0.0003(17)	0.0042(17)	-0.0025(17)
N4A_b	0.013(2)	0.022(3)	0.027(2)	-0.003(2)	0.0023(17)	0.0017(19)
N5A_b	0.019(2)	0.015(2)	0.027(2)	0.0001(17)	0.0044(18)	-0.0030(16)
O1A_b	0.0141(19)	0.026(2)	0.035(2)	-0.0015(16)	-0.0041(16)	0.0011(15)
O2A_b	0.0176(19)	0.0190(19)	0.045(2)	-0.0053(17)	0.0004(17)	0.0014(15)
O3A_b	0.027(2)	0.019(2)	0.035(2)	-0.0045(17)	0.0055(19)	-0.0053(16)
O4A b	0.0190(19)	0.0205(19)	0.040(2)	0.0026(16)	0.0009(16)	0.0010(15)

Table S- 79 : Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å²) for **[aminoguanidine][DNT]**.

	x/a	y/b	z/c	U(eq)
H1	0.592(7)	0.162(2)	0.292(10)	0.032
H2	0.581(6)	0.252(3)	0.294(10)	0.032
H3	0.795(6)	0.087(2)	0.476(9)	0.029
H4	0.955(3)	0.130(4)	0.599(8)	0.029
H5	0.832(7)	0.318(2)	0.451(10)	0.031
H9	1.089(7)	0.277(4)	0.535(9)	0.035
H10	1.049(8)	0.302(3)	0.730(8)	0.035

2.13 Crystal Structure Report for [HNEt₃][DNT]

Figure S- 37 : Projection of the packing in [HNEt3][DNT] perpendicular to the 001 plane.

Figure S- 38: Projection of the packing in **[HNEt3][DNT]** perpendicular to the 010 plane.

Figure S- 39: Projection of the packing in **[HNEt3][DNT]** perpendicular to the 100 plane.

Table S- 80: Sample and crystal data for [HNEt3][DNT].

Et3NHDNT	
$C_8H_{16}N_6O_4$	
260.27	
100(2) K	
0.71073 Å	
0.232 x 0.293 x 0.402 mm	
clear pale yellow prism	
monoclinic	
P 1 21/n 1	
a = 7.0842(5) Å	$\alpha = 90^{\circ}$
b = 9.3195(6) Å	$\beta = 100.3110(11)^{\circ}$
c = 19.3391(13) Å	$\gamma = 90^{\circ}$
1256.17(15) Å ³	
4	
1.376 g/cm ³	
0.111 mm ⁻¹	
552	
	Et3NHDNT $C_8H_{16}N_6O_4$ 260.27 100(2) K 0.71073 Å 0.232 x 0.293 x 0.402 mm clear pale yellow prism monoclinic P 1 21/n 1 a = 7.0842(5) Å b = 9.3195(6) Å c = 19.3391(13) Å 1256.17(15) Å ³ 4 1.376 g/cm ³ 0.111 mm ⁻¹ 552

Table S- 81: Data collection and structure refinement for [HNEt3][DNT].

Diffractometer	Bruker APEX DUO
Radiation source	fine-focus tube, MoKa
Theta range for data collection	2.14 to 30.65°
Index ranges	-10<=h<=9, -13<=k<=13, -27<=l<=27
Reflections collected	29946
Independent reflections	3841 [R(int) = 0.0325]
Absorption correction	multi-scan
Max. and min. transmission	0.9750 and 0.9570
Structure solution technique	direct methods
Structure solution program	SHELXTL XT 2013/6 (Sheldrick, 2013)
Refinement method	Full-matrix least-squares on F ²
Refinement program	SHELXTL XLMP 2014/1 (Bruker AXS, 2013)
Function minimized	$\Sigma w(F_o^2 - F_c^2)^2$
Data / restraints / parameters	3841 / 0 / 169
Goodness-of-fit on F ²	1.042
Δ/σ_{max}	0.001
Final R indices	3189 data; I> $2\sigma(I)$ R1 = 0.0397, wR2 = 0.0959
	all data $R1 = 0.0508$, $wR2 = 0.1022$
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.0434P) ² +0.5128P] where P=(F_o^2 +2 F_c^2)/3
Largest diff. peak and hole	0.623 and -0.484 eÅ ⁻³
R.M.S. deviation from mean	0.047 eÅ ⁻³
Table S- 82: Atomic coord	linates and equivalent isotronic atomic displacement parameters $(Å^2)$

Table S- 82: Atomic coordinates and equivalent isotropic atomic displacement parameters (A^2) for [HNEt3][DNT].U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

x/a y/b z/c U(eq)

	x/a	y/b	z/c	U(eq)
C1	0.82004(14)	0.12816(10)	0.56321(5)	0.01597(19)
C2	0.69179(14)	0.11022(11)	0.46243(5)	0.01575(19)
C3	0.24304(15)	0.35101(11)	0.41424(5)	0.0177(2)
C4	0.22214(17)	0.36755(12)	0.49031(6)	0.0226(2)
C5	0.94241(14)	0.46655(11)	0.34903(6)	0.0178(2)
C6	0.87516(16)	0.35571(12)	0.29252(6)	0.0215(2)
C7	0.25477(15)	0.49687(12)	0.30698(5)	0.0183(2)
C8	0.44980(16)	0.56698(14)	0.32843(6)	0.0252(2)
N1	0.69958(12)	0.25202(9)	0.47367(4)	0.01647(17)
N2	0.78518(12)	0.26379(9)	0.54215(4)	0.01586(17)
N3	0.76506(13)	0.02513(9)	0.51615(5)	0.01835(18)
N4	0.60249(14)	0.05214(10)	0.39467(5)	0.01969(18)
N5	0.91361(15)	0.09765(10)	0.63454(5)	0.0223(2)
N6	0.15806(12)	0.47643(9)	0.36969(4)	0.01362(16)
01	0.59269(16)	0.92108(9)	0.38865(5)	0.0341(2)
02	0.54033(13)	0.13713(9)	0.34776(4)	0.02656(19)
03	0.97036(18)	0.97504(9)	0.64869(5)	0.0447(3)
04	0.93216(13)	0.19736(9)	0.67694(4)	0.02596(19)

Table S- 83: Bond lengths (Å) for [HNEt3][DNT].

C1-N3	1.3323(13)	C1-N2	1.3374(12)	
C1-N5	1.4476(13)	C2-N3	1.3359(13)	
C2-N1	1.3388(13)	C2-N4	1.4538(13)	
C3-N6	1.5117(13)	C3-C4	1.5125(14)	
СЗ-НЗА	0.99	C3-H3B	0.99	
C4-H4A	0.98	C4-H4B	0.98	
C4-H4C	0.98	C5-N6	1.5111(13)	
C5-C6	1.5173(14)	C5-H5A	0.99	
C5-H5B	0.99	C6-H6A	0.98	
C6-H6B	0.98	C6-H6C	0.98	
C7-N6	1.5080(13)	C7-C8	1.5174(15)	
C7-H7A	0.99	C7-H7B	0.99	
C8-H8A	0.98	C8-H8B	0.98	
C8-H8C	0.98	N1-N2	1.3589(12)	
N4-O2	1.2253(12)	N4-O1	1.2277(12)	
N5-O3	1.2258(12)	N5-O4	1.2308(12)	
N6-H1	0.903(14)			
Table S- 84: Bond angles (°) for [HNEt3][DNT].				

117.24(9)	N3-C1-N5	122.50(9)
120.26(9)	N3-C2-N1	117.44(9)
121.72(9)	N1-C2-N4	120.83(9)
112.16(8)	N6-C3-H3A	109.2
109.2	N6-C3-H3B	109.2
109.2	НЗА-СЗ-НЗВ	107.9
109.5	С3-С4-Н4В	109.5
	117.24(9) 120.26(9) 121.72(9) 112.16(8) 109.2 109.2 109.5	117.24(9)N3-C1-N5120.26(9)N3-C2-N1121.72(9)N1-C2-N4112.16(8)N6-C3-H3A109.2N6-C3-H3B109.2H3A-C3-H3B109.5C3-C4-H4B

H4A-C4-H4B	109.5	C3-C4-H4C	109.5
Н4А-С4-Н4С	109.5	Н4В-С4-Н4С	109.5
N6-C5-C6	113.84(8)	N6-C5-H5A	108.8
С6-С5-Н5А	108.8	N6-C5-H5B	108.8
С6-С5-Н5В	108.8	H5A-C5-H5B	107.7
С5-С6-Н6А	109.5	С5-С6-Н6В	109.5
H6A-C6-H6B	109.5	С5-С6-Н6С	109.5
H6A-C6-H6C	109.5	H6B-C6-H6C	109.5
N6-C7-C8	110.92(8)	N6-C7-H7A	109.5
С8-С7-Н7А	109.5	N6-C7-H7B	109.5
С8-С7-Н7В	109.5	H7A-C7-H7B	108.0
С7-С8-Н8А	109.5	С7-С8-Н8В	109.5
H8A-C8-H8B	109.5	C7-C8-H8C	109.5
H8A-C8-H8C	109.5	H8B-C8-H8C	109.5
C2-N1-N2	103.66(8)	C1-N2-N1	104.26(8)
C1-N3-C2	97.40(8)	O2-N4-O1	124.48(9)
O2-N4-C2	117.87(9)	O1-N4-C2	117.65(9)
O3-N5-O4	124.29(10)	O3-N5-C1	118.15(9)
O4-N5-C1	117.56(9)	C7-N6-C5	112.24(8)
C7-N6-C3	111.35(8)	C5-N6-C3	112.60(8)
C7-N6-H1	106.2(8)	C5-N6-H1	106.3(8)
C3-N6-H1	107.7(8)		

Table S- 85: Anisotropic atomic displacement parameters (Å²) for **[HNEt3][DNT]**. The anisotropic atomic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2} U₁₁ + ... + 2 h k a^{*} b^{*} U₁₂]

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C1	0.0188(4)	0.0121(4)	0.0160(4)	0.0000(3)	0.0004(3)	-0.0007(3)
C2	0.0176(4)	0.0142(4)	0.0152(4)	-0.0018(3)	0.0023(3)	-0.0015(3)
C3	0.0208(5)	0.0138(4)	0.0170(4)	0.0003(3)	-0.0006(4)	0.0045(4)
C4	0.0307(6)	0.0193(5)	0.0181(5)	0.0038(4)	0.0053(4)	0.0034(4)
C5	0.0143(4)	0.0165(4)	0.0213(5)	-0.0028(4)	0.0000(4)	0.0011(4)
C6	0.0207(5)	0.0190(5)	0.0224(5)	-0.0031(4)	-0.0027(4)	-0.0028(4)
C7	0.0201(5)	0.0210(5)	0.0138(4)	-0.0006(4)	0.0031(4)	0.0010(4)
C8	0.0195(5)	0.0337(6)	0.0232(5)	-0.0016(5)	0.0057(4)	-0.0037(4)
N1	0.0189(4)	0.0139(4)	0.0154(4)	-0.0013(3)	-0.0001(3)	-0.0001(3)
N2	0.0179(4)	0.0129(4)	0.0154(4)	-0.0001(3)	-0.0006(3)	0.0003(3)
N3	0.0235(4)	0.0128(4)	0.0182(4)	-0.0011(3)	0.0022(3)	-0.0014(3)
N4	0.0244(4)	0.0178(4)	0.0168(4)	-0.0034(3)	0.0034(3)	-0.0024(3)
N5	0.0311(5)	0.0135(4)	0.0194(4)	0.0023(3)	-0.0034(4)	-0.0018(4)
N6	0.0142(4)	0.0123(4)	0.0134(4)	-0.0016(3)	0.0001(3)	0.0013(3)
01	0.0601(6)	0.0165(4)	0.0237(4)	-0.0061(3)	0.0023(4)	-0.0084(4)
02	0.0344(5)	0.0254(4)	0.0172(4)	-0.0017(3)	-0.0028(3)	0.0033(3)
03	0.0785(8)	0.0137(4)	0.0318(5)	0.0044(3)	-0.0178(5)	0.0048(4)
04	0.0368(5)	0.0182(4)	0.0193(4)	-0.0029(3)	-0.0048(3)	-0.0011(3)

Table S- 86: Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å²) for **[HNEt3][DNT]**.

	x/a	y/b	z/c	U(eq)
H3A	0.3808	0.3424	0.4116	0.021
H3B	0.1784	0.2616	0.3952	0.021
H4A	0.2777	0.2838	0.5171	0.034
H4B	0.0859	0.3752	0.4933	0.034
H4C	0.2893	0.4544	0.5098	0.034
H5A	-0.1082	0.5617	0.3320	0.021
H5B	-0.1123	0.4426	0.3913	0.021
H6A	-0.0721	0.2616	0.3082	0.032
H6B	-0.0805	0.3829	0.2491	0.032
H6C	-0.2653	0.3511	0.2837	0.032
H7A	0.1731	0.5577	0.2717	0.022
H7B	0.2704	0.4026	0.2851	0.022
H8A	0.4339	0.6619	0.3484	0.038
H8B	0.5111	0.5771	0.2871	0.038
H8C	0.5303	0.5072	0.3636	0.038
H1	0.1823(19)	0.5567(15)	0.3959(7)	0.016

2.14 Crystal Structure Report for monoclinic [H₂NEt₂][DNT]

Figure S- 40 : Projection of the packing of monoclinic [H2NEt2][DNT] perpendicular to the 001 plane.

Figure S- 41: Projection of the packing of monoclinic [H2NEt2][DNT] perpendicular to the 010 plane.

Figure S- 42: Projection of the packing of monoclinic [H2NEt2][DNT] perpendicular to the 100 plane.

Table S- 87: Sample and crystal data for **monoclinic [H2NEt2][**DNT].

Identification code	Et2NH2DNT	
Chemical formula	$C_6H_{12}N_6O_4$	
Formula weight	232.22	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal size	0.162 x 0.258 x 0.499 mm	
Crystal habit	clear yellow prism	
Crystal system	monoclinic	
Space group	P 1 21/n 1	
Unit cell dimensions	a = 6.4659(4) Å	$\alpha = 90^{\circ}$
	b = 8.9964(6) Å	$\beta = 99.5420(10)^{\circ}$
	c = 18.8357(12) Å	$\gamma = 90^{\circ}$
Volume	1080.51(12) Å ³	
Ζ	4	
Density (calculated)	1.427 g/cm ³	
Absorption coefficient	0.120 mm ⁻¹	
F(000)	488	

Table S- 88: Data collection and structure refinement for **monoclinic [H2NEt2]**[DNT].

Diffractometer	Bruker APEX DUO		
Radiation source	fine-focus tube, MoKa		
Theta range for data collection	2.19 to 29.13°		
Index ranges	-8<=h<=8, -12<=k<=12, -25<=l<=25		
Reflections collected	24237		
Independent reflections	2903 [R(int) = 0.0293]		
Absorption correction	multi-scan		
Structure solution technique	direct methods		
Structure solution program	SHELXTL XT 2013/6 (Sheldrick, 2013)		
Refinement method	Full-matrix least-squares on F ²		
Refinement program	SHELXTL XLMP 2014/1 (Bruker AXS, 2013)		
Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$		
Data / restraints / parameters	2903 / 1 / 153		
Goodness-of-fit on F ²	1.034		
Δ/σ_{max}	0.001		
Final R indices	2518 data; I> $2\sigma(I)$ R1 = 0.0318, wR2 = 0.0795		
	all data $R1 = 0.0385$, $wR2 = 0.0842$		
Weighting scheme	$w=1/[\sigma^2(F_o^2)+(0.0412P)^2+0.2954P]$		
Weighting seneme	where $P = (F_o^2 + 2F_c^2)/3$		
Largest diff. peak and hole	0.243 and -0.255 eÅ ⁻³		
R.M.S. deviation from mean	0.042 eÅ ⁻³		

Table S- 89: Atomic coordinates and equivalent isotropic atomic displacement parameters (Å²) for monoclinic [H2NEt2][DNT].U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x/a	y/b	z/c	U(eq)
C1	0.19931(14)	0.65943(10)	0.41238(5)	0.01626(18)
N1	0.24316(12)	0.54448(8)	0.45680(4)	0.01731(16)
01	0.25774(14)	0.52846(9)	0.31310(4)	0.03106(19)
C2	0.21905(13)	0.61371(10)	0.51739(5)	0.01596(17)
N2	0.15157(12)	0.78805(9)	0.44110(4)	0.01712(16)
02	0.14070(13)	0.75549(9)	0.29801(4)	0.03017(18)
C3	0.15829(16)	0.14918(12)	0.35719(6)	0.0272(2)
N3	0.16548(12)	0.75706(9)	0.51241(4)	0.01724(16)
03	0.28330(12)	0.40435(8)	0.58728(4)	0.02662(17)
C4	0.31718(17)	0.16944(13)	0.42490(7)	0.0359(3)
N4	0.19974(13)	0.64661(9)	0.33560(4)	0.02061(17)
04	0.23233(13)	0.61343(9)	0.63962(4)	0.02976(18)
C5	0.81035(17)	0.03608(11)	0.30799(5)	0.0237(2)
N5	0.24791(13)	0.53792(9)	0.58637(4)	0.01948(17)
C6	0.65249(17)	0.92288(12)	0.32433(6)	0.0294(2)
N6	0.97388(12)	0.06248(9)	0.37277(4)	0.01627(16)

Table S- 90: Bond lengths (Å) for monoclinic [H2NEt2][DNT].

C1-N1	1.3308(12)	C1-N2	1.3349(12)
C1-N4	1.4513(11)	N1-C2	1.3319(12)
01-N4	1.2259(11)	C2-N3	1.3346(12)
C2-N5	1.4516(11)	N2-N3	1.3602(11)
O2-N4	1.2317(11)	C3-N6	1.4941(12)
C3-C4	1.5103(16)	С3-НЗА	0.99
C3-H3B	0.99	O3-N5	1.2228(11)
C4-H4A	0.98	C4-H4B	0.98
C4-H4C	0.98	O4-N5	1.2294(11)
C5-N6	1.4952(12)	C5-C6	1.5092(15)
C5-H5A	0.99	С5-Н5В	0.99
C6-H6A	0.98	C6-H6B	0.98
C6-H6C	0.98	N6-H2N	0.900(11)
N6-H1N	0.900(11)		

N1-C1-N2	117.28(8)	N1-C1-N4	121.96(8)
N2-C1-N4	120.76(8)	C1-N1-C2	97.60(7)
N1-C2-N3	117.22(8)	N1-C2-N5	122.09(8)
N3-C2-N5	120.68(8)	C1-N2-N3	103.92(7)
N6-C3-C4	110.51(9)	N6-C3-H3A	109.5
С4-С3-НЗА	109.5	N6-C3-H3B	109.5
С4-С3-Н3В	109.5	НЗА-СЗ-НЗВ	108.1
C2-N3-N2	103.97(7)	C3-C4-H4A	109.5
С3-С4-Н4В	109.5	H4A-C4-H4B	109.5
С3-С4-Н4С	109.5	Н4А-С4-Н4С	109.5
Н4В-С4-Н4С	109.5	O1-N4-O2	125.04(8)
O1-N4-C1	117.69(8)	O2-N4-C1	117.27(8)
N6-C5-C6	110.58(8)	N6-C5-H5A	109.5
С6-С5-Н5А	109.5	N6-C5-H5B	109.5
С6-С5-Н5В	109.5	H5A-C5-H5B	108.1
O3-N5-O4	124.89(8)	O3-N5-C2	118.05(8)
O4-N5-C2	117.06(8)	С5-С6-Н6А	109.5
С5-С6-Н6В	109.5	H6A-C6-H6B	109.5
С5-С6-Н6С	109.5	H6A-C6-H6C	109.5
H6B-C6-H6C	109.5	C3-N6-C5	113.71(8)
C3-N6-H2N	109.1(8)	C5-N6-H2N	109.0(8)
C3-N6-H1N	109.0(8)	C5-N6-H1N	108.6(8)
H2N-N6-H1N	107.2(11)		

Table S- 91: Bond angles (°) for monoclinic [H2NEt2][DNT].
--

Table S- 92: Torsion angles (°) for **monoclinic [H2NEt2][**DNT].

N2-C1-N1-C2	-0.22(10)	N4-C1-N1-C2	-179.34(8)
C1-N1-C2-N3	0.07(10)	C1-N1-C2-N5	179.68(8)
N1-C1-N2-N3	0.29(11)	N4-C1-N2-N3	179.42(8)
N1-C2-N3-N2	0.09(10)	N5-C2-N3-N2	-179.53(8)
C1-N2-N3-C2	-0.21(9)	N1-C1-N4-O1	-5.46(13)
N2-C1-N4-O1	175.46(9)	N1-C1-N4-O2	174.24(9)
N2-C1-N4-O2	-4.85(13)	N1-C2-N5-O3	-4.36(13)
N3-C2-N5-O3	175.25(8)	N1-C2-N5-O4	176.46(8)
N3-C2-N5-O4	-3.93(13)	C4-C3-N6-C5	-179.28(8)
C6-C5-N6-C3	168.42(8)		

Table S- 93: Anisotropic atomic displacement parameters (Å²) for **monoclinic [H2NEt2]**[DNT]. The anisotropic atomic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2} U₁₁ + ... + 2 h k a^{*} b^{*} U₁₂]

	U11	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C1	0.0173(4)	0.0164(4)	0.0154(4)	-0.0007(3)	0.0032(3)	-0.0013(3)
N1	0.0188(4)	0.0152(4)	0.0178(4)	-0.0002(3)	0.0028(3)	-0.0009(3)
01	0.0477(5)	0.0246(4)	0.0224(4)	-0.0060(3)	0.0103(3)	0.0029(3)
C2	0.0161(4)	0.0155(4)	0.0160(4)	0.0012(3)	0.0018(3)	-0.0016(3)
N2	0.0194(4)	0.0162(4)	0.0156(3)	0.0007(3)	0.0023(3)	-0.0003(3)
02	0.0417(4)	0.0298(4)	0.0198(3)	0.0074(3)	0.0074(3)	0.0070(3)
C3	0.0252(5)	0.0210(5)	0.0376(6)	0.0065(4)	0.0111(4)	-0.0013(4)
N3	0.0197(4)	0.0165(4)	0.0152(3)	0.0004(3)	0.0022(3)	-0.0001(3)
03	0.0337(4)	0.0173(3)	0.0281(4)	0.0068(3)	0.0029(3)	-0.0004(3)
C4	0.0224(5)	0.0246(5)	0.0588(8)	-0.0121(5)	0.0011(5)	-0.0034(4)
N4	0.0241(4)	0.0214(4)	0.0167(4)	-0.0003(3)	0.0048(3)	-0.0014(3)
04	0.0425(4)	0.0301(4)	0.0165(3)	0.0002(3)	0.0045(3)	0.0047(3)
C5	0.0317(5)	0.0203(5)	0.0163(4)	-0.0003(3)	-0.0046(4)	0.0023(4)
N5	0.0199(4)	0.0196(4)	0.0186(4)	0.0028(3)	0.0018(3)	-0.0014(3)
C6	0.0232(5)	0.0275(5)	0.0344(6)	-0.0048(4)	-0.0038(4)	-0.0005(4)
N6	0.0202(4)	0.0143(3)	0.0142(3)	0.0003(3)	0.0026(3)	0.0010(3)

Table S- 94: Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å²) for **monoclinic [H2NEt2]**[DNT].

	x/a	y/b	z/c	U(eq)
H3A	0.1110	0.2477	0.3374	0.033
H3B	0.2242	0.0962	0.3206	0.033
H4A	0.2552	0.2287	0.4596	0.054
H4B	0.4409	0.2208	0.4132	0.054
H4C	0.3585	0.0720	0.4458	0.054
H5A	-0.1220	0.0000	0.2678	0.028
H5B	-0.2621	0.1307	0.2929	0.028
H6A	-0.2777	-0.1731	0.3352	0.044
H6B	-0.4588	-0.0878	0.2825	0.044
H6C	-0.4086	-0.0440	0.3659	0.044
H2N	-0.0847(18)	0.1109(13)	0.4062(6)	0.02
H1N	0.0185(18)	-0.0261(12)	0.3916(6)	0.02

2.15 Crystal Structure Report for triclinic [H₂NEt₂][DNT]

Figure S- 43: Projection of the packing of **triclinic [H2NEt2][DNT]** perpendicular to the 001 plane.

Figure S- 44: Projection of the packing of **triclinic [H2NEt2][DNT]** perpendicular to the 010 plane.

Table S-95:	Sample and	crystal data fo	or triclinic	[H2NEt2][D	NT].
-------------	------------	-----------------	---------------------	------------	------

Identification code	XMK18	
Chemical formula	$C_6H_{12}N_6O_4$	
Formula weight	232.20	
Temperature	100(2) K	
Wavelength	1.54178 Å	
Crystal size	0.132 x 0.209 x 0.257 mm	
Crystal habit	yellow blade	
Crystal system	triclinic	
Space group	P -1	
Unit cell dimensions	a = 7.3101(9) Å	$\alpha = 73.347(3)^{\circ}$
	b = 8.1876(10) Å	$\beta = 73.673(2)^{\circ}$
	c = 9.9470(12) Å	$\gamma = 77.130(3)^{\circ}$
Volume	540.79(11) Å ³	
Ζ	2	
Density (calculated)	1.426 g/cm ³	
Absorption coefficient	1.036 mm ⁻¹	
F(000)	244	

Table S- 96: Data collection and structure refinement for triclinic [H2NEt2][DNT].

Diffractometer	Bruker APEX DUO				
Radiation source	IuS microsource, CuKa				
Theta range for data collection	4.77 to 63.18°				
Index ranges	-8<=h<=8, -9<=k<=9, -10<=l<=11				
Reflections collected	8580				
Independent reflections	1606 [R(int) = 0.0255]				
Structure solution technique	direct methods				
Structure solution program	SHELXTL XT 2013/5 (Sheldrick, 2013)				
Refinement method	Full-matrix least-squares on F ²				
Refinement program	SHELXTL XLMP 2014/1 (Bruker AXS, 2013)				
Function minimized	$\Sigma \mathrm{w}(\mathrm{F_o}^2 - \mathrm{F_c}^2)^2$				
Data / restraints / parameters	1606 / 0 / 153				
Goodness-of-fit on F ²	1.029				
Final R indices	1486 data; I> 2σ (I) R1 = 0.0267, wR2 = 0.0671				
	all data $R1 = 0.0292, wR2 = 0.0689$				
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.0318P) ² +0.1977P] where P=(F_o^2 +2 F_c^2)/3				
Largest diff. peak and hole	0.135 and -0.153 eÅ ⁻³				
R.M.S. deviation from mean	0.032 eÅ ⁻³				

Table S- 97: Atomic coordinates and equivalent isotropic atomic displacement parameters (Å²) for **triclinic [H2NEt2][DNT]**.U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x/a	y/b	z/c	U(eq)
C1	0.30428(18)	0.96776(15)	0.44942(13)	0.0203(3)
C2	0.19128(18)	0.85170(16)	0.65347(13)	0.0205(3)
N1	0.17401(15)	0.00668(13)	0.56371(11)	0.0225(3)
N2	0.07672(16)	0.81592(14)	0.80045(12)	0.0253(3)
N3	0.31868(15)	0.72668(13)	0.60306(11)	0.0232(3)
N4	0.39540(16)	0.80537(13)	0.46418(11)	0.0229(3)
N5	0.34971(16)	0.09380(14)	0.31357(11)	0.0245(3)
01	0.95924(14)	0.93369(12)	0.84262(10)	0.0346(3)
02	0.10349(14)	0.66748(12)	0.87414(10)	0.0324(3)
03	0.25239(15)	0.23739(12)	0.30009(10)	0.0329(3)
04	0.48527(14)	0.04807(12)	0.21908(10)	0.0336(3)
C3	0.3960(2)	0.6689(2)	0.11641(16)	0.0342(4)
C4	0.59929(19)	0.69976(17)	0.09498(13)	0.0246(3)
C5	0.84965(19)	0.69389(17)	0.22467(14)	0.0253(3)
C6	0.9130(2)	0.61250(17)	0.36410(14)	0.0268(3)
N6	0.65847(16)	0.64737(14)	0.23511(11)	0.0211(3)

Table S- 98: Bond lengths (Å) for triclinic [H2NEt2][DNT].

C1-N1	1.3283(16)	C1-N4	1.3348(16)
C1-N5	1.4500(17)	C2-N1	1.3289(16)
C2-N3	1.3317(16)	C2-N2	1.4492(17)
N2-O1	1.2262(14)	N2-O2	1.2316(14)
N3-N4	1.3613(15)	N5-O3	1.2235(14)
N5-O4	1.2322(14)	C3-C4	1.509(2)
C4-N6	1.4926(17)	C5-N6	1.4973(18)
C5-C6	1.5086(19)		

N1-C1-N4	117.11(11)	N1-C1-N5	122.62(11)
N4-C1-N5	120.27(11)	N1-C2-N3	117.35(11)
N1-C2-N2	122.51(11)	N3-C2-N2	120.14(11)
C1-N1-C2	97.75(10)	01-N2-O2	124.50(11)
O1-N2-C2	118.33(11)	O2-N2-C2	117.16(10)
C2-N3-N4	103.83(10)	C1-N4-N3	103.96(10)
O3-N5-O4	124.41(11)	O3-N5-C1	118.42(11)
O4-N5-C1	117.17(10)	N6-C4-C3	110.90(11)
N6-C5-C6	110.30(11)	C4-N6-C5	113.74(10)

Table S- 99: Bond angles	(°)	for triclinic	[H2NEt2]	[DNT].	
--------------------------	-----	----------------------	----------	--------	--

Table S- 100: Anisotropic atomic displacement parameters (Å²) for **triclinic [H2NEt2][DNT]**. The anisotropic atomic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2} U₁₁ + ... + 2 h k a^{*} b^{*} U₁₂]

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C1	0.0205(7)	0.0192(6)	0.0210(7)	-0.0038(5)	-0.0052(5)	-0.0029(5)
C2	0.0198(7)	0.0204(6)	0.0215(6)	-0.0062(5)	-0.0032(5)	-0.0038(5)
N1	0.0224(6)	0.0200(6)	0.0249(6)	-0.0063(5)	-0.0046(5)	-0.0031(5)
N2	0.0265(6)	0.0235(6)	0.0246(6)	-0.0079(5)	-0.0001(5)	-0.0055(5)
N3	0.0233(6)	0.0217(6)	0.0208(6)	-0.0033(4)	-0.0018(4)	-0.0024(5)
N4	0.0232(6)	0.0209(5)	0.0209(6)	-0.0027(4)	-0.0026(4)	-0.0020(5)
N5	0.0282(6)	0.0219(6)	0.0224(6)	-0.0039(5)	-0.0065(5)	-0.0032(5)
01	0.0356(6)	0.0266(5)	0.0354(6)	-0.0140(4)	0.0080(4)	-0.0043(4)
O2	0.0399(6)	0.0251(5)	0.0240(5)	-0.0012(4)	-0.0009(4)	-0.0029(4)
O3	0.0442(6)	0.0187(5)	0.0315(5)	-0.0022(4)	-0.0101(4)	0.0010(4)
O4	0.0366(6)	0.0314(5)	0.0232(5)	-0.0021(4)	0.0009(4)	-0.0016(4)
C3	0.0324(8)	0.0376(8)	0.0317(8)	-0.0019(6)	-0.0095(6)	-0.0092(7)
C4	0.0276(8)	0.0247(7)	0.0191(7)	-0.0018(5)	-0.0052(5)	-0.0040(6)
C5	0.0242(7)	0.0279(7)	0.0229(7)	-0.0060(5)	-0.0021(5)	-0.0068(6)
C6	0.0281(7)	0.0263(7)	0.0254(7)	-0.0072(6)	-0.0064(6)	-0.0014(6)
N6	0.0231(6)	0.0183(6)	0.0181(6)	-0.0030(5)	-0.0017(5)	-0.0014(5)

Table S- 101: Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å²) for **triclinic [H2NEt2][DNT]**.

	x/a	y/b	z/c	U(eq)
H3B	0.3867	0.5472	0.1633	0.051
H3C	0.3630	0.6978	0.0226	0.051
H3A	0.3063	0.7415	0.1773	0.051
H4B	0.6887	0.6329	0.0277	0.03
H4A	0.6073	0.8236	0.0514	0.03
H5A	0.8394	0.8209	0.2038	0.03
H5B	0.9470	0.6533	0.1445	0.03
H6B	1.0273	0.6582	0.3615	0.04
H6C	0.9443	0.4871	0.3763	0.04
H6A	0.8085	0.6393	0.4450	0.04
H1	0.569(2)	0.700(2)	0.3006(17)	0.032
H2	0.662(2)	0.532(2)	0.2719(17)	0.032

2.16 Crystal Structure Report for [C₅H₆N][DNT]

Figure S- 46: Projection of the packing of [C5H6N][DNT] perpendicular to the 001 plane.

Figure S- 47: Projection of the packing of [C5H6N][DNT] perpendicular to the 010 plane.

Figure S- 48: Projection of the packing of **[C5H6N][DNT]** perpendicular to the 100 plane.

Identification code	PyrDNT	
Chemical formula	$C_7H_8N_6O_5$	
Formula weight	256.19	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal size	0.200 x 0.361 x 0.485 mm	
Crystal habit	clear orange prism	
Crystal system	monoclinic	
Space group	C 1 2/c 1	
Unit cell dimensions	a = 13.9051(6) Å	$\alpha = 90^{\circ}$
	b = 26.2532(12) Å	$\beta = 111.9480(7)^{\circ}$
	c = 6.3689(3) Å	$\gamma = 90^{\circ}$
Volume	2156.48(17) Å ³	
Ζ	8	
Density (calculated)	1.578 g/cm ³	
Absorption coefficient	0.136 mm ⁻¹	
F(000)	1056	

Table S- 103: Data collection and structure refinement for [C5H6N][DNT].

Diffractometer	Bruker APEX DUO
Radiation source	fine-focus tube, MoKa
Theta range for data collection	1.55 to 30.55°
Index ranges	-19<=h<=19, -37<=k<=36, -9<=l<=9
Reflections collected	26448
Independent reflections	3279 [R(int) = 0.0274]
Coverage of independent reflections	99.0%
Absorption correction	multi-scan
Max. and min. transmission	0.9730 and 0.9370
Structure solution technique	direct methods
Structure solution program	SHELXTL XT 2013/6 (Sheldrick, 2013)
Refinement method	Full-matrix least-squares on F ²
Refinement program	SHELXTL XLMP 2014/1 (Bruker AXS, 2013)
Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$
Data / restraints / parameters	3279 / 0 / 174
Goodness-of-fit on F ²	1.064
Final R indices	2729 data; I> $2\sigma(I)$ R1 = 0.0345, wR2 = 0.0974
	all data $R1 = 0.0425$, $wR2 = 0.1042$
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.0581P) ² +0.7631P] where P=(F_o^2 +2 F_c^2)/3
Largest diff. peak and hole	0.400 and -0.271 eÅ ⁻³
R.M.S. deviation from mean	0.048 eÅ ⁻³

Table S- 104: Atomic coordinates and equivalent isotropic atomic displacement parameters (Å²) for **[C5H6N][DNT]**.U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x/a	y/b	z/c	U(eq)
C1	0.24371(7)	0.33320(3)	0.23954(14)	0.01535(17)
C2	0.24375(6)	0.40971(3)	0.24424(14)	0.01510(17)
C3	0.04673(7)	0.34465(3)	0.62966(15)	0.02008(18)
C4	0.04841(7)	0.39712(4)	0.62805(16)	0.02154(19)
C5	0.0	0.42351(5)	0.75	0.0216(3)
C6	0.57873(7)	0.40782(3)	0.72123(14)	0.01873(18)
C7	0.58060(7)	0.35528(3)	0.72116(14)	0.01768(17)
C8	0.5	0.32875(5)	0.75	0.0173(2)
N1	0.18551(6)	0.37115(3)	0.26559(13)	0.01647(16)
N2	0.32959(6)	0.34592(3)	0.20560(13)	0.01778(16)
N3	0.32984(6)	0.39769(3)	0.20870(13)	0.01712(16)
N4	0.21586(6)	0.28019(3)	0.24785(12)	0.01905(17)
N5	0.21609(6)	0.46257(3)	0.25740(13)	0.01876(16)
N6	0.0	0.31993(4)	0.75	0.0186(2)
N7	0.5	0.43253(4)	0.75	0.0185(2)
01	0.13107(6)	0.27141(3)	0.25770(14)	0.03168(19)
02	0.27825(6)	0.24766(3)	0.24498(14)	0.03254(19)
03	0.13245(6)	0.47157(3)	0.27208(14)	0.02777(18)
O4	0.27912(6)	0.49495(3)	0.25281(14)	0.02775(18)
O1W	0.5	0.28002(4)	0.25	0.0246(2)
O2W	0.5	0.46591(3)	0.25	0.01942(19)

Table S-	105 [.] B	ond length	s (Å) foi	· [C5H6N]	IDNTI
14010 0	100.0				

C1-N1	1.3324(11)	C1-N2	1.3331(11)
C1-N4	1.4509(11)	C2-N1	1.3347(10)
C2-N3	1.3365(11)	C2-N5	1.4509(11)
C3-N6	1.3429(10)	C3-C4	1.3777(13)
С3-Н3	0.95	C4-C5	1.3882(11)
C4-H4	0.95	C5-C4	1.3882(11)
С5-Н5	0.95	C6-N7	1.3426(10)
C6-C7	1.3797(12)	C6-H6	0.95
C7-C8	1.3889(10)	С7-Н7	0.95
C8-C7	1.3889(10)	С8-Н8	0.95
N2-N3	1.3592(11)	N4-O2	1.2225(11)
N4-O1	1.2257(11)	N5-O3	1.2241(10)
N5-O4	1.2290(10)	N6-C3	1.3428(10)
N6-H1	0.866(18)	N7-C6	1.3426(10)
N7-H2	0.880(18)	O1W-H1W	0.868(13)
O2W-H2W	0.837(12)		

Table S- 106: Bond angles (°) for [C5H6N][DNT].

117.10(8)	N1-C1-N4	121.99(8)
120.91(8)	N1-C2-N3	117.00(8)
122.38(7)	N3-C2-N5	120.61(7)
120.04(8)	N6-C3-H3	120.0
120.0	C3-C4-C5	118.80(8)
120.6	С5-С4-Н4	120.6
120.12(12)	С4-С5-Н5	119.9
119.9	N7-C6-C7	119.97(8)
120.0	С7-С6-Н6	120.0
119.02(8)	С6-С7-Н7	120.5
120.5	C7-C8-C7	119.80(11)
120.1	С7-С8-Н8	120.1
97.73(7)	C1-N2-N3	104.22(7)
103.95(7)	O2-N4-O1	124.82(8)
117.97(8)	O1-N4-C1	117.21(8)
125.08(8)	O3-N5-C2	117.96(7)
116.96(7)	C3-N6-C3	122.19(11)
118.90(5)	C3-N6-H1	118.91(5)
122.23(11)	C6-N7-H2	118.89(5)
118.88(5)		
	117.10(8) 120.91(8) 122.38(7) 120.04(8) 120.0 120.6 120.12(12) 119.9 120.0 119.02(8) 120.5 120.1 97.73(7) 103.95(7) 117.97(8) 125.08(8) 116.96(7) 118.90(5) 122.23(11) 118.88(5)	117.10(8)N1-C1-N4120.91(8)N1-C2-N3122.38(7)N3-C2-N5120.04(8)N6-C3-H3120.0C3-C4-C5120.6C5-C4-H4120.12(12)C4-C5-H5119.9N7-C6-C7120.0C7-C6-H6119.02(8)C6-C7-H7120.1C7-C8-H897.73(7)C1-N2-N3103.95(7)O2-N4-O1117.97(8)O1-N4-C1125.08(8)O3-N5-C2116.96(7)C3-N6-C3118.90(5)C3-N6-H1122.23(11)C6-N7-H2118.88(5)

Table S- 107: Anisotropic atomic displacement parameters (Å²) for **[C5H6N][DNT]**. The anisotropic atomic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2} U₁₁ + ... + 2 h k a^{*} b^{*} U₁₂]

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C1	0.0164(4)	0.0135(4)	0.0160(4)	0.0004(3)	0.0059(3)	-0.0013(3)
C2	0.0146(4)	0.0143(4)	0.0174(4)	-0.0002(3)	0.0071(3)	-0.0006(3)
C3	0.0186(4)	0.0205(4)	0.0228(4)	-0.0008(3)	0.0097(3)	0.0027(3)
C4	0.0197(4)	0.0199(4)	0.0277(5)	0.0055(3)	0.0118(4)	0.0005(3)
C5	0.0184(6)	0.0136(5)	0.0319(7)	0	0.0084(5)	0
C6	0.0229(4)	0.0178(4)	0.0166(4)	0.0001(3)	0.0086(3)	-0.0042(3)
C7	0.0198(4)	0.0171(4)	0.0185(4)	-0.0009(3)	0.0100(3)	0.0002(3)
C8	0.0213(6)	0.0126(5)	0.0203(5)	0	0.0102(5)	0
N1	0.0157(3)	0.0149(3)	0.0195(3)	0.0004(2)	0.0074(3)	-0.0010(2)
N2	0.0180(3)	0.0153(3)	0.0218(4)	-0.0001(3)	0.0095(3)	-0.0002(3)
N3	0.0171(3)	0.0148(3)	0.0218(3)	-0.0002(3)	0.0099(3)	-0.0007(3)
N4	0.0234(4)	0.0151(3)	0.0174(3)	0.0007(3)	0.0062(3)	-0.0030(3)
N5	0.0198(4)	0.0145(3)	0.0238(4)	0.0002(3)	0.0102(3)	0.0000(3)
N6	0.0190(5)	0.0120(5)	0.0230(5)	0	0.0059(4)	0
N7	0.0273(6)	0.0111(4)	0.0158(5)	0	0.0066(4)	0
O1	0.0351(4)	0.0219(4)	0.0451(5)	-0.0026(3)	0.0231(4)	-0.0113(3)
O2	0.0335(4)	0.0153(3)	0.0465(5)	0.0019(3)	0.0122(4)	0.0045(3)
O3	0.0244(4)	0.0209(3)	0.0438(4)	-0.0006(3)	0.0195(3)	0.0040(3)
O4	0.0299(4)	0.0155(3)	0.0429(4)	-0.0006(3)	0.0195(3)	-0.0056(3)
O1W	0.0221(5)	0.0129(4)	0.0428(6)	0	0.0169(4)	0
O2W	0.0168(4)	0.0128(4)	0.0313(5)	0	0.0120(4)	0

Table S- 108: Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å²) for **[C5H6N][DNT]**.

	x/a	y/b	z/c	U(eq)
H3	0.0787	0.3260	0.5456	0.024
H4	0.0821	0.4149	0.5450	0.026
H5	0.0000	0.4597	0.7500	0.026
H6	0.6331	0.4265	0.7009	0.022
H7	0.6362	0.3375	0.7017	0.021
H8	0.5000	0.2926	0.7500	0.021
H1	0.0000	0.2869(7)	0.7500	0.022
H2	0.5000	0.4661(7)	0.7500	0.022
H1W	0.4460(10)	0.2985(5)	0.235(2)	0.029
H2W	0.5513(9)	0.4477(5)	0.263(2)	0.023

2.17 Crystal Structure Report for [CH4N5][DNT]

Figure S- 49 : Projection of the packing of **[CH4N5][DNT]** perpendicular to the 001 plane.

Figure S- 50: Projection of the packing of **[CH4N5][DNT]** perpendicular to the 010 plane.

Figure S- 51 : Projection of the packing of [CH4N5][DNT] perpendicular to the 100 plane.

A clear colourless prism-like specimen of $C_3H_6N_{10}O_5$, approximate dimensions 0.090 mm x 0.120 mm x 0.230 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured on a Bruker APEX DUO system equipped with a TRIUMPH curved-crystal monochromator and a MoK α fine-focus tube ($\lambda = 0.71073$ Å).

The total exposure time was 10.00 hours. The frames were integrated with the Bruker SAINT software package using a SAINT V8.34A (Bruker AXS, 2013) algorithm. The integration of the data using an orthorhombic unit cell yielded a total of 35316 reflections to a maximum θ angle of 30.51° (0.70 Å resolution), of which 6290 were independent (average redundancy 5.615, completeness = 99.6%, R_{int} = 3.44%, R_{sig} = 2.93%) and 5417 (86.12%) were greater than $2\sigma(F^2)$. The final cell constants of <u>a</u> = 6.0692(3) Å, <u>b</u> = 17.6181(8) Å, <u>c</u> = 19.4400(9) Å, volume = 2078.68(17) Å³, are based upon the refinement of the XYZ-centroids of 9366 reflections above 20 $\sigma(I)$ with 4.624° < 2 θ < 60.98°. Data were corrected for absorption effects using the multiscan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.852. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.9660 and 0.9860.

The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group P 21 21 21, with Z = 8 for the formula unit, $C_3H_6N_{10}O_5$. The final anisotropic full-matrix least-squares refinement on F² with 373 variables converged at R1 = 3.72%, for the observed data and wR2 = 8.36% for all data. The goodness-of-fit was 1.060. The largest peak in the final difference electron density synthesis was 0.296 e⁻/Å³ and the largest hole was -0.318 e⁻/Å³ with an RMS deviation of 0.060 e⁻/Å³. On the basis of the final model, the calculated density was 1.676 g/cm³ and F(000), 1072 e⁻.

Table S- 109: Sample and crystal data for [CH4N5][DNT].

ATDNT	
$C_{3}H_{6}N_{10}O_{5}$	
262.18	
100(2) K	
0.71073 Å	
0.090 x 0.120 x 0.230 mm	
clear colourless prism	
orthorhombic	
P 21 21 21	
a = 6.0692(3) Å	$\alpha = 90^{\circ}$
b = 17.6181(8) Å	$\beta = 90^{\circ}$
c = 19.4400(9) Å	$\gamma = 90^{\circ}$
2078.68(17) Å ³	
8	
1.676 g/cm ³	
0.153 mm ⁻¹	
1072	
	ATDNT $C_3H_6N_{10}O_5$ 262.18 100(2) K 0.71073 Å 0.090 x 0.120 x 0.230 mm clear colourless prism orthorhombic P 21 21 21 a = 6.0692(3) Å b = 17.6181(8) Å c = 19.4400(9) Å 2078.68(17) Å ³ 8 1.676 g/cm ³ 0.153 mm ⁻¹ 1072

Table S- 110: Data collection and structure refinement for [CH4N5][DNT].

Diffractometer	Bruker APEX DUO
Radiation source	fine-focus tube MoKa
Theta range for data collection	1 56 to 30 51°
Index ranges	-8<=h<=8, -25<=k<=25, -27<=l<=27
Reflections collected	35316
Independent reflections	6290 [R(int) = 0.0344]
Coverage of independent reflections	99.6%
Absorption correction	multi-scan
Max. and min. transmission	0.9860 and 0.9660
Structure solution technique	direct methods
Structure solution program	SHELXTL XT 2013/6 (Sheldrick, 2013)
Refinement method	Full-matrix least-squares on F ²
Refinement program	SHELXL-2014 (Sheldrick, 2014)
Function minimized	$\Sigma w(F_o^2 - F_c^2)^2$
Data / restraints / parameters	6290 / 0 / 373
Goodness-of-fit on F ²	1.060
Final R indices	5417 data; I> 2σ (I) R1 = 0.0372, wR2 = 0.0797
	all data $R1 = 0.0472$, $wR2 = 0.0836$
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.0444P) ² +0.2528P] where P=(F_o^2 +2 F_c^2)/3
Absolute structure parameter	-0.2(4)
Largest diff. peak and hole	0.296 and -0.318 eÅ ⁻³
R.M.S. deviation from mean	0.060 eÅ ⁻³

Table S- 111: Atomic coordinates and equivalent isotropic atomic displacement parameters (Å²) for [CH4N5][DNT].U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x/a	y/b	z/c	U(eq)
C1	0.9710(3)	0.64438(10)	0.27244(9)	0.0114(3)
C2	0.2484(3)	0.59199(11)	0.24074(9)	0.0119(3)
C3	0.5169(3)	0.34935(10)	0.27161(9)	0.0117(3)
C4	0.2419(3)	0.40125(10)	0.30702(9)	0.0116(3)
C5	0.5130(3)	0.37020(10)	0.52366(10)	0.0139(3)
C6	0.9890(3)	0.64163(10)	0.52275(10)	0.0134(3)
N1	0.2634(3)	0.59140(9)	0.30905(8)	0.0134(3)
N2	0.0763(3)	0.62674(9)	0.33033(7)	0.0131(3)
N3	0.0686(3)	0.62438(9)	0.21390(7)	0.0122(3)
N4	0.7621(3)	0.68427(9)	0.27348(8)	0.0138(3)
N5	0.4199(3)	0.55868(9)	0.19874(8)	0.0151(3)
N6	0.2197(3)	0.40226(9)	0.23892(8)	0.0133(3)
N7	0.4052(3)	0.36731(9)	0.21547(8)	0.0131(3)
N8	0.4254(3)	0.36897(9)	0.33163(7)	0.0119(3)
N9	0.7232(3)	0.30848(9)	0.26778(8)	0.0141(3)
N10	0.0761(3)	0.43441(9)	0.35125(8)	0.0143(3)
N11	0.5325(3)	0.32559(9)	0.46805(8)	0.0145(3)
N12	0.5581(3)	0.25176(10)	0.48803(8)	0.0170(3)
N13	0.5580(3)	0.24980(10)	0.55358(8)	0.0182(3)
N14	0.5303(3)	0.32229(10)	0.57677(8)	0.0156(3)
N15	0.4858(3)	0.44411(9)	0.52530(9)	0.0194(3)
N16	0.1101(3)	0.65974(9)	0.46753(8)	0.0151(3)
N17	0.3066(3)	0.68982(11)	0.48829(8)	0.0210(4)
N18	0.3083(3)	0.69049(11)	0.55382(8)	0.0213(4)
N19	0.1143(3)	0.66092(10)	0.57657(8)	0.0156(3)
N20	0.7913(3)	0.61139(10)	0.52340(10)	0.0211(3)
01	0.6781(2)	0.69957(8)	0.21751(7)	0.0185(3)
O2	0.6826(2)	0.69920(8)	0.32981(7)	0.0198(3)
O3	0.3948(3)	0.55813(9)	0.13646(7)	0.0253(3)
O4	0.5813(2)	0.53239(8)	0.22935(7)	0.0181(3)
05	0.8114(2)	0.29071(8)	0.32264(7)	0.0206(3)
06	0.7969(3)	0.29462(8)	0.21049(7)	0.0197(3)
07	0.1124(3)	0.43737(9)	0.41296(7)	0.0217(3)
08	0.9082(2)	0.45854(8)	0.32253(7)	0.0185(3)
09	0.5850(3)	0.53765(9)	0.40768(7)	0.0164(3)
O10	0.5921(3)	0.54048(8)	0.64083(7)	0.0161(3)

C1-N3	1.330(2)	C1-N2	1.331(2)
C1-N4	1.449(2)	C2-N1	1.331(2)
C2-N3	1.338(2)	C2-N5	1.447(2)
C3-N7	1.323(2)	C3-N8	1.338(2)
C3-N9	1.446(2)	C4-N6	1.331(2)
C4-N8	1.339(2)	C4-N10	1.447(2)
C5-N15	1.313(2)	C5-N14	1.338(2)
C5-N11	1.342(2)	C6-N20	1.313(2)
C6-N19	1.338(2)	C6-N16	1.340(2)
N1-N2	1.359(2)	N4-O2	1.225(2)
N4-O1	1.231(2)	N5-O3	1.220(2)
N5-O4	1.236(2)	N6-N7	1.362(2)
N9-O6	1.225(2)	N9-O5	1.234(2)
N10-O7	1.221(2)	N10-O8	1.237(2)
N11-N12	1.366(2)	N11-H1	0.90(3)
N12-N13	1.275(2)	N13-N14	1.365(2)
N14-H2	0.86(3)	N15-H3	0.89(3)
N15-H4	0.88(3)	N16-N17	1.366(2)
N16-H5	0.93(2)	N17-N18	1.274(2)
N18-N19	1.361(2)	N19-H6	0.89(3)
N20-H7	0.86(3)	N20-H8	0.86(3)
O9-H11	0.81(3)	O9-H12	0.87(3)
О10-Н9	0.82(3)	O10-H10	0.87(3)

Table S- 112: Bond lengths (Å)	for [CH4N5][DNT].
--------------------------------	-------------------

Table S- 113: Bond angles (°) for [CH4N5][DNT].

N3-C1-N2	116.57(16)	N3-C1-N4	122.00(15)
N2-C1-N4	121.42(16)	N1-C2-N3	116.62(17)
N1-C2-N5	120.72(17)	N3-C2-N5	122.67(15)
N7-C3-N8	116.43(16)	N7-C3-N9	121.34(15)
N8-C3-N9	122.20(16)	N6-C4-N8	116.45(16)
N6-C4-N10	121.02(17)	N8-C4-N10	122.52(15)
N15-C5-N14	128.10(18)	N15-C5-N11	127.69(18)
N14-C5-N11	104.21(16)	N20-C6-N19	127.97(18)
N20-C6-N16	127.29(18)	N19-C6-N16	104.74(15)
C2-N1-N2	104.07(15)	C1-N2-N1	104.53(14)
C1-N3-C2	98.22(14)	O2-N4-O1	125.43(16)
O2-N4-C1	117.45(15)	O1-N4-C1	117.11(15)
O3-N5-O4	125.00(17)	O3-N5-C2	118.25(16)
O4-N5-C2	116.75(14)	C4-N6-N7	104.07(15)
C3-N7-N6	104.81(14)	C3-N8-C4	98.24(14)
O6-N9-O5	125.26(17)	O6-N9-C3	117.53(15)
O5-N9-C3	117.21(15)	O7-N10-O8	125.27(17)
O7-N10-C4	118.41(16)	O8-N10-C4	116.31(15)
C5-N11-N12	109.79(14)	C5-N11-H1	127.4(17)
N12-N11-H1	121.9(16)	N13-N12-N11	108.05(17)

N12-N13-N14	107.75(17)	C5-N14-N13	110.19(15)
C5-N14-H2	127.(2)	N13-N14-H2	122.(2)
C5-N15-H3	119.3(17)	C5-N15-H4	118.5(17)
H3-N15-H4	121.(2)	C6-N16-N17	109.55(15)
C6-N16-H5	130.0(17)	N17-N16-H5	120.4(17)
N18-N17-N16	107.81(17)	N17-N18-N19	108.34(17)
C6-N19-N18	109.56(15)	C6-N19-H6	131.(2)
N18-N19-H6	120.(2)	C6-N20-H7	118.8(19)
С6-N20-Н8	120.4(19)	H7-N20-H8	120.(2)
H11-O9-H12	103.(3)	H9-O10-H10	104.(3)

Table S- 114: Anisotropic atomic displacement parameters (Å²) for **[CH4N5][DNT]**. The anisotropic atomic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2} U₁₁ + ... + 2 h k a^{*} b^{*} U₁₂]

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C1	0.0132(8)	0.0103(8)	0.0108(8)	0.0002(6)	-0.0006(7)	-0.0005(6)
C2	0.0117(8)	0.0125(9)	0.0114(8)	-0.0014(6)	0.0001(7)	-0.0007(7)
C3	0.0127(8)	0.0121(9)	0.0102(7)	-0.0005(6)	0.0002(7)	-0.0003(6)
C4	0.0120(8)	0.0131(9)	0.0096(7)	-0.0009(6)	-0.0003(7)	-0.0007(7)
C5	0.0130(7)	0.0198(9)	0.0089(7)	-0.0003(7)	0.0003(7)	-0.0016(6)
C6	0.0151(7)	0.0153(8)	0.0099(7)	-0.0009(7)	-0.0007(8)	0.0031(6)
N1	0.0145(7)	0.0145(8)	0.0113(7)	0.0009(5)	-0.0012(6)	0.0000(6)
N2	0.0148(7)	0.0146(8)	0.0098(6)	0.0001(5)	-0.0003(6)	0.0006(6)
N3	0.0143(7)	0.0120(7)	0.0103(6)	-0.0002(5)	-0.0012(6)	0.0002(6)
N4	0.0146(7)	0.0109(8)	0.0160(7)	-0.0011(6)	-0.0008(7)	0.0001(6)
N5	0.0141(7)	0.0169(8)	0.0141(7)	-0.0015(6)	0.0003(6)	-0.0013(7)
N6	0.0133(7)	0.0149(8)	0.0117(7)	-0.0004(6)	-0.0009(6)	0.0005(6)
N7	0.0146(7)	0.0143(8)	0.0104(7)	0.0000(5)	-0.0009(6)	0.0004(6)
N8	0.0136(7)	0.0131(8)	0.0089(6)	-0.0006(5)	-0.0001(6)	0.0003(6)
N9	0.0142(7)	0.0135(8)	0.0145(7)	-0.0010(6)	-0.0010(6)	-0.0001(6)
N10	0.0145(7)	0.0139(8)	0.0145(7)	-0.0016(5)	0.0011(6)	-0.0002(6)
N11	0.0168(7)	0.0181(8)	0.0086(7)	0.0006(6)	0.0006(6)	0.0009(6)
N12	0.0177(7)	0.0195(8)	0.0138(8)	0.0012(6)	0.0019(6)	0.0024(6)
N13	0.0185(8)	0.0217(9)	0.0143(7)	0.0021(6)	0.0027(7)	0.0022(7)
N14	0.0175(8)	0.0202(9)	0.0090(7)	0.0012(6)	0.0008(6)	0.0001(6)
N15	0.0295(8)	0.0186(8)	0.0100(6)	-0.0002(7)	0.0005(8)	-0.0020(6)
N16	0.0149(7)	0.0211(8)	0.0093(7)	-0.0003(6)	0.0001(6)	-0.0008(6)
N17	0.0169(7)	0.0315(10)	0.0146(8)	-0.0012(7)	0.0012(7)	-0.0047(7)
N18	0.0168(8)	0.0337(11)	0.0134(8)	-0.0008(7)	0.0014(7)	-0.0059(8)
N19	0.0149(8)	0.0230(9)	0.0088(7)	-0.0006(6)	-0.0001(6)	-0.0012(6)
N20	0.0185(8)	0.0329(10)	0.0118(7)	-0.0012(7)	-0.0007(8)	-0.0074(6)
01	0.0215(7)	0.0178(7)	0.0161(6)	0.0007(5)	-0.0054(6)	0.0046(6)
02	0.0218(7)	0.0210(8)	0.0165(7)	-0.0022(5)	0.0065(6)	0.0025(6)
03	0.0237(8)	0.0401(10)	0.0120(6)	-0.0047(6)	0.0025(6)	0.0042(7)
O4	0.0134(6)	0.0195(7)	0.0214(7)	0.0001(5)	-0.0015(6)	0.0027(5)
O5	0.0227(8)	0.0208(8)	0.0183(7)	-0.0002(5)	-0.0083(6)	0.0054(6)

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
06	0.0211(7)	0.0207(8)	0.0172(7)	-0.0022(5)	0.0059(6)	0.0035(6)
07	0.0232(7)	0.0301(8)	0.0118(6)	-0.0034(5)	0.0017(6)	0.0024(6)
08	0.0132(6)	0.0200(7)	0.0224(7)	-0.0025(5)	-0.0009(6)	0.0027(6)
09	0.0164(6)	0.0213(7)	0.0115(6)	0.0003(5)	-0.0004(6)	0.0032(6)
O10	0.0167(6)	0.0205(8)	0.0112(6)	-0.0014(5)	0.0010(6)	0.0032(6)

Table S- 115: Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å²) for **[CH4N5][DNT]**.

	x/a	y/b	z/c	U(eq)
H1	0.509(5)	0.3384(15)	0.4239(13)	0.030(7)
H2	0.516(5)	0.3328(17)	0.6196(15)	0.046(9)
H3	0.489(5)	0.4703(15)	0.4860(14)	0.033(7)
H4	0.490(5)	0.4671(15)	0.5652(14)	0.033(7)
H5	0.081(4)	0.6529(13)	0.4212(12)	0.022(6)
H6	0.091(5)	0.6559(15)	0.6217(14)	0.037(8)
H7	-0.268(5)	0.5981(16)	0.4850(15)	0.036(8)
H8	-0.270(5)	0.5988(15)	0.5616(15)	0.031(7)
H9	0.510(5)	0.5599(16)	0.6693(15)	0.036(8)
H10	0.694(5)	0.5193(16)	0.6658(14)	0.034(8)
H11	0.675(5)	0.5150(17)	0.3845(16)	0.040(9)
H12	0.502(5)	0.5592(16)	0.3767(14)	0.038(8)

2.18 Crystal Structure Report for [PPh₄][DNT]

Figure S- 52: Molecular structure of **[PPh4][DNT**]. Thermal ellipsoids are shown at the 50% probability level.Hydrogen atoms were omitted for clarity.

Figure S- 53: Projection of the packing of **[PPh4][DNT]** perpendicular to the 001 plane. Hydrogen atoms were omitted for clarity.

Figure S- 54: Projection of the packing of [PPh₄][DNT] perpendicular to the 010 plane. Hydrogen atoms were omitted for clarity.

Figure S- 55: Projection of the packing of **[PPh4][DNT]** perpendicular to the 100 plane. Hydrogen atoms were omitted for clarity.

Table S- 116: Sample and crystal data for [PPh4][DNT].

Identification code	XGC2_83imp	
Chemical formula	$C_{26}H_{20}N_5O_4P$	
Formula weight	497.44	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal size	0.141 x 0.257 x 0.286 mm	
Crystal system	monoclinic	
Space group	P 1 21/c 1	
Unit cell dimensions	a = 11.2261(5) Å	$\alpha = 90^{\circ}$
	b = 15.0086(7) Å	$\beta = 95.0410(10)^{\circ}$
	c = 13.8078(6) Å	$\gamma = 90^{\circ}$
Volume	2317.45(18) Å ³	
Z	4	
Density (calculated)	1.426 g/cm ³	
Absorption coefficient	0.164 mm ⁻¹	
F(000)	1032	

Table S- 117: Data collection and structure refinement for [PPh4][DNT].

Theta range for data collection	1.82 to 28.50°
Index ranges	-15<=h<=15, -20<=k<=20, -18<=l<=18
Reflections collected	50180
Independent reflections	5872 [R(int) = 0.0558]
Absorption correction	multi-scan
Structure solution technique	direct methods
Structure solution program	SHELXTL XS 2013/1 (Bruker AXS)
Refinement method	Full-matrix least-squares on F ²
Refinement program	SHELXL-2013 (Sheldrick, 2013)
Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$
Data / restraints / parameters	5872 / 0 / 325
Goodness-of-fit on F ²	1.010
Final R indices	4600 data; I> $2\sigma(I)$ R1 = 0.0373, wR2 = 0.0837
	all data $R1 = 0.0557, wR2 = 0.0923$
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.0397P) ² +1.1073P] where P=(F_o^2 +2 F_c^2)/3
Largest diff. peak and hole	0.345 and -0.264 eÅ ⁻³
R.M.S. deviation from mean	0.050 eÅ ⁻³

Table S- 118: Atomic coordinates and equivalent isotropic atomic displacement parameters (Å²) for [**PPh4**][**DNT**].U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x/a	y/b	z/c	U(eq)
C1	0.18798(13)	0.83189(10)	0.41096(10)	0.0179(3)
C2	0.16020(13)	0.86982(10)	0.27150(11)	0.0189(3)
N1	0.24200(11)	0.79766(9)	0.50288(10)	0.0237(3)
N2	0.07446(11)	0.85853(9)	0.40219(9)	0.0220(3)
N3	0.05531(11)	0.88386(9)	0.30725(9)	0.0225(3)
N4	0.17766(12)	0.89031(9)	0.17114(9)	0.0232(3)
N5	0.24882(11)	0.83772(8)	0.33237(9)	0.0198(3)
01	0.08945(11)	0.91145(9)	0.11693(9)	0.0348(3)
O2	0.28021(11)	0.88604(8)	0.14647(9)	0.0309(3)
O3	0.17919(11)	0.79380(9)	0.57105(8)	0.0347(3)
O4	0.34716(10)	0.77480(9)	0.50725(9)	0.0370(3)
C3	0.16079(12)	0.29597(9)	0.72413(10)	0.0154(3)
C4	0.10023(13)	0.31497(10)	0.63402(11)	0.0197(3)
C5	0.99732(14)	0.36710(10)	0.62991(12)	0.0255(3)
C6	0.95720(14)	0.40039(11)	0.71473(13)	0.0273(4)
C7	0.01652(14)	0.38114(10)	0.80449(12)	0.0255(3)
C8	0.11880(13)	0.32871(10)	0.80968(11)	0.0202(3)
C9	0.31069(12)	0.17108(9)	0.83993(10)	0.0151(3)
C10	0.20910(13)	0.12228(9)	0.86069(10)	0.0176(3)
C11	0.21724(14)	0.06479(10)	0.93989(10)	0.0208(3)
C12	0.32438(15)	0.05564(10)	0.99734(10)	0.0226(3)
C13	0.42336(14)	0.10529(10)	0.97801(11)	0.0216(3)
C14	0.41768(13)	0.16334(9)	0.89936(10)	0.0177(3)
C15	0.41948(12)	0.31892(9)	0.73757(9)	0.0150(3)
C16	0.39146(13)	0.40975(9)	0.74134(10)	0.0168(3)
C17	0.48220(14)	0.47281(10)	0.74699(10)	0.0205(3)
C18	0.60041(14)	0.44596(10)	0.74780(11)	0.0225(3)
C19	0.62893(14)	0.35603(10)	0.74394(11)	0.0221(3)
C20	0.53935(13)	0.29228(10)	0.73921(10)	0.0183(3)
C21	0.30728(12)	0.16568(9)	0.62837(10)	0.0146(3)
C22	0.40426(13)	0.16498(10)	0.57166(10)	0.0181(3)
C23	0.40796(14)	0.10232(10)	0.49772(10)	0.0205(3)
C24	0.31570(14)	0.04131(10)	0.47992(11)	0.0211(3)
C25	0.21772(13)	0.04348(10)	0.53501(11)	0.0202(3)
C26	0.21321(13)	0.10492(10)	0.60948(10)	0.0171(3)
P1	0.30090(3)	0.23838(2)	0.73171(3)	0.01296(8)

Table S- 119: Bond lengths (A	(Å) for [PPh4][DNT].
-------------------------------	----------------------

C1-N2	1.3310(19)	C1-N5	1.3348(19)
C1-N1	1.4516(19)	C2-N3	1.3330(19)
C2-N5	1.3347(19)	C2-N4	1.4494(19)
N1-04	1.2258(17)	N1-O3	1.2261(17)
N2-N3	1.3637(18)	N4-O1	1.2294(17)
N4-O2	1.2306(17)	C3-C4	1.394(2)
C3-C8	1.399(2)	C3-P1	1.7897(14)
C4-C5	1.392(2)	C4-H5	0.95
C5-C6	1.384(2)	C5-H4	0.95
C6-C7	1.385(2)	С6-Н3	0.95
C7-C8	1.389(2)	C7-H2	0.95
C8-H1	0.95	C9-C14	1.3987(19)
C9-C10	1.4059(19)	C9-P1	1.7990(14)
C10-C11	1.390(2)	C10-H6	0.95
C11-C12	1.388(2)	C11-H7	0.95
C12-C13	1.383(2)	С12-Н8	0.95
C13-C14	1.389(2)	С13-Н9	0.95
C14-H10	0.95	C15-C16	1.4010(19)
C15-C20	1.4021(19)	C15-P1	1.7946(14)
C16-C17	1.388(2)	C16-H11	0.95
C17-C18	1.386(2)	C17-H12	0.95
C18-C19	1.389(2)	C18-H13	0.95
C19-C20	1.386(2)	C19-H14	0.95
C20-H15	0.95	C21-C22	1.3959(19)
C21-C26	1.4023(19)	C21-P1	1.8028(14)
C22-C23	1.391(2)	C22-H16	0.95
C23-C24	1.388(2)	C23-H17	0.95
C24-C25	1.392(2)	C24-H18	0.95
C25-C26	1.385(2)	C25-H19	0.95
C26-H20	0.95		

Table S- 120: Bond angles (°) for **[PPh4][DNT]**.

N2-C1-N5	117.42(13)	N2-C1-N1	120.60(13)
N5-C1-N1	121.98(13)	N3-C2-N5	117.24(13)
N3-C2-N4	121.23(13)	N5-C2-N4	121.52(13)
O4-N1-O3	124.43(14)	O4-N1-C1	117.94(13)
O3-N1-C1	117.63(13)	C1-N2-N3	103.89(12)
C2-N3-N2	104.01(12)	O1-N4-O2	124.61(14)
O1-N4-C2	117.88(13)	O2-N4-C2	117.51(13)
C2-N5-C1	97.43(12)	C4-C3-C8	120.52(13)
C4-C3-P1	120.54(11)	C8-C3-P1	118.67(11)
C5-C4-C3	119.29(14)	С5-С4-Н5	120.4
С3-С4-Н5	120.4	C6-C5-C4	119.92(15)
С6-С5-Н4	120.0	С4-С5-Н4	120.0
C5-C6-C7	121.01(14)	С5-С6-Н3	119.5
С7-С6-Н3	119.5	C6-C7-C8	119.65(15)
С6-С7-Н2	120.2	С8-С7-Н2	120.2
C7-C8-C3	119.60(14)	С7-С8-Н1	120.2
С3-С8-Н1	120.2	C14-C9-C10	120.48(13)
C14-C9-P1	121.37(11)	C10-C9-P1	118.06(10)
C11-C10-C9	119.04(13)	С11-С10-Н6	120.5
С9-С10-Н6	120.5	C12-C11-C10	120.32(14)
С12-С11-Н7	119.8	С10-С11-Н7	119.8
C13-C12-C11	120.45(14)	С13-С12-Н8	119.8
С11-С12-Н8	119.8	C12-C13-C14	120.41(14)
С12-С13-Н9	119.8	С14-С13-Н9	119.8
C13-C14-C9	119.26(14)	C13-C14-H10	120.4
C9-C14-H10	120.4	C16-C15-C20	119.68(13)
C16-C15-P1	119.27(11)	C20-C15-P1	121.05(11)
C17-C16-C15	119.98(13)	C17-C16-H11	120.0
C15-C16-H11	120.0	C18-C17-C16	119.98(14)
C18-C17-H12	120.0	C16-C17-H12	120.0
C17-C18-C19	120.39(14)	С17-С18-Н13	119.8
C19-C18-H13	119.8	C20-C19-C18	120.26(14)
С20-С19-Н14	119.9	C18-C19-H14	119.9
C19-C20-C15	119.70(14)	С19-С20-Н15	120.2
С15-С20-Н15	120.2	C22-C21-C26	120.16(13)
C22-C21-P1	122.39(11)	C26-C21-P1	117.34(10)
C23-C22-C21	119.46(13)	С23-С22-Н16	120.3
С21-С22-Н16	120.3	C24-C23-C22	120.39(13)
С24-С23-Н17	119.8	С22-С23-Н17	119.8
C23-C24-C25	120.07(14)	С23-С24-Н18	120.0
C25-C24-H18	120.0	C26-C25-C24	120.23(14)
С26-С25-Н19	119.9	С24-С25-Н19	119.9
C25-C26-C21	119.66(13)	С25-С26-Н20	120.2
C21-C26-H20	120.2	C3-P1-C15	108.78(7)
C3-P1-C9	108.00(6)	C15-P1-C9	110.48(6)
C3-P1-C21	109.99(6)	C15-P1-C21	111.25(6)
C9-P1-C21	108.29(6)		

Table S-	121: Anisotropic	atomic displacement	parameters (Å ²	²) for	[PPh4][DNT].
----------	------------------	---------------------	----------------------------	--------------------	--------------

The anisotropic atomic displacement factor exponent takes the form: -2 π^2 [h² a^{*2} U₁₁ + ... + 2 h k a^{*} b^{*} U₁₂]

	U_{11}	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C1	0.0163(7)	0.0181(7)	0.0190(7)	-0.0007(5)	0.0002(5)	-0.0008(5)
C2	0.0197(7)	0.0164(7)	0.0204(7)	-0.0005(5)	0.0006(6)	-0.0012(5)
N1	0.0200(7)	0.0278(7)	0.0232(7)	0.0015(5)	0.0006(5)	0.0002(5)
N2	0.0192(6)	0.0247(7)	0.0221(6)	0.0000(5)	0.0006(5)	0.0003(5)
N3	0.0189(6)	0.0255(7)	0.0228(6)	0.0012(5)	0.0001(5)	0.0012(5)
N4	0.0267(7)	0.0199(6)	0.0229(7)	0.0022(5)	0.0017(5)	-0.0007(5)
N5	0.0172(6)	0.0204(6)	0.0216(6)	-0.0002(5)	0.0008(5)	0.0001(5)
01	0.0359(7)	0.0427(8)	0.0247(6)	0.0059(5)	-0.0041(5)	0.0087(6)
O2	0.0282(6)	0.0354(7)	0.0304(6)	0.0057(5)	0.0099(5)	-0.0047(5)
O3	0.0341(7)	0.0488(8)	0.0223(6)	0.0047(5)	0.0083(5)	0.0106(6)
O4	0.0177(6)	0.0591(9)	0.0340(7)	0.0155(6)	0.0012(5)	0.0061(6)
C3	0.0130(6)	0.0134(6)	0.0201(7)	0.0003(5)	0.0025(5)	-0.0003(5)
C4	0.0205(7)	0.0176(7)	0.0207(7)	0.0013(5)	0.0004(6)	0.0002(5)
C5	0.0218(8)	0.0220(8)	0.0314(9)	0.0060(6)	-0.0042(6)	0.0025(6)
C6	0.0178(7)	0.0218(8)	0.0431(10)	0.0046(7)	0.0068(7)	0.0041(6)
C7	0.0243(8)	0.0228(8)	0.0310(9)	-0.0004(6)	0.0121(7)	0.0032(6)
C8	0.0201(7)	0.0198(7)	0.0212(7)	0.0000(6)	0.0048(6)	0.0010(6)
C9	0.0191(7)	0.0131(6)	0.0133(6)	-0.0003(5)	0.0026(5)	0.0012(5)
C10	0.0197(7)	0.0181(7)	0.0152(7)	-0.0010(5)	0.0019(5)	-0.0021(5)
C11	0.0289(8)	0.0175(7)	0.0166(7)	-0.0009(5)	0.0052(6)	-0.0049(6)
C12	0.0356(9)	0.0184(7)	0.0137(7)	0.0017(5)	0.0016(6)	0.0008(6)
C13	0.0253(8)	0.0219(7)	0.0165(7)	-0.0008(6)	-0.0046(6)	0.0034(6)
C14	0.0187(7)	0.0170(7)	0.0173(7)	-0.0020(5)	0.0007(5)	-0.0003(5)
C15	0.0174(7)	0.0162(7)	0.0114(6)	0.0004(5)	0.0014(5)	-0.0027(5)
C16	0.0190(7)	0.0182(7)	0.0133(6)	0.0008(5)	0.0017(5)	0.0007(5)
C17	0.0287(8)	0.0153(7)	0.0171(7)	0.0002(5)	0.0010(6)	-0.0039(6)
C18	0.0231(8)	0.0230(8)	0.0211(7)	0.0007(6)	0.0005(6)	-0.0101(6)
C19	0.0176(7)	0.0263(8)	0.0222(7)	0.0012(6)	0.0018(6)	-0.0037(6)
C20	0.0181(7)	0.0181(7)	0.0188(7)	0.0005(5)	0.0017(5)	-0.0008(5)
C21	0.0169(7)	0.0144(6)	0.0123(6)	0.0003(5)	0.0000(5)	0.0016(5)
C22	0.0201(7)	0.0178(7)	0.0167(7)	0.0013(5)	0.0033(5)	-0.0016(5)
C23	0.0234(8)	0.0225(7)	0.0165(7)	-0.0006(6)	0.0060(6)	0.0010(6)
C24	0.0283(8)	0.0179(7)	0.0173(7)	-0.0026(5)	0.0034(6)	0.0008(6)
C25	0.0226(8)	0.0188(7)	0.0188(7)	-0.0017(6)	-0.0001(6)	-0.0034(6)
C26	0.0164(7)	0.0193(7)	0.0157(7)	0.0011(5)	0.0018(5)	-0.0003(5)
P1	0.01298(17)	0.01315(16)	0.01276(16)	0.00000(13)	0.00129(12)	-0.00016(13)

Table S- 122: Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å²) for **[PPh4][DNT]**.

	x/a	y/b	z/c	U(eq)
H5	0.1289	0.2926	0.5760	0.024
H4	-0.0453	0.3798	0.5690	0.031
H3	-0.1121	0.4370	0.7113	0.033
H2	-0.0126	0.4037	0.8622	0.031
H1	0.1600	0.3152	0.8710	0.024
H6	0.1359	0.1285	0.8211	0.021
H7	0.1492	0.0316	0.9548	0.025
H8	0.3298	0.0150	1.0503	0.027
H9	0.4957	0.0997	1.0188	0.026
H10	0.4857	0.1974	0.8861	0.021
H11	0.3104	0.4282	0.7400	0.02
H12	0.4633	0.5344	0.7503	0.025
H13	0.6623	0.4893	0.7510	0.027
H14	0.7102	0.3382	0.7445	0.026
H15	0.5591	0.2308	0.7371	0.022
H16	0.4672	0.2069	0.5834	0.022
H17	0.4740	0.1013	0.4592	0.025
H18	0.3194	-0.0020	0.4301	0.025
H19	0.1537	0.0027	0.5215	0.024
H20	0.1467	0.1059	0.6475	0.021

2.19 Crystal Structure Report for [PNP][DNT]

Figure S- 56: Molecular structure of **[PNP][DNT]**. Thermal ellipsoids are shown at the 50% probability levelHydrogen atoms were omitted for clarity.

Figure S- 57: Projection of the packing of **[PNP][DNT]** perpendicular to the 001 plane. Hydrogen atoms were omitted for clarity.

Figure S- 58: Projection of the packing of **[PNP][DNT]** perpendicular to the 010 plane. Hydrogen atoms were omitted for clarity.

Figure S- 59: Projection of the packing of **[PNP][DNT]** perpendicular to the 100 plane. Hydrogen atoms were omitted for clarity.

Table S- 123: Sample and crystal data for [PNP][DNT].

Identification code	PNPDNT	
Chemical formula	$C_{38}H_{30}N_6O_4P_2$	
Formula weight	696.62	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal size	0.140 x 0.180 x 0.220 i	nm
Crystal habit	clear colourless prism	
Crystal system	triclinic	
Space group	P -1	
Unit cell dimensions	a = 10.9099(7) Å	$\alpha = 112.6130(8)^{\circ}$
	b = 11.9031(8) Å	$\beta = 90.0610(9)^{\circ}$
	c = 14.4603(10) Å	$\gamma = 103.5780(9)^{\circ}$
Volume	1676.28(19) Å ³	
Z	2	
Density (calculated)	1.380 g/cm ³	
Absorption coefficient	0.182 mm ⁻¹	
F(000)	724	

Table S- 124: Data collection and structure refinement for [PNP][DNT].

Diffractometer	Bruker SMART APEX
Radiation source	fine-focus tube, MoKα
Theta range for data collection	1.53 to 28.67°
Index ranges	-8<=h<=14, -15<=k<=15, -19<=l<=18
Reflections collected	10859
Independent reflections	7529 [R(int) = 0.0198]
Coverage of independent reflections	87.1%
Absorption correction	multi-scan
Max. and min. transmission	0.9750 and 0.9610
Structure solution technique	direct methods
Structure solution program	SHELXTL XT 2013/6 (Sheldrick, 2013)
Refinement method	Full-matrix least-squares on F ²
Refinement program	SHELXTL XLMP 2014/1 (Bruker AXS, 2013)
Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$
Data / restraints / parameters	7529 / 0 / 451
Goodness-of-fit on F ²	1.025
Final R indices	5805 data; I> $2\sigma(I)$ R1 = 0.0463, wR2 = 0.1150
	all data $R1 = 0.0635$, $wR2 = 0.1273$
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.0662P) ² +0.3671P] where P=(F_o^2 +2 F_c^2)/3
Largest diff. peak and hole	0.454 and -0.278 eÅ ⁻³
R.M.S. deviation from mean	0.058 eÅ ⁻³

Table S- 125: Atomic coordinates and equivalent isotropic atomic displacement parameters (Å²) for **[PNP][DNT]**.U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x/a	y/b	z/c	U(eq)
C1	0.07394(19)	0.37659(18)	0.69103(15)	0.0254(4)
C2	0.94394(18)	0.44309(18)	0.77806(15)	0.0240(4)
C3	0.54930(17)	0.31309(17)	0.39008(14)	0.0186(4)
C4	0.67904(18)	0.37103(18)	0.41216(15)	0.0235(4)
C5	0.72976(19)	0.44236(18)	0.51105(15)	0.0266(4)
C6	0.6520(2)	0.45749(18)	0.58823(15)	0.0260(4)
C7	0.52218(19)	0.40392(18)	0.56687(15)	0.0247(4)
C8	0.47060(18)	0.33201(17)	0.46809(14)	0.0205(4)
C9	0.54876(17)	0.08009(17)	0.21975(14)	0.0201(4)
C10	0.50968(19)	0.99040(19)	0.12126(14)	0.0261(4)
C11	0.5526(2)	0.8824(2)	0.08592(16)	0.0318(5)
C12	0.6347(2)	0.8625(2)	0.14748(17)	0.0337(5)
C13	0.6740(2)	0.9503(2)	0.24452(17)	0.0338(5)
C14	0.63134(19)	0.05844(19)	0.28094(15)	0.0261(4)
C15	0.54321(17)	0.30383(17)	0.18794(13)	0.0193(4)
C16	0.47063(19)	0.37510(18)	0.16719(14)	0.0233(4)
C17	0.5204(2)	0.4506(2)	0.11590(16)	0.0308(5)
C18	0.6408(2)	0.4547(2)	0.08557(17)	0.0344(5)
C19	0.7129(2)	0.3833(2)	0.10461(16)	0.0322(5)

	x/a	y/b	z/c	U(eq)
C20	0.66445(19)	0.3075(2)	0.15573(15)	0.0270(4)
C21	0.27924(17)	0.97231(18)	0.30737(15)	0.0222(4)
C22	0.30675(19)	0.85871(19)	0.24983(17)	0.0293(5)
C23	0.3562(2)	0.7951(2)	0.2976(2)	0.0384(6)
C24	0.3767(2)	0.8437(2)	0.4012(2)	0.0409(6)
C25	0.34950(19)	0.9557(2)	0.45865(18)	0.0329(5)
C26	0.30133(18)	0.02092(19)	0.41273(15)	0.0249(4)
C27	0.15141(18)	0.96446(18)	0.12688(14)	0.0221(4)
C28	0.18225(19)	0.9961(2)	0.04534(15)	0.0261(4)
C29	0.1212(2)	0.9180(2)	0.94961(16)	0.0333(5)
C30	0.0302(2)	0.8092(2)	0.93584(17)	0.0372(5)
C31	0.9981(2)	0.7781(2)	0.01710(18)	0.0380(5)
C32	0.0578(2)	0.8544(2)	0.11242(16)	0.0314(5)
C33	0.10477(17)	0.12406(18)	0.32572(14)	0.0202(4)
C34	0.08232(18)	0.23847(18)	0.33571(14)	0.0224(4)
C35	0.98966(18)	0.28286(19)	0.39363(15)	0.0259(4)
C36	0.92040(19)	0.2140(2)	0.44369(15)	0.0272(4)
C37	0.93994(19)	0.0989(2)	0.43193(16)	0.0287(5)
C38	0.03039(18)	0.05285(19)	0.37246(15)	0.0256(4)
N1	0.96594(17)	0.51115(16)	0.72238(13)	0.0292(4)
N2	0.05519(17)	0.46608(16)	0.66335(13)	0.0302(4)
N3	0.00801(16)	0.35644(16)	0.76297(13)	0.0272(4)
N4	0.85466(17)	0.46497(17)	0.85265(14)	0.0316(4)
N5	0.16231(17)	0.30310(17)	0.64344(15)	0.0326(4)
N6	0.33309(14)	0.18096(14)	0.24908(12)	0.0199(3)
01	0.85488(18)	0.41770(17)	0.91407(13)	0.0487(5)
O2	0.78299(15)	0.52994(16)	0.85036(13)	0.0424(4)
O3	0.17244(18)	0.21875(18)	0.66908(16)	0.0577(5)
04	0.22110(16)	0.32838(17)	0.57930(13)	0.0470(4)
P1	0.48354(4)	0.21555(4)	0.26231(3)	0.01743(12)
P2	0.22558(4)	0.06609(4)	0.25143(4)	0.01855(12)

C1-N2	1.329(3)	C1-N3	1.330(3)
C1-N5	1.450(3)	C2-N3	1.329(3)
C2-N1	1.332(3)	C2-N4	1.444(3)
C3-C4	1.397(3)	C3-C8	1.399(3)
C3-P1	1.7979(18)	C4-C5	1.384(3)
C4-H4	0.95	C5-C6	1.384(3)
C5-H5	0.95	C6-C7	1.390(3)
C6-H6	0.95	C7-C8	1.386(3)
С7-Н7	0.95	C8-H8	0.95
C9-C14	1.394(3)	C9-C10	1.402(3)
C9-P1	1.8060(19)	C10-C11	1.382(3)
C10-H10	0.95	C11-C12	1.383(3)
C11-H11	0.95	C12-C13	1.381(3)
C12-H12	0.95	C13-C14	1.382(3)
C13-H13	0.95	C14-H14	0.95
C15-C16	1.395(3)	C15-C20	1.399(3)
C15-P1	1.7982(18)	C16-C17	1.392(3)
C16-H16	0.95	C17-C18	1.382(3)
C17-H17	0.95	C18-C19	1.382(3)
C18-H18	0.95	C19-C20	1.389(3)
C19-H19	0.95	C20-H20	0.95
C21-C22	1.392(3)	C21-C26	1.404(3)
C21-P2	1.8008(19)	C22-C23	1.390(3)
C22-H22	0.95	C23-C24	1.379(4)
C23-H23	0.95	C24-C25	1.375(3)
C24-H24	0.95	C25-C26	1.381(3)
С25-Н25	0.95	C26-H26	0.95
C27-C28	1.388(3)	C27-C32	1.401(3)
C27-P2	1.7955(19)	C28-C29	1.394(3)
C28-H28	0.95	C29-C30	1.378(3)
C29-H29	0.95	C30-C31	1.384(3)
С30-Н30	0.95	C31-C32	1.381(3)
C31-H31	0.95	C32-H32	0.95
C33-C34	1.393(3)	C33-C38	1.397(3)
C33-P2	1.797(2)	C34-C35	1.384(3)
C34-H34	0.95	C35-C36	1.390(3)
С35-Н35	0.95	C36-C37	1.382(3)
С36-Н36	0.95	C37-C38	1.381(3)
С37-Н37	0.95	C38-H38	0.95
N1-N2	1.364(2)	N4-01	1.221(2)
N4-O2	1.230(2)	N5-O4	1.220(2)
N5-O3	1.223(2)	N6-P1	1.5881(16)
N6-P2	1.5903(16)		

Table S- 127: Bond angles (°) for [PNP][DNT].

N2-C1-N3	117.61(18)	N2-C1-N5	120.88(18)
N3-C1-N5	121.50(18)	N3-C2-N1	117.52(18)
N3-C2-N4	121.94(18)	N1-C2-N4	120.54(18)
C4-C3-C8	119.54(17)	C4-C3-P1	120.33(14)
C8-C3-P1	120.13(14)	C5-C4-C3	120.03(18)
С5-С4-Н4	120.0	С3-С4-Н4	120.0
C4-C5-C6	120.15(18)	С4-С5-Н5	119.9
С6-С5-Н5	119.9	C5-C6-C7	120.31(18)
С5-С6-Н6	119.8	С7-С6-Н6	119.8
C8-C7-C6	119.92(18)	С8-С7-Н7	120.0
С6-С7-Н7	120.0	C7-C8-C3	119.98(18)
С7-С8-Н8	120.0	С3-С8-Н8	120.0
C14-C9-C10	118.92(18)	C14-C9-P1	123.33(15)
C10-C9-P1	117.70(14)	C11-C10-C9	120.25(18)
С11-С10-Н10	119.9	С9-С10-Н10	119.9
C10-C11-C12	120.1(2)	C10-C11-H11	119.9
C12-C11-H11	119.9	C13-C12-C11	120.1(2)
С13-С12-Н12	119.9	С11-С12-Н12	119.9
C12-C13-C14	120.35(19)	С12-С13-Н13	119.8
С14-С13-Н13	119.8	C13-C14-C9	120.25(19)
C13-C14-H14	119.9	C9-C14-H14	119.9
C16-C15-C20	119.73(17)	C16-C15-P1	119.50(14)
C20-C15-P1	120.66(15)	C17-C16-C15	119.60(19)
С17-С16-Н16	120.2	С15-С16-Н16	120.2
C18-C17-C16	120.1(2)	С18-С17-Н17	119.9
С16-С17-Н17	119.9	C19-C18-C17	120.73(19)
C19-C18-H18	119.6	C17-C18-H18	119.6
C18-C19-C20	119.8(2)	С18-С19-Н19	120.1
С20-С19-Н19	120.1	C19-C20-C15	120.04(19)
С19-С20-Н20	120.0	С15-С20-Н20	120.0
C22-C21-C26	119.61(18)	C22-C21-P2	122.33(16)
C26-C21-P2	117.94(15)	C23-C22-C21	119.5(2)
С23-С22-Н22	120.3	С21-С22-Н22	120.3
C24-C23-C22	120.2(2)	С24-С23-Н23	119.9
С22-С23-Н23	119.9	C25-C24-C23	120.7(2)
С25-С24-Н24	119.7	С23-С24-Н24	119.7
C24-C25-C26	120.0(2)	С24-С25-Н25	120.0
С26-С25-Н25	120.0	C25-C26-C21	120.0(2)
С25-С26-Н26	120.0	С21-С26-Н26	120.0
C28-C27-C32	119.61(18)	C28-C27-P2	120.77(15)
C32-C27-P2	119.58(15)	C27-C28-C29	120.06(19)
С27-С28-Н28	120.0	С29-С28-Н28	120.0
C30-C29-C28	120.0(2)	С30-С29-Н29	120.0
С28-С29-Н29	120.0	C29-C30-C31	120.2(2)
С29-С30-Н30	119.9	С31-С30-Н30	119.9
C32-C31-C30	120.6(2)	С32-С31-Н31	119.7
С30-С31-Н31	119.7	C31-C32-C27	119.6(2)
С31-С32-Н32	120.2	С27-С32-Н32	120.2
C34-C33-C38	119.34(18)	C34-C33-P2	120.71(14)

C38-C33-P2	119.94(15)	C35-C34-C33	120.34(18)
С35-С34-Н34	119.8	С33-С34-Н34	119.8
C34-C35-C36	119.75(19)	С34-С35-Н35	120.1
С36-С35-Н35	120.1	C37-C36-C35	120.11(19)
С37-С36-Н36	119.9	С35-С36-Н36	119.9
C38-C37-C36	120.35(19)	С38-С37-Н37	119.8
С36-С37-Н37	119.8	C37-C38-C33	119.99(19)
С37-С38-Н38	120.0	С33-С38-Н38	120.0
C2-N1-N2	103.77(16)	C1-N2-N1	103.76(16)
C2-N3-C1	97.34(16)	O1-N4-O2	124.03(19)
O1-N4-C2	117.92(19)	O2-N4-C2	118.05(18)
O4-N5-O3	123.9(2)	O4-N5-C1	117.84(18)
O3-N5-C1	118.20(18)	P1-N6-P2	133.74(10)
N6-P1-C3	112.90(8)	N6-P1-C15	108.84(8)
C3-P1-C15	106.55(8)	N6-P1-C9	113.77(8)
C3-P1-C9	107.97(9)	C15-P1-C9	106.37(9)
N6-P2-C27	110.84(9)	N6-P2-C33	109.69(9)
C27-P2-C33	107.51(9)	N6-P2-C21	114.52(8)
C27-P2-C21	108.41(9)	C33-P2-C21	105.53(9)

Table S- 128: Anisotropic atomic displacement parameters (Å²) for **[PNP][DNT]**. The anisotropic atomic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2} U₁₁ + ... + 2 h k a^{*} b^{*} U₁₂]

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U12
C1	0.0241(10)	0.0232(10)	0.0290(11)	0.0110(8)	0.0054(8)	0.0049(8)
C2	0.0224(10)	0.0227(10)	0.0242(10)	0.0078(8)	0.0022(8)	0.0033(8)
C3	0.0201(9)	0.0171(9)	0.0194(9)	0.0076(7)	0.0024(7)	0.0058(7)
C4	0.0225(10)	0.0226(10)	0.0249(10)	0.0089(8)	0.0049(8)	0.0054(8)
C5	0.0203(10)	0.0219(10)	0.0318(11)	0.0051(9)	-0.0026(8)	0.0041(8)
C6	0.0346(11)	0.0202(10)	0.0202(10)	0.0041(8)	-0.0022(8)	0.0083(8)
C7	0.0324(11)	0.0221(10)	0.0217(10)	0.0087(8)	0.0066(8)	0.0104(8)
C8	0.0215(10)	0.0191(9)	0.0223(9)	0.0093(8)	0.0043(7)	0.0056(7)
C9	0.0197(9)	0.0202(9)	0.0212(9)	0.0090(8)	0.0049(7)	0.0052(7)
C10	0.0289(11)	0.0301(11)	0.0190(10)	0.0072(8)	0.0013(8)	0.0111(9)
C11	0.0378(12)	0.0308(11)	0.0217(10)	0.0037(9)	0.0020(9)	0.0110(9)
C12	0.0417(13)	0.0265(11)	0.0349(12)	0.0082(9)	0.0056(10)	0.0189(10)
C13	0.0393(13)	0.0326(12)	0.0344(12)	0.0127(10)	-0.0029(10)	0.0193(10)
C14	0.0311(11)	0.0244(10)	0.0223(10)	0.0075(8)	-0.0021(8)	0.0092(8)
C15	0.0183(9)	0.0223(9)	0.0158(9)	0.0065(7)	0.0029(7)	0.0043(7)
C16	0.0263(10)	0.0243(10)	0.0205(10)	0.0089(8)	0.0054(8)	0.0088(8)
C17	0.0418(13)	0.0309(11)	0.0282(11)	0.0182(9)	0.0084(9)	0.0133(9)
C18	0.0402(13)	0.0363(12)	0.0319(12)	0.0216(10)	0.0099(10)	0.0053(10)
C19	0.0255(11)	0.0440(13)	0.0298(11)	0.0199(10)	0.0080(9)	0.0047(9)
C20	0.0226(10)	0.0377(12)	0.0254(10)	0.0170(9)	0.0059(8)	0.0085(9)
C21	0.0173(9)	0.0224(10)	0.0307(11)	0.0162(8)	0.0013(8)	0.0021(7)
C22	0.0243(11)	0.0248(10)	0.0368(12)	0.0122(9)	0.0002(9)	0.0028(8)
C23	0.0287(12)	0.0236(11)	0.0636(17)	0.0178(11)	-0.0022(11)	0.0073(9)

	U_{11}	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C24	0.0302(12)	0.0383(13)	0.0644(17)	0.0347(13)	-0.0086(11)	0.0025(10)
C25	0.0243(11)	0.0417(13)	0.0390(13)	0.0267(11)	-0.0022(9)	0.0016(9)
C26	0.0179(10)	0.0300(11)	0.0308(11)	0.0183(9)	0.0024(8)	0.0025(8)
C27	0.0224(10)	0.0220(9)	0.0206(9)	0.0068(8)	0.0001(7)	0.0063(7)
C28	0.0242(10)	0.0299(11)	0.0259(10)	0.0118(9)	0.0022(8)	0.0087(8)
C29	0.0397(13)	0.0392(13)	0.0234(11)	0.0105(10)	0.0031(9)	0.0179(10)
C30	0.0410(13)	0.0349(12)	0.0267(11)	0.0000(10)	-0.0087(10)	0.0138(10)
C31	0.0395(13)	0.0273(12)	0.0363(13)	0.0054(10)	-0.0072(10)	0.0008(10)
C32	0.0323(12)	0.0295(11)	0.0297(11)	0.0120(9)	-0.0031(9)	0.0022(9)
C33	0.0172(9)	0.0235(10)	0.0197(9)	0.0096(8)	-0.0001(7)	0.0033(7)
C34	0.0212(10)	0.0221(10)	0.0245(10)	0.0105(8)	0.0020(8)	0.0042(8)
C35	0.0232(10)	0.0238(10)	0.0316(11)	0.0106(9)	0.0012(8)	0.0083(8)
C36	0.0203(10)	0.0348(11)	0.0266(11)	0.0117(9)	0.0036(8)	0.0079(8)
C37	0.0215(10)	0.0370(12)	0.0332(11)	0.0211(10)	0.0074(8)	0.0056(9)
C38	0.0231(10)	0.0254(10)	0.0335(11)	0.0170(9)	0.0051(8)	0.0066(8)
N1	0.0313(10)	0.0277(9)	0.0308(10)	0.0129(8)	0.0049(7)	0.0094(7)
N2	0.0366(10)	0.0278(9)	0.0298(10)	0.0139(8)	0.0092(8)	0.0102(8)
N3	0.0273(9)	0.0262(9)	0.0307(9)	0.0144(8)	0.0059(7)	0.0064(7)
N4	0.0284(10)	0.0279(9)	0.0312(10)	0.0066(8)	0.0058(8)	0.0024(8)
N5	0.0262(10)	0.0289(10)	0.0429(11)	0.0145(9)	0.0083(8)	0.0071(8)
N6	0.0191(8)	0.0211(8)	0.0225(8)	0.0115(7)	0.0028(6)	0.0058(6)
01	0.0650(12)	0.0477(10)	0.0418(10)	0.0246(9)	0.0278(9)	0.0177(9)
O2	0.0308(9)	0.0437(10)	0.0474(10)	0.0085(8)	0.0081(7)	0.0164(7)
O3	0.0602(12)	0.0511(12)	0.0878(15)	0.0435(12)	0.0318(11)	0.0344(10)
O4	0.0389(10)	0.0582(11)	0.0497(11)	0.0248(9)	0.0246(8)	0.0172(8)
P1	0.0173(2)	0.0186(2)	0.0169(2)	0.00732(19)	0.00221(18)	0.00481(18)
P2	0.0181(2)	0.0189(2)	0.0195(2)	0.00898(19)	0.00148(18)	0.00404(18)

Table S- 129: Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å²) for [PNP][DNT].

	x/a	y/b	z/c	U(eq)
H4	0.7325	0.3615	0.3593	0.028
H5	0.8181	0.4810	0.5260	0.032
H6	0.6876	0.5047	0.6561	0.031
H7	0.4689	0.4166	0.6199	0.03
H8	0.3818	0.2956	0.4534	0.025
H10	0.4535	0.0039	0.0787	0.031
H11	0.5256	-0.1782	0.0192	0.038
H12	0.6641	-0.2118	0.1230	0.04
H13	0.7306	-0.0636	0.2865	0.041
H14	0.6584	0.1182	0.3479	0.031
H16	0.3878	0.3721	0.1879	0.028
H17	0.4714	0.4994	0.1017	0.037
H18	0.6745	0.5071	0.0512	0.041
H19	0.7952	0.3860	0.0828	0.039
H20	0.7137	0.2582	0.1688	0.032

	x/a	y/b	z/c	U(eq)
H22	0.2919	-0.1751	0.1785	0.035
H23	0.3759	-0.2821	0.2587	0.046
H24	0.4099	-0.2007	0.4332	0.049
H25	0.3639	-0.0118	0.5300	0.039
H26	0.2832	0.0986	0.4524	0.03
H28	0.2450	0.0710	0.0548	0.031
H29	0.1422	-0.0603	-0.1061	0.04
H30	-0.0105	-0.2446	-0.1296	0.045
H31	-0.0656	-0.2964	0.0072	0.046
H32	0.0357	-0.1677	0.1679	0.038
H34	0.1309	0.2863	0.3026	0.027
H35	-0.0266	0.3601	0.3992	0.031
H36	-0.1405	0.2461	0.4860	0.033
H37	-0.1091	0.0512	0.4649	0.034
H38	0.0420	-0.0272	0.3633	0.031

2.20 Crystal Structure Report for [TMA][DNT]

Figure S- 60: Projection of the packing of [TMA][DNT] along the a axis. Hydrogen atoms were omitted for clarity.

Figure S- 61: Projection of the packing of [TMA][DNT] along the b axis. Hydrogen atoms were omitted for clarity.

Figure S- 62: Projection of the packing of [TMA][DNT] along the c axis. Hydrogen atoms were omitted for clarity.

Table S- 130. Sample and crystal data for [TMA][DNT].

Identification code	TMADNT	
Chemical formula	$C_6H_{12}N_6O_4$	
Formula weight	232.22 g/mol	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal size	0.122 x 0.217 x 0.398 mm	
Crystal habit	clear colourless prism	
Crystal system	monoclinic	
Space group	P 1 21/c 1	
Unit cell dimensions	a = 6.1515(3) Å	$\alpha = 90^{\circ}$
	b = 17.1906(10) Å	$\beta = 92.6300(10)^{\circ}$
	c = 9.8599(5) Å	$\gamma = 90^{\circ}$
Volume	1041.57(10) Å ³	
Ζ	4	
Density (calculated)	1.481 g/cm ³	
Absorption coefficient	0.124 mm ⁻¹	
F(000)	488	

Table S- 131.	. Data collection	and structure refinemer	nt for TMADNT.
---------------	-------------------	-------------------------	----------------

Diffractometer	Bruker APEX DUO
Radiation source	fine-focus tube, MoKα
Theta range for data collection	2.37 to 30.47°
Reflections collected	3159
Independent reflections	3159 [R(int) = 0.0146]
Coverage of independent reflections	99.6%
Absorption correction	multi-scan
Max. and min. transmission	0.9850 and 0.9520
Structure solution technique	direct methods
Structure solution program	SHELXTL XT 2014/4 (Bruker AXS, 2014)
Refinement method	Full-matrix least-squares on F ²
Refinement program	SHELXTL XL 2014/6 (Bruker AXS, 2014)
Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$
Data / restraints / parameters	3159 / 28 / 184
Goodness-of-fit on F ²	1.096
Final R indices	2867 data; I> $2\sigma(I)$ R1 = 0.0406, wR2 = 0.1086
	all data $R1 = 0.0455, wR2 = 0.1120$
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.0572P) ² +0.2829P] where P=(F_o^2 +2 F_c^2)/3
Largest diff. peak and hole	0.425 and -0.249 eÅ ⁻³
R.M.S. deviation from mean	0.055 eÅ ⁻³

Table 3. Atomic coordinates and equivalent isotropic atomic displacement parameters (Å²) for TMADNT.

 $U(\mbox{eq})$ is defined as one third of the trace of the orthogonalized $U_{\mbox{ij}}$ tensor.

	x/a	y/b	z/c	U(eq)
C3	0.2023(4)	0.42712(9)	0.86891(18)	0.0415(4)
C4	0.2689(3)	0.30501(10)	0.75384(14)	0.0308(3)
C5	0.4957(3)	0.34277(11)	0.95365(18)	0.0353(4)
C6	0.1193(3)	0.30403(11)	0.97743(19)	0.0378(4)
N6	0.27214(17)	0.34569(6)	0.88835(10)	0.0169(2)
C1	0.7680(2)	0.39433(7)	0.42610(12)	0.0152(2)
C2	0.74165(19)	0.46874(8)	0.58067(12)	0.0157(2)
N1	0.7414(2)	0.39849(7)	0.63943(11)	0.0212(2)
N2	0.7584(2)	0.34801(6)	0.53445(11)	0.0212(2)
N3	0.75917(16)	0.47107(6)	0.44636(11)	0.01488(19)
N4	0.7886(2)	0.36165(7)	0.29179(12)	0.0193(2)
N5	0.72257(18)	0.53863(7)	0.66087(12)	0.0205(2)
01	0.83042(19)	0.40703(7)	0.19958(11)	0.0273(2)
O2	0.7646(2)	0.29171(6)	0.27647(12)	0.0338(3)
O3	0.73521(17)	0.60172(6)	0.60315(11)	0.0266(2)
04	0.6933(2)	0.53090(8)	0.78278(13)	0.0323(3)
C1'	0.774(5)	0.4323(11)	0.4591(19)	0.0152(2)
C2'	0.740(5)	0.5084(12)	0.6096(17)	0.0157(2)

x/a		y/b	z/c		U(eq)
N1' 0.745	5(5)	0.5510(11) 0.4956	(19)	0.0212(2)
N2' 0.766	5(5)	0.4997(12) 0.395(2)	0.0212(2)
N3' 0.759	9(4)	0.4324(13) 0.5966	(19)	0.01488(19)
N4' 0.797	7(5)	0.3630(11) 0.379(2)	0.0193(2)
N5' 0.726	6(6)	0.5466(12) 0.740(2)	0.0205(2)
O1' 0.832	2(5)	0.3018(12) 0.451(2)	0.0273(2)
O2' 0.810)(8)	0.376(2)	0.257(2)	0.0338(3)
O3' 0.707	7(5)	0.5023(13) 0.836(2)	0.0266(2)
O4' 0.699	9(5)	0.6167(12) 0.740(2)	0.0323(3)
Table S-	- 132:]	Bond leng	gths (Å)	for TI	MADNT
C3-N6	1.47	41(18)	C3-H3A	0.9	8
C3-H3B	0.98		C3-H3C	0.9	8
C4-N6	1.49	86(16)	C4-H4A	0.9	8
C4-H4B	0.98		C4-H4C	0.9	8
C5-N6	1.49	23(18)	C5-H5A	0.9	8
C5-H5B	0.98		C5-H5C	0.9	8
C6-N6	1.49	79(18)	C6-H6A	0.9	8
C6-H6B	0.98		C6-H6C	0.9	8
C1-N3	1.33	56(15)	C1-N2	1.3	360(15)
C1-N4	1.44	95(17)	C1-C2	2.0	019(17)
C2-N3	1.33	41(15)	C2-N1	1.3	395(16)
C2-N5	1.44	60(16)	N1-N2	1.3	584(15)
N4-O2	1.21	98(16)	N4-01	1.2	341(15)
N5-O3	1.22	90(16)	N5-O4	1.2	307(18)
C1'-N2'	1.31	9(17)	C1'-N3'	1.3	63(17)
C1'-N4'	1.44	0(16)	C1'-C2'	1.9	97(15)
C2'-N3'	1.31	8(17)	C2'-N1'	1.3	43(17)
C2'-N5'	1.45	2(16)	N1'-N2'	1.3	38(17)
N4'-O2'	1.22	5(18)	N4'-O1'	1.2	82(17)
N5'-O4'	1.21	8(17)	N5'-O3'	1.2	23(17)

Table 5. Bond	angles (°) for	r TMADNT.	
N6-C3-H3A	109.5	N6-C3-H3B	109.5
НЗА-СЗ-НЗВ	109.5	N6-C3-H3C	109.5
НЗА-СЗ-НЗС	109.5	НЗВ-СЗ-НЗС	109.5
N6-C4-H4A	109.5	N6-C4-H4B	109.5
H4A-C4-H4B	109.5	N6-C4-H4C	109.5
Н4А-С4-Н4С	109.5	Н4В-С4-Н4С	109.5
N6-C5-H5A	109.5	N6-C5-H5B	109.5
H5A-C5-H5B	109.5	N6-C5-H5C	109.5
H5A-C5-H5C	109.5	H5B-C5-H5C	109.5
N6-C6-H6A	109.5	N6-C6-H6B	109.5
H6A-C6-H6B	109.5	N6-C6-H6C	109.5
H6A-C6-H6C	109.5	H6B-C6-H6C	109.5
C3-N6-C5	110.20(12)	C3-N6-C6	110.08(14)
C5-N6-C6	108.75(12)	C3-N6-C4	109.63(11)
C5-N6-C4	109.93(11)	C6-N6-C4	108.21(12)
N3-C1-N2	117.75(12)	N3-C1-N4	121.69(11)
N2-C1-N4	120.56(11)	N3-C1-C2	41.39(7)
N2-C1-C2	76.35(8)	N4-C1-C2	163.09(10)
N3-C2-N1	117.26(12)	N3-C2-N5	122.02(12)
N1-C2-N5	120.72(11)	N3-C2-C1	41.45(7)
N1-C2-C1	75.81(8)	N5-C2-C1	163.46(10)
C2-N1-N2	104.17(10)	C1-N2-N1	103.66(10)
C2-N3-C1	97.16(11)	O2-N4-O1	124.06(13)
O2-N4-C1	118.69(11)	O1-N4-C1	117.25(11)
O3-N5-O4	124.24(13)	O3-N5-C2	118.13(11)
O4-N5-C2	117.62(12)	N2'-C1'-N3'	118.2(14)
N2'-C1'-N4'	117.8(15)	N3'-C1'-N4'	124.1(17)
N2'-C1'-C2'	77.2(10)	N3'-C1'-C2'	41.0(8)
N4'-C1'-C2'	165.1(15)	N3'-C2'-N1'	116.9(14)
N3'-C2'-N5'	122.9(16)	N1'-C2'-N5'	120.1(16)
N3'-C2'-C1'	42.7(8)	N1'-C2'-C1'	74.2(10)
N5'-C2'-C1'	165.5(16)	N2'-N1'-C2'	105.6(15)
C1'-N2'-N1'	103.1(15)	C2'-N3'-C1'	96.2(13)
O2'-N4'-O1'	132.(2)	O2'-N4'-C1'	114.(2)
O1'-N4'-C1'	113.2(18)	O4'-N5'-O3'	127.(2)
O4'-N5'-C2'	117.3(19)	O3'-N5'-C2'	114.6(19)

Table S- 133: Anisotropic atomic displacement parameters (Å²) for TMADNT. The anisotropic atomic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2} U₁₁ + ... + 2 h k a^{*} b^{*} U₁₂]

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C3	0.0595(11)	0.0193(6)	0.0433(8)	0.0026(6)	-0.0233(8)	0.0053(7)
C4	0.0309(7)	0.0421(8)	0.0195(6)	-0.0069(5)	0.0018(5)	-0.0012(7)
C5	0.0239(7)	0.0485(9)	0.0328(8)	-0.0043(7)	-0.0073(6)	0.0049(7)
C6	0.0393(9)	0.0401(9)	0.0351(8)	0.0046(7)	0.0154(7)	-0.0091(7)
N6	0.0162(4)	0.0192(5)	0.0151(4)	0.0016(3)	-0.0002(4)	0.0004(4)
C1	0.0130(5)	0.0155(5)	0.0170(5)	0.0006(4)	0.0008(4)	0.0008(4)
C2	0.0119(5)	0.0178(5)	0.0174(5)	-0.0014(4)	-0.0002(4)	0.0002(5)
N1	0.0241(6)	0.0216(5)	0.0179(5)	0.0018(4)	0.0020(4)	0.0005(5)
N2	0.0267(6)	0.0175(5)	0.0194(5)	0.0023(4)	0.0018(4)	0.0016(5)
N3	0.0117(4)	0.0149(4)	0.0179(4)	0.0003(4)	-0.0008(4)	0.0000(4)
N4	0.0192(5)	0.0202(6)	0.0184(5)	-0.0014(4)	0.0002(5)	0.0011(4)
N5	0.0129(4)	0.0226(5)	0.0257(5)	-0.0073(4)	-0.0016(4)	-0.0002(4)
01	0.0362(6)	0.0284(5)	0.0177(4)	0.0016(4)	0.0046(4)	0.0027(5)
O2	0.0482(7)	0.0204(5)	0.0329(5)	-0.0091(4)	0.0028(5)	-0.0016(5)
O3	0.0209(5)	0.0186(4)	0.0400(6)	-0.0059(4)	-0.0021(4)	0.0010(4)
O4	0.0316(6)	0.0417(7)	0.0239(5)	-0.0126(5)	0.0027(5)	-0.0009(6)
C1'	0.0130(5)	0.0155(5)	0.0170(5)	0.0006(4)	0.0008(4)	0.0008(4)
C2'	0.0119(5)	0.0178(5)	0.0174(5)	-0.0014(4)	-0.0002(4)	0.0002(5)
N1'	0.0241(6)	0.0216(5)	0.0179(5)	0.0018(4)	0.0020(4)	0.0005(5)
N2'	0.0267(6)	0.0175(5)	0.0194(5)	0.0023(4)	0.0018(4)	0.0016(5)
N3'	0.0117(4)	0.0149(4)	0.0179(4)	0.0003(4)	-0.0008(4)	0.0000(4)
N4'	0.0192(5)	0.0202(6)	0.0184(5)	-0.0014(4)	0.0002(5)	0.0011(4)
N5'	0.0129(4)	0.0226(5)	0.0257(5)	-0.0073(4)	-0.0016(4)	-0.0002(4)
01'	0.0362(6)	0.0284(5)	0.0177(4)	0.0016(4)	0.0046(4)	0.0027(5)
O2'	0.0482(7)	0.0204(5)	0.0329(5)	-0.0091(4)	0.0028(5)	-0.0016(5)
O3'	0.0209(5)	0.0186(4)	0.0400(6)	-0.0059(4)	-0.0021(4)	0.0010(4)
O4'	0.0316(6)	0.0417(7)	0.0239(5)	-0.0126(5)	0.0027(5)	-0.0009(6)

		-		
	x/a	y/b	z/c	U(eq)
H3A	0.2097	0.4541	0.9566	0.062
H3B	0.0524	0.4283	0.8308	0.062
H3C	0.2984	0.4531	0.8065	0.062
H4A	0.3207	0.2515	0.7666	0.046
H4B	0.3638	0.3326	0.6928	0.046
H4C	0.1199	0.3043	0.7141	0.046
H5A	0.5374	0.2885	0.9703	0.053
H5B	0.4978	0.3710	1.0400	0.053
H5C	0.5987	0.3669	0.8935	0.053
H6A	0.1149	0.3310	1.0648	0.057
H6B	0.1699	0.2505	0.9923	0.057
H6C	-0.0267	0.3033	0.9334	0.057

 Table S- 134: Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å²) for TMADNT.

2.21 Crystal Structure Report for [TMA][DNT]·HDNT

Figure S- 63: Molecular structure of **[TMA][DNT]·HDNT**. Thermal ellipsoids are shown at the 50% probability level. Hydrogen atom H1 has a site occupancy factor of 50%.

Figure S- 64: Projection of the packing of **[TMA][DNT]·HDNT** perpendicular to the 001 plane.

Figure S- 65: Projection of the packing of [TMA][DNT]·HDNT perpendicular to the 010 plane.

Table 5-155. Sample and crystal data for [TNIA][DIVI] TIDIV	Table S-	135: San	nple and o	crystal	data for	[TMA]	[DNT]	·HDN 7
---	----------	----------	------------	---------	----------	-------	-------	---------------

Identification code	TMADNT		
Chemical formula	$C_8H_7N_{11}O_8$		
Formula weight	391.30		
Temperature	130(2) K		
Wavelength	0.71073 Å		
Crystal size	0.230 x 0.280 x 0.44	0 mm	
Crystal habit	clear colourless prism		
Crystal system	monoclinic		
Space group	C 1 2/c 1		
Unit cell dimensions	a = 14.336(3) Å	$\alpha = 90^{\circ}$	
	b = 10.931(2) Å	$\beta = 93.978(3)^{\circ}$	
	c = 10.644(2) Å	$\gamma = 90^{\circ}$	
Volume	1664.0(6) Å ³		
Ζ	4		
Density (calculated)	1.562 g/cm ³		
Absorption coefficient	0.138 mm ⁻¹		
F(000)	808		

Table S- 136: Data collection and structure refinement for [TMA][DNT]·HDNT.

Bruker SMART APEX			
fine-focus tube, MoKa			
2.35 to 28.58°			
-19<=h<=13, -14<=k<=13, -13<=l<=14			
5163			
1961 [R(int) = 0.0224]			
92.0%			
multi-scan			
0.9690 and 0.9420			
direct methods			
SHELXTL XT 2013/6 (Sheldrick, 2013)			
Full-matrix least-squares on F ²			
SHELXTL XLMP 2014/1 (Bruker AXS, 2013)			
$\Sigma w(F_o^2 - F_c^2)^2$			
1961 / 0 / 125			
1.040			
1646 data; I> $2\sigma(I)$ R1 = 0.0418, wR2 = 0.1111			
all data $R1 = 0.0499, wR2 = 0.1192$			
w=1/[$\sigma^2(F_o^2)$ +(0.0670P) ² +0.7354P] where P=(F_o^2 +2 F_c^2)/3			
0.254 and -0.307 eÅ ⁻³			
0.053 eÅ ⁻³			
Table S- 137: Atomic coordinates and equivalent isotropic atomic displacement parameters (Å²) for **[TMA][DNT]·HDNT.**U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x/a	y/b	z/c	U(eq)
C1	0.34252(9)	0.29195(11)	0.71462(12)	0.0263(3)
C2	0.29794(8)	0.40615(11)	0.57578(11)	0.0239(3)
C3	0.57220(17)	0.1587(3)	0.3150(2)	0.0821(8)
C4	0.45563(11)	0.31434(14)	0.34491(15)	0.0398(4)
N1	0.38464(8)	0.44292(10)	0.60342(11)	0.0285(3)
N2	0.41386(8)	0.36538(10)	0.69675(10)	0.0280(3)
N3	0.26658(7)	0.31256(9)	0.64125(10)	0.0258(3)
N4	0.34994(9)	0.19539(11)	0.80850(12)	0.0385(3)
N5	0.23910(8)	0.46537(10)	0.47719(10)	0.0310(3)
N6	0.5	0.23705(14)	0.25	0.0293(3)
01	0.28007(9)	0.13506(12)	0.82168(13)	0.0618(4)
02	0.42566(9)	0.18172(13)	0.86577(13)	0.0589(4)
03	0.15760(7)	0.43273(9)	0.46247(11)	0.0392(3)
04	0.27536(9)	0.54403(11)	0.41513(12)	0.0509(3)

Table S- 138: Bond lengths (Å) for [TMA][DNT]·HDNT.

C1-N3	1.3145(16)	C1-N2	1.3241(17)
C1-N4	1.4524(17)	C2-N1	1.3199(17)
C2-N3	1.3334(16)	C2-N5	1.4524(16)
C3-N6	1.478(2)	C3-H3A	0.98
С3-Н3В	0.98	C3-H3C	0.98
C4-N6	1.4928(17)	C4-H4A	0.98
C4-H4B	0.98	C4-H4C	0.98
N1-N2	1.3503(15)	N2-H1	0.9216
N4-O1	1.2155(17)	N4-O2	1.2168(17)
N5-O3	1.2214(16)	N5-O4	1.2220(16)
N6-C3	1.478(2)	N6-C4	1.4927(17)

N3-C1-N2	115.27(11)	N3-C1-N4	123.47(12)
N2-C1-N4	121.26(11)	N1-C2-N3	117.62(11)
N1-C2-N5	121.06(11)	N3-C2-N5	121.31(11)
N6-C3-H3A	109.5	N6-C3-H3B	109.5
НЗА-СЗ-НЗВ	109.5	N6-C3-H3C	109.5
НЗА-СЗ-НЗС	109.5	НЗВ-СЗ-НЗС	109.5
N6-C4-H4A	109.5	N6-C4-H4B	109.5
Н4А-С4-Н4В	109.5	N6-C4-H4C	109.5
Н4А-С4-Н4С	109.5	Н4В-С4-Н4С	109.5
C2-N1-N2	102.24(10)	C1-N2-N1	106.44(10)
C1-N2-H1	131.2	N1-N2-H1	122.2
C1-N3-C2	98.43(10)	O1-N4-O2	126.11(13)
O1-N4-C1	116.88(12)	O2-N4-C1	117.01(12)
O3-N5-O4	125.11(12)	O3-N5-C2	117.71(11)
O4-N5-C2	117.18(12)	C3-N6-C3	109.1(3)
C3-N6-C4	109.13(11)	C3-N6-C4	109.18(11)
C3-N6-C4	109.18(11)	C3-N6-C4	109.13(11)
C4-N6-C4	111.06(16)		

Table S-	· 139: Bo	nd angles	(°)	for	[TMA]	[DNT	·HDNT.
----------	-----------	-----------	-----	-----	-------	------	--------

Table S- 140: Anisotropic atomic displacement parameters (Å²) for **[TMA][DNT]·HDNT**. The anisotropic atomic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2} U₁₁ + ... + 2 h k a^{*} b^{*} U₁₂]

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	007(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$)26(5)
C4 0.0426(9) 0.0360(7) 0.0419(8) -0.0086(6) 0.0114(7) -0.0	554(14)
	041(6)
N1 0.0274(6) 0.0282(5) 0.0298(6) 0.0031(4) 0.0009(4) 0.00)02(4)
N2 0.0265(5) 0.0291(5) 0.0277(6) 0.0005(4) -0.0020(4) 0.00)06(4)
N3 0.0263(6) 0.0259(5) 0.0246(5) -0.0010(4) -0.0019(4) -0.0	019(4)
N4 0.0439(7) 0.0367(6) 0.0335(6) 0.0097(5) -0.0068(5) -0.0	056(5)
N5 0.0350(6) 0.0298(6) 0.0276(6) 0.0010(4) -0.0012(5) 0.00)54(5)
N6 0.0297(8) 0.0281(7) 0.0302(8) 0 0.0029(6) 0	
O1 0.0568(8) 0.0579(8) 0.0687(9) 0.0342(7) -0.0099(6) -0.0	219(6)
O2 0.0528(7) 0.0659(8) 0.0543(7) 0.0289(6) -0.0222(6) -0.0	082(6)
O3 0.0322(5) 0.0390(6) 0.0444(6) -0.0011(4) -0.0121(4) 0.00)47(4)
O4 0.0512(7) 0.0552(7) 0.0459(7) 0.0256(6) 0.0016(5) 0.00)20(6)

Table S- 141: Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å²) for **[TMA][DNT]·HDNT**.

	x/a	y/b	z/c	U(eq)
H3A	0.6192	0.2102	0.3606	0.123
H3B	0.6023	0.1088	0.2529	0.123
H3C	0.5429	0.1050	0.3747	0.123
H4A	0.5029	0.3678	0.3871	0.06
H4B	0.4286	0.2616	0.4074	0.06
H4C	0.4062	0.3644	0.3026	0.06
H1	0.4744	0.3656	0.7320	0.034

3 References

- 1. R. Haiges, J. A. Boatz, M. Yousufuddin and K. O. Christe, *Angewandte Chemie-International Edition*, 2007, **46**, 2869-2874.
- 2. SAINT+, SAINT+ V8.27B, (2011) Bruker AXS Madison, WI.
- 3. SADABS, SADABS V2012/1, (2012) Bruker AXS Madison, WI.
- 4. G. M. Sheldrick, *Acta Crystallogr A*, 2008, **64**, 112-122.
- 5. SHELXL, SHELXL 2012-4, (2012) Sheldrick, G. M.
- 6. SHELXS-97, *SHELXS-97*, (2008) Sheldrick, G. M.
- 7. SHELXTL, SHELXTL V2012.4-3, (2012) Bruker AXS Madison, WI.
- 8. L. Farrugia, *Journal of Applied Crystallography*, 1997, **30**, 565.
- 9. CSD, *Mercury 3.1*, (2012) CCDC.
- 10. V. M. Chernyshev, N. D. Zemlyakov, V. B. Il'in and V. A. Taranushich, *Russian Journal of Applied Chemistry*, 2000, **73**, 839-841.
- 11. V. M. Z. Chernyshev, N. D.; Taranushich, V. A. , *RU Patent* 2174120 *C1*, 2001.