Supporting Information

Synthesis and Characterization of Substituted Schiff-base Ligands and Their d¹⁰ Metal Complexes: Structure-induced Luminescence Tuning Behaviors and Applications in Co-sensitized Solar Cells

Yu-Wei Dong,^a Rui-Qing Fan,^{*a} Ping Wang,^a Li-Guo Wei,^a Xin-Ming Wang,^a Hui-Jie Zhang,^a Song Gao,^a Yu-Lin Yang^{*a} and Yu-Lei Wang^b

^aDepartment of Chemistry, Harbin Institute of Technology, Harbin 150001, P. R. of China ^bNational Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150080, P. R. of China

	Content	Page No.
Fig. S1	Infrared spectra of free ligand L_1 and complexes Zn1, Cd1 and Hg1	1
	recorded from a KBr pellet.	1
Fig. S2	Infrared spectra of free ligand L_2 and complexes Zn2, Cd2 and Hg2	2
	recorded from a KBr pellet.	2
Fig. S3	Infrared spectra of free ligand L_3 and complexes Zn3, Cd3 and Hg3	2
	recorded from a KBr pellet.	3
Fig. S4	¹ H NMR spectra of L ₁ , Zn1, Cd1 and Hg1.	4
Fig. S5	¹ H NMR spectra of L ₂ , Zn2, Cd2 and Hg2.	5
Fig. S6	¹ H NMR spectra of L ₃ , Zn3, Cd3 and Hg3.	6
Fig. S7	Experimental and simulated PXRD patterns of complexes Zn1-Zn3,	7
	Cd1–Cd3 and Hg1–Hg3.	·
Fig. S8	The structure unit of complex Hg1.	8
Fig. S9	The structure unit of complex Cd2.	8
Fig. S10	The structure unit of complex Hg2 .	9
Fig. S11	The structure unit of complex Hg3 .	9
Fig. S12	UV-Vis absorption spectra of ligand L_1 and complexes Zn1–Zn3,	10
	Cd1–Cd3 and Hg1–Hg3.	10
Fig. S13	Emission spectra of free ligands L_1 - L_3 and complexes Zn1-Zn3,	
	Cd1-Cd3 and Hg1-Hg3 in acetonitrile solution at 77 K and the	11
	corresponding color coordinate diagram of emission.	

Index

Fig. S14	Emission spectra of free ligands L ₁ -L ₃ and complexes Zn1-Zn3,	
	Cd1–Cd3 and Hg1–Hg3 in solid state at 77 K and the corresponding	
	color coordinate diagram of emission.	
Fig. S15	UV-visible absorption spectra of complexes Zn1-Zn3 and N719 in	
	ethanol.	
Table S1	Selected bond distances (Å) and angles (⁹) for Zn1-Zn3, Cd2 and	
	Hg1–Hg3.	
Table S2	Selected bond distances (Å) and angles (⁹) for Cd1.	
Table S3	Selected bond distances (Å) and angles ([°]) for Cd3.	
Table S4	The dihedral angels between the pyridyl ring and phenyl ring in	
	structures of the coordinated ligand in complexes Zn1-Zn3,	
	Cd1–Cd3 and Hg1–Hg3.	
Table S5	The geometrical parameters of hydrogen bonds for complexes	
	Zn1–Zn3, Cd1–Cd3 and Hg1–Hg3.	
Table S6	The geometrical parameters of $\pi \cdot \pi$ stacking interactions in	
	complexes Zn1–Zn3, Cd1–Cd3 and Hg1–Hg3.	
Table S7	The luminescence lifetimes of ligands L_1 - L_3 and complexes	
	Zn1–Zn3, Cd1–Cd3 and Hg1–Hg3 in the solid state and acetonitrile	
	solution at 298 K.	
Table S8	The luminescence lifetimes of ligands L_1 - L_3 and complexes	
	Zn1–Zn3, Cd1–Cd3 and Hg1–Hg3 in the solid state and acetonitrile	
	solution at 77 K.	

Fig. S1 Infrared spectra of free ligand L1 and complexes Zn1, Cd1 and Hg1 recorded from a KBr pellet.

Fig. S2 Infrared spectra of free ligand L2 and complexes Zn2, Cd2 and Hg2 recorded from a KBr pellet.

Fig. S3 Infrared spectra of free ligand L3 and complexes Zn3, Cd3 and Hg3 recorded from a KBr pellet.

Fig. S4 ¹H NMR spectra of L₁, Zn1, Cd1 and Hg1.

Fig. S5 ¹H NMR spectra of L₂, Zn2, Cd2 and Hg2.

Fig. S6 ¹H NMR spectra of L₃, Zn3, Cd3 and Hg3.

Fig. S7 Experimental (top) and simulated (bottom) PXRD patterns of complexes Zn1–Zn3, Cd1–Cd3 and Hg1–Hg3.

Fig. S8 The structure unit of complex Hg1, H atoms omitted for clarity.

Fig. S9 The structure unit of complex Cd2, H atoms omitted for clarity.

Fig. S10 The structure unit of complex Hg2, H atoms omitted for clarity.

Fig. S11 The structure unit of complex Hg3, H atoms omitted for clarity.

Fig. S12 UV-Vis absorption spectra of ligands L₁–L₃ and complexes Zn1–Zn3, Cd1–Cd3 and Hg1–Hg3 in acetonitrile solution.

Fig. S13 Emission spectra of free ligands L₁–L₃ and complexes Zn1–Zn3, Cd1–Cd3 and Hg1–Hg3 in acetonitrile solution at 77 K and the corresponding color coordinate diagram of emission.

Fig. S14 Emission spectra of free ligands L_1-L_3 and complexes **Zn1–Zn3**, **Cd1–Cd3** and **Hg1–Hg3** in solid state at 77 K at same testing condition ($\lambda_{ex} = 365$ nm, slit width: 1 nm, 1 nm) and the corresponding color coordinate diagram of emission.

Fig. S15 UV-visible absorption spectra of complexes Zn1–Zn3 and N719 in ethanol.

Parameter	Zn1	Hg1	Zn2	Cd2	Hg2	Zn3	Hg3
M(1)-N(1)	2.068(2)	2.368(4)	2.046(5)	2.246(2)	2.262(6)	2.147(6)	2.378(5)
M(1)-N(2)	2.1137(19)	2.477(4)	2.112(6)	2.329(2)	2.410(8)	2.167(7)	2.439(5)
M(1)-Cl(1)	2.1746(12)	2.3475(15)	2.199(2)	2.3695(8)	2.450(2)	2.285(2)	2.3816(19)
M(1)-Cl(2)	2.2021(11)	2.3440(17)	2.226(2)	2.4073(9)	2.362(2)	2.260(2)	2.4080(18)
N(2)-C(6)	1.269(3)	1.246(6)	1.279(9)	1.276(4)	1.282(9)	1.294(10)	1.276(8)
N(1)-M(1)-N(2)	78.89(8)	69.00(12)	80.4(2)	73.01(9)	71.6(3)	78.6(2)	69.36(18)
N(1)-M(1)-Cl(1)	118.55(7)	115.76(11)	122.06(19)	127.86(7)	108.11(18)	101.86(19)	110.18(15)
N(2)-M(1)-Cl(1)	117.79(6)	101.47(10)	116.14(18)	117.64(6)	104.66(16)	114.58(18)	125.57(13)
N(1)-M(1)-Cl(2)	112.09(7)	105.75(11)	111.08(19)	110.95(7)	134.32(18)	110.8(2)	106.86(14)
N(2)-M(1)-Cl(2)	105.28(6)	109.52(10)	109.13(17)	107.65(7)	118.90(16)	120.46(19)	104.80(13)
Cl(1)-M(1)-Cl(2)	117.57(5)	134.86(8)	113.47(8)	112.61(3)	110.80(8)	119.78(8)	124.98(8)
C(5)-N(1)-M(1)	126.66(19)	123.2(3)	129.4(5)	124.2(2)	120.6(7)	128.3(5)	123.5(5)
C(1)-N(1)-M(1)	113.71(16)	117.3(3)	112.2(5)	115.3(2)	117.5(5)	112.2(5)	116.7(4)
C(6)-N(2)-M(1)	112.99(17)	114.6(3)	110.4(5)	113.0(2)	112.1(6)	113.0(5)	114.3(4)
C(8)-N(2)-M(1)	126.06(14)	125.4(3)	127.4(4)	125.10(17)	125.9(5)	125.1(5)	123.9(4)

Table S1. Selected bond distances (Å) and angles ([°]) for **Zn1–Zn3**, **Cd2** and **Hg1–Hg3**.

Parameter		Parameter		Parameter	
Cd(1)-N(1)	2.345(3)	Cd(1)-Cd(1)#1	3.7792(11)	Cd(2)-Cl(4)#2	2.5613(10)
Cd(1)-N(2)	2.396(3)	Cd(2)-N(3)	2.333(3)	Cd(2)-Cd(2)#2	3.7591(9)
Cd(1)-Cl(2)	2.4119(11)	Cd(2)-N(4)	2.393(3)	Cl(1)-Cd(1)#1	2.5333(10)
Cd(1)-Cl(1)#1	2.5333(10)	Cd(2)-Cl(3)	2.4226(13)	Cl(4)-Cd(2)#2	2.5613(10)
Cd(1)-Cl(1)	2.5858(12)	Cd(2)-Cl(4)	2.5403(11)	N(2)-C(6)	1.270(4)
N(4)-C(25)	1.267(4)				
N(1)-Cd(1)-N(2)	69.93(10)	N(1)-Cd(1)-Cd(1)#1	127.47(8)	Cl(3)-Cd(2)-Cl(4)	130.88(5)
N(1)-Cd(1)-Cl(2)	103.68(9)	N(2)-Cd(1)-Cd(1)#1	108.72(7)	N(3)-Cd(2)-Cl(4)#2	157.02(8)
N(2)-Cd(1)-Cl(2)	113.05(8)	Cl(2)-Cd(1)-Cd(1)#1	122.25(4)	N(4)-Cd(2)-Cl(4)#2	91.52(8)
N(1)-Cd(1)-Cl(1)#1	89.88(8)	Cl(1)#1-Cd(1)-Cd(1)#1	42.96(2)	Cl(3)-Cd(2)-Cl(4)#2	102.20(4)
N(2)-Cd(1)-Cl(1)#1	119.03(8)	Cl(1)-Cd(1)-Cd(1)#1	41.88(3)	Cl(4)-Cd(2)-Cl(4)#2	85.07(4)
Cl(2)-Cd(1)-Cl(1)#1	127.69(5)	N(3)-Cd(2)-N(4)	69.89(10)	N(3)-Cd(2)-Cd(2)#2	130.41(7)
N(1)-Cd(1)-Cl(1)	153.03(8)	N(3)-Cd(2)-Cl(3)	97.06(8)	N(4)-Cd(2)-Cd(2)#2	109.61(7)
N(2)-Cd(1)-Cl(1)	89.63(7)	N(4)-Cd(2)-Cl(3)	110.34(8)	Cl(3)-Cd(2)-Cd(2)#2	125.89(4)
Cl(2)-Cd(1)-Cl(1)	100.42(5)	N(3)-Cd(2)-Cl(4)	91.78(8)	Cl(4)-Cd(2)-Cd(2)#2	42.75(2)
Cl(1)#1-Cd(1)-Cl(1)	84.84(4)	N(4)-Cd(2)-Cl(4)	118.03(8)	Cl(4)#2-Cd(2)-Cd(2)#2	42.32(3)
C(5)-N(1)-Cd(1)	123.7(2)	C(24)-N(3)-Cd(2)	122.6(2)		
C(1)-N(1)-Cd(1)	116.8(2)	C(20)-N(3)-Cd(2)	117.7(2)		
C(6)-N(2)-Cd(1)	115.9(2)	C(25)-N(4)-Cd(1)	115.5(2)		
C(8)-N(2)-Cd(1)	124.1(2)	C(27)-N(4)-Cd(1)	124.7(2)		

Table S2. Selected bond distances (Å) and angles ($^{\circ}$) for Cd1.

Parameter		Parameter	
Cd(1)-N(1)	2.333(4)	Cd(1)-Cl(2)	2.4295(16)
Cd(1)-N(2)	2.345(4)	Cd(1)-O(2)	2.517(3)
Cd(1)-Cl(1)	2.4174(16)	N(2)-C(6)	1.290(7)
N(1)-Cd(1)-N(2)	70.97(14)	Cl(1)-Cd(1)-O(2)	89.95(9)
N(1)-Cd(1)-Cl(1)	109.88(12)	Cl(2)-Cd(1)-O(2)	98.56(10)
N(2)-Cd(1)-Cl(1)	131.68(12)	C(9)-O(2)-Cd(1)	118.1(3)
N(1)-Cd(1)-Cl(2)	107.57(13)	C(14)-O(2)-Cd(1)	123.9(3)
N(2)-Cd(1)-Cl(2)	108.72(12)	C(5)-N(1)-Cd(1)	124.4(4)
Cl(1)-Cd(1)-Cl(2)	116.02(6)	C(1)-N(1)-Cd(1)	116.1(3)
N(1)-Cd(1)-O(2)	134.56(14)	C(6)-N(2)-Cd(1)	116.2(3)
N(2)-Cd(1)-O(2)	65.62(13)	C(8)-N(2)-Cd(1)	122.0(3)

Table S3. Selected bond distances (Å) and angles ($^{\circ}$) for Cd3.

Table S4. The dihedral angels between the pyridyl ring and phenyl ring in structures of the coordinated ligand in complexes **Zn1–Zn3**, **Cd1–Cd3** and **Hg1–Hg3**.

	Zn1	Cd1	Hg1
Angel (pyridyl–phenyl)/ °	79.73(8)	79.58(1)	79.92(2)
	Zn2	Cd2	Hg2
Angel (pyridyl-phenyl)/ °	11.12(2)	9.91(9)	7.65(2)
	Zn3	Cd3	Hg3
Angel (pyridyl–phenyl)/ °	15.23(2)	10.53(1)	12.22(1)

	D–H ···A	D–H/Å	H···A/Å	D…A/Å	D–H •••A/ °
Zn1	C16–H16A •• Cl2	0.980	2.896	3.861	168.587(2)
Cd1	C2–H2A ••Cl3	0.929	2.749	3.580	149.339(2)
	C4–H4A ••Cl1	0.931	2.915	3.495	121.771(1)
	C21–H21A ••Cl2	0.931	2.782	3.617	149.897(2)
	C23–H23A ••Cl4	0.930	2.783	3.431	127.719(1)
	C25–H25A •• Cl2	0.931	2.730	3.580	152.290(2)
Hg1	C3–H3A ••Cl2	0.930	2.941	3.704	140.358(3)
	C6–H6A •• Cl1	0.930	2.822	3.551	136.152(2)
Zn2	C6–H6A •• Cl2	0.930	2.790	3.619	149.064(8)
	C12–H12A •• Cl1	0.930	2.858	3.763	164.601(1)
	C14–H14B •• Cl2	0.960	2.841	3.779	166.081(1)
Cd2	C6–H6A •• Cl2	0.931	2.781	3.631	152.410(1)
	C9–H9A ••Cl2	0.930	2.930	3.855	173.976(1)
	C12–H12A •• Cl1	0.931	2.814	3.721	165.329(1)
Hg2	C6–H6A •• Cl1	0.930	2.738	3.611	156.750(5)
	C10–H10A •• Cl2	0.930	2.766	3.672	164.801(5)
	C13–H13A ••Cl1	0.930	2.912	3.836	173.305(5)
Zn3	C6–H6A •• Cl2	0.930	2.884	3.393	115.818(4)
	C7–H7B •• Cl2	0.960	2.906	3.568	127.124(5)
	C7–H7C ···Cl1	0.960	2.917	3.782	150.390(5)
	C14–H14C •• Cl2	0.960	2.943	3.738	141.036(5)
Cd3	C3–H3A •• Cl2	0.929	2.775	3.618	151.440(3)
	C6–H6A •• Cl1	0.930	2.862	3.711	152.423(3)
	C7–H7A •• Cl2	0.960	2.934	3.467	116.344(3)
	C12–H12A ••Cl2	0.930	2.788	3.624	150.129(3)
	C14–H14A •• Cl2	0.960	2.842	3.556	131.914(3)
Hg3	C3–H3A ••Cl2	0.929	2.816	3.647	149.625(5)
	C12–H12A •• Cl2	0.930	2.936	3.764	149.100(5)

Table S5. The geometrical parameters of hydrogen bonds for complexes Zn1–Zn3, Cd1–Cd3 and Hg1–Hg3.

Complex	Parameter	$Z(\text{\AA})^{\text{I}}$	d (Å) ^{II}	$artheta$ ($ eal^{ m III}$
Zn1	C_{gl} – C_{gl}	4.057	3.508	0.000
	C_{g2} – C_{g2}	4.192	3.696	0.000
Cd1	C_{gl} – C_{gl}	5.246	3.882	0.000
Hg1	C_{gl} - C_{gl}	4.051	3.666	0.000
	C_{g2} – C_{g2}	4.177	3.742	0.000
Zn2	C_{g1} – C_{g2}	3.837	3.513	11.126
Cd2	C_{gl} - C_{g2}	3.832	3.592	9.918
Hg2	C_{g1} – C_{g2}	3.768	3.533	7.533
Zn3	C_{gl} - C_{g2}	4.190	3.706	6.193
Cd3	C_{gl} – C_{gl}	3.690	3.574	0.000
	C_{g2} – C_{g2}	3.943	3.423	2.678
Hg3	C_{gl} - C_{gl}	3.792	3.770	0.000
	C_{g2} – C_{g2}	4.007	3.465	1.827

Table S6. The geometrical parameters of $\pi \cdots \pi$ stacking interactions in complexes **Zn1–Zn3**, **Cd1–Cd3** and **Hg1–Hg3**.

^I the centroid-centroid distance; ^{II} the interplanar spacing; ^{III} the dihedral angle. Detailed annotation information of the graph setting see M. David Curtis et al.¹ C_{g1} = pyridine ring, C_{g2} = phene ring.

Complex	$\tau_1 (\mu s)$	A ₁ (%)	$\tau_2 (\mu s)$	A ₂ (%)	$\tau^{a}\left(\mu s\right)$	Conditions
L_1	1.22	51.78	8.91	48.22	7.92	CH ₃ CN
	0.88	34.37	11.21	65.63	10.80	solid
Zn1	1.58	45.53	13.75	54.47	12.68	CH ₃ CN
	2.18	42.57	15.33	57.43	14.08	solid
Cd1	1.25	43.61	11.59	56.39	10.79	CH ₃ CN
	2.23	38.64	14.27	61.36	13.19	solid
Hg1	1.23	45.09	10.49	54.91	9.68	CH ₃ CN
	1.74	36.24	13.00	63.76	12.20	solid
L_2	1.06	79.41	8.46	20.59	6.05	CH ₃ CN
	1.49	35.75	12.42	64.25	11.74	solid
Zn2	1.44	41.90	12.25	58.10	11.41	CH ₃ CN
	3.22	47.23	18.50	52.77	16.44	solid
Cd2	1.91	47.99	14.73	52.01	13.36	CH ₃ CN
	2.85	43.86	18.67	56.14	16.98	solid
Hg2	1.32	43.74	10.46	56.26	9.64	CH ₃ CN
	3.04	45.79	16.34	54.21	14.53	solid
L_3	1.01	72.32	6.84	27.68	5.22	CH ₃ CN
	3.15	45.48	14.82	54.52	13.06	solid
Zn3	1.92	53.66	15.02	46.34	13.33	CH ₃ CN
	3.36	37.70	21.39	62.30	19.82	solid
Cd3	1.56	43.92	13.35	56.08	12.36	CH ₃ CN
	2.78	39.26	16.72	60.74	15.37	solid
Hg3	1.19	46.56	9.64	53.44	8.82	CH ₃ CN
	2.18	31.69	15.77	68.31	14.95	solid

Table S7. The luminescence lifetimes of ligands L_1-L_3 and complexes Zn1-Zn3, Cd1–Cd3 and Hg1–Hg3 in the solid state and acetonitrile solution at 298 K.

^a $\tau = \frac{\tau_1^2 A_1 \% + \tau_2^2 A_2 \%}{\tau_1 A_1 \% + \tau_2 A_2 \%}$

Complex	$\tau_1 (\mu s)$	$A_{1}(\%)$	$\tau_2 (\mu s)$	$A_{2}(\%)$	$\tau^{a}\left(\mu s\right)$	Conditions
L_1	0.61	27.41	6.34	72.59	6.14	CH ₃ CN
	0.64	40.39	6.70	59.61	6.33	solid
Zn1	0.81	42.12	8.11	57.88	7.62	CH ₃ CN
	1.01	35.79	11.85	64.21	11.36	solid
Cd1	0.67	39.33	6.90	60.67	6.53	CH ₃ CN
	1.41	38.96	11.47	61.04	10.74	solid
Hg1	0.79	43.04	6.85	59.96	6.39	CH ₃ CN
	0.71	37.61	6.83	62.39	6.47	solid
L_2	0.78	39.13	6.31	60.87	5.90	CH ₃ CN
	0.74	27.80	6.55	72.20	6.31	solid
Zn2	0.85	39.31	8.91	60.69	8.44	CH ₃ CN
	1.05	57.12	11.88	42.88	10.74	solid
Cd2	0.84	58.49	8.15	41.51	7.22	CH ₃ CN
	1.02	36.37	9.45	63.63	8.96	solid
Hg2	0.91	47.88	7.31	52.12	6.65	CH ₃ CN
	1.11	55.09	7.93	44.91	6.93	solid
L_3	0.77	69.84	5.63	30.16	4.46	CH ₃ CN
	0.84	60.22	6.84	39.78	5.90	solid
Zn3	1.29	37.42	9.45	62.58	8.83	CH ₃ CN
	2.35	45.26	15.74	54.74	14.27	solid
Cd3	0.82	49.67	9.31	50.33	8.63	CH ₃ CN
	1.42	44.99	11.68	55.01	10.75	solid
Hg3	0.86	60.37	8.12	39.63	7.11	CH ₃ CN
	0.69	35.38	9.79	64.62	9.45	solid

Table S8. The luminescence lifetimes of ligands L₁–L₃ and complexes Zn1–Zn3, Cd1–Cd3 and Hg1–Hg3 in the solid state and acetonitrile solution at 77 K.

^a $\tau = \frac{\tau_1^2 A_1 \% + \tau_2^2 A_2 \%}{\tau_1 A_1 \% + \tau_2 A_2 \%}$

References

1 M. D. Curtis, J. Cao, J. W. Kampf, J. Am. Chem. Soc. 2004, 126, 4318.