A Novel Fe/Fe₃O₄/N-carbon composite with hierarchical porous structure and in situ formed N-doped graphenelike layers for high-performance lithium ion batteries

Yao Li^a, Qing Meng^b, Shen-min Zhu*^a, Zeng-hui Sun^a, Hao Yang^a, Zhi-xin Chen^b, Cheng-ling

Zhu^a, Zai-ping Guo^b and Di Zhang*a

a State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai

200240, China. E-mail: smzhu@sjtu.edu.cn (S.M. Zhu); Tel: +86 21 3420 2584; Fax: +86 21 3420

2749.

b The Faculty of Engineering and Information Science, University of Wollongong, NSW 2522,

Australia

Figure S1. Raman spectra of RHC, Fe/Fe₃O₄/carbon and Fe/Fe₃O₄/N-carbon.

Figure S2. TGA curves of RHC, Fe/Fe₃O₄-carbon, Fe/Fe₃O₄/N-carbon and Fe/Fe₃O₄/N without carbon.

Figure S3. Galvanostatic charge–discharge curves of (a) Fe/Fe₃O₄/N-carbon (b) RHC and (c) Fe/Fe₃O₄/carbon in the voltage range 0.01-3.0 V (vs. Li) at a current of 50 mA g^{-1} .

Figure S4. The equivalent circuit of Fe/Fe₃O₄/N-carbon, RHC and Fe/Fe₃O₄/carbon.

Figure S5. TEM images of Fe/Fe $_3O_4$ /N-carbon composite after 100 discharge/charge cycles.

