C[^]C* Cyclometalated Platinum(II) N-Heterocyclic Carbene Complexes with a Sterically Demanding β-Diketonato Ligand – Synthesis, Characterization and Photophysical Properties

Supporting Information

Mario Tenne[†], Stefan Metz[‡], Gerhard Wagenblast[‡], Ingo Muenster[‡] and Thomas Strassner[†]

[†] Physikalische Organische Chemie, Technische Universität Dresden, 01069 Dresden, Germany

[‡] BASF SE, 67056 Ludwigshafen, Germany

Details of the Solid State Structure Determination	S2
Predicted and measured emission wavelengths	S4
NMR spectra	S5
Emission spectra in dichloromethane	S33
References	

Details of the Structure Determination

Intensity data were collected on a NONIUS κ -CCD diffraction system, using graphitemonochromated Mo K α radiation ($\lambda = 0.71073$ Å). The reflections were merged and corrected from Lorentz, polarization and decay effects. An absorption correction was applied using SADABS¹. The structures were solved by a combination of direct methods² and difference Fourier synthesis. Full-matrix least square refinements against all data were carried out with anisotropic displacement parameters applied to non-hydrogen atoms. Hydrogen atoms attached to carbon were included in geometrically calculated positions using a riding model and were refined isotropically. All calculations were performed with the programs COLLECT,³ DIRAX,⁴ EVALCCD,⁵ SIR97,² SADABS,¹ the SHELXL-97 package,⁶ and ENCIFER⁷. Images of the solid state structures were generated with ORTEP-3.⁸

	4	20
empirical formula	$C_{20}H_{19}N_3O_2Pt$	C ₃₆ H ₃₅ N ₃ O ₂ Pt
formula weight	528.47	736.76
temperature (K)	198(2)	198(2)
wavelength (Å)	0.71073	0.71073
crystal system	monoclinic	monoclinic
space group	$P2_1/c$	$P2_1/c$
unit cell dimensions (in Å and °)	$a = 11.7630(5), \alpha = 90$	$a = 15.575(2), \alpha = 90$
	$b = 11.8750(17), \beta = 110.504(6)$	$b = 11.872(4), \beta = 127.70(2)$
	$c = 13.1410(19), \gamma = 90$	$c = 21.594(6), \gamma = 90$
volume (in Å ³)	1831.6(4)	3159.2(14)
Ζ	4	4
density (g/cm ³ , calculated)	1.916	1.549
absorption coeff. (mm ⁻¹)	7.680	4.477
F(000)	1016	1464
crystal size (mm)	0.35 x 0.20 x 0.12	0.60 x 0.37 x 0.25
θ range for data collection (°)	3.11 to 23.26	2.09 to 23.26
index ranges	$-13 \le h \le 13$	$-17 \le h \le 17$
-	$-13 \le k \le 13$	$-12 \le k \le 13$
	$-14 \le l \le 14$	$-23 \le 1 \le 23$
reflections collected	19834	19739
independent reflections	2626 [R(int) = 0.0564]	4065 [R(int) = 0.0797]
absorption correction	semi-empirical from equivalents	semi-empirical from equivalents
refinement method	full-matrix least-squares on F^2	full-matrix least-squares on F^2
data/restraints/parameters	2626/0/237	4065/0/385
goodness of fit on F^2	1.043	1.238
final R indices $[I > 2\sigma(I)]$	R1 = 0.0246, w $R2 = 0.0329$	R1 = 0.0496, w $R2 = 0.1203$
R indices (all data)	R1 = 0.0434, wR2 = 0.0361	R1 = 0.0893, w $R2 = 0.1357$
largest diff. peak and hole (e ⁻ A ⁻³)	0.517 and -0.501	0.838 and -1.236

 Table S1. Crystallographic Data for Compounds 4 and 20.

Predicted and measured emission wavelengths

Table S2.	Predicted	and measured	emission	wavelengths	of complexes	4-6 and	16-22
	(BP86/6-3	31G*).					

	λ _{calc} [nm] (BP86)	$\lambda_{em} [nm]^{[a]}$
4	453	432
5	482	477
6	486	477
16	456	455
17	485	478
18	480	477
19	465	475
20	487	477
21	488	478
22	463	471

[a] Max. emission wavelength.

NMR-spectra

compound 3 – ¹H-NMR

S8

- Additional signals result from decomposition of the complex as the complex is not stable in CDCl₃ over the period of the measurement.

EMISSION SPECTRA IN DICHLOROMETHANE

REFERENCES

- Sheldrick, G. M. SADABS, Version 2.10; University of Goettingen, Goettingen, Germany, 2002.
- a) Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G. L.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A. G. G.; Polidori, G.; Spagna, R., J. Appl. Crystallogr. 1999, 32, 115-119.
- Hooft, R. W. W. Data Collection Software for Nonius-Kappa CCD, Nonius B.V.: Delft, The Netherlands, 2001.
- 4. Duisenberg, A. J. M., J. Appl. Crystallogr. 1992, 25, 92-96.
- Duisenberg, A. J. M.; Kroon-Batenburg, L. M. J.; Schreurs, A. M. M., J. Appl. Crystallogr. 2003, 36, 220-229.
- 6. Sheldrick, G. M., Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, A64, 112-122.
- Allen, F. H.; Johnson, O.; Shields, G. P.; Smith, B. R.; Towler, M., J. Appl. Crystallogr. 2004, 37, 335-338.
- 8. Farrugia, L. J., J. Appl. Crystallogr. 2012, 45, 849-854.
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.;

Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J. C., M.; Rega, N.; Millam, J. M.;
Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts,
R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J.
W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.;
Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J.
V.; Cioslowski, J.; Fox, D. J. *Gaussian 09*, Rev. B 0.1; Gaussian, Inc.: Wallingford,
CT, 2009.

- a) Vosko, S. H.; Wilk, L.; Nusair, M., *Can. J. Phys.* 1980, 58, 1200-1211; b) Becke,
 A. D., *Phys. Rev. A* 1988, 38, 3098-3100; c) Lee, C. T.; Yang, W. T.; Parr, R. G.,
 Phys. Rev. B 1988, 37, 785-789; d) Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H.,
 Chem. Phys. Lett. 1989, 157, 200-206; e) Stephens, P. J.; Devlin, F. J.; Chabalowski,
 C. F.; Frisch, M. J., *J. Phys. Chem.* 1994, 98, 11623-11627.
- a) Ditchfield, R.; Hehre, W. J.; Pople, J. A., J. Chem. Phys. 1971, 54, 724-728; b) Hehre, W. J.; Ditchfield, R.; Pople, J. A., J. Chem. Phys. 1972, 56, 2257-2261; c) Hariharan, P. C.; Pople, J. A., Theor. Chim. Acta 1973, 28, 213-222; d) Hariharan, P. C.; Pople, J. A., Mol. Phys. 1974, 27, 209-214; e) Gordon, M. S., Chem. Phys. Lett. 1980, 76, 163-168; f) Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; Defrees, D. J.; Pople, J. A., J. Chem. Phys. 1982, 77, 3654-3665; g) Binning, R. C.; Curtiss, L. A., J. Comput. Chem. 1990, 11, 1206-1216; h) Blaudeau, J. P.; McGrath, M. P.; Curtiss, L. A.; Radom, L., J. Chem. Phys. 1997, 107, 5016-5021; i) Rassolov, V. A.; Pople, J. A.; Ratner, M. A.; Windus, T. L., J. Chem. Phys. 1998, 109, 1223-1229; j) Rassolov, V. A.; Ratner, M. A.; Pople, J. A.; Redfern, P. C.; Curtiss, L. A., J. Comput. Chem. 2001, 22, 976-984.
- a) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A., J. Chem. Phys. 1980, 72, 650-654; b) Mclean, A. D.; Chandler, G. S., J. Chem. Phys. 1980, 72, 5639-5648; c) Clark, 526

T.; Chandrasekhar, J.; Spitznagel, G. W.; Schleyer, P. V., *J. Comput. Chem.* 1983, *4*, 294-301; d) Curtiss, L. A.; McGrath, M. P.; Blaudeau, J. P.; Davis, N. E.; Binning, R. C.; Radom, L., *J. Chem. Phys.* 1995, *103*, 6104-6113; e) Glukhovtsev, M. N.; Pross, A.; McGrath, M. P.; Radom, L., *J. Chem. Phys.* 1995, *103*, 1878-1885.

- a) Hay, P. J.; Wadt, W. R., J. Chem. Phys. 1985, 82, 299-310; b) Hay, P. J.; Wadt, W. R., J. Chem. Phys. 1985, 82, 270-283.
- 14. Legault, C. Y. CYLview, 1.0b; Universite de Sherbrooke, 2009.