Supporting Information File

Influence of coordination environment in slow magnetic relaxation and photoluminescence behavior in two mononuclear dysprosium (III) based single molecule magnets

Amit Kumar Mondal, Soumyabrata Goswami and Sanjit Konar*

Department of Chemistry, IISER Bhopal, Indore By-Pass Road, Bhauri, Bhopal-462066, M. P., India.

Fig. S1. Thermogravimetric profiles for complexes 1 (a) and 2 (b).

Table S1 . Bond distances	(Å)	around Dy(I	III) found	in 1	and 2 .
	()		11) 10000		

	1	2	
Dy – N1	2.548(3)	Dy - N1	2.521(5)
Dy – N2	2.528(4)	Dy - N2	2.504(5)
Dy - N4	2.540(4)	Dy - N4	2.532(5)
Dy – O1	2.394(4)	Dy - O1	2.450(5)
Dy - O2	2.351(3)	Dy - O2	2.351(5)
Dy – O3	2.373(3)	Dy - O3	2.530(5)
Dy – 06	2.372(3)	Dy-O6	2.439(5)
Dy – 07	2.399(3)	Dy - O7	2.305(5)
Dy – O11	2.455(3)	Dy – O11	2.472(5)

Fig. S2. Distorted muffin coordination geometry around the Dy(III) metal ions in 1 (left) and 2 (right).

Shape analysis

Table S2: Summary of SHAPE analysis for complex 1 and 2.

EP-9	1	D9h	Enneagon
OPY-9	2	C8v	Octagonal pyramid
HBPY-9	3	D7h	Heptagonal bipyramid
JTC-9	4	C3v	Johnson triangular cupola J3
JCCU-9	5	C4v	Capped cube J8
CCU-9	6	C4v	Spherical-relaxed capped cube
JCSAPR-9	7	C4v	Capped square antiprism J10
CSAPR-9	8	C4v	Spherical capped square antiprism
JTCTPR-9	9	D3h	Tricapped trigonal prism J51
TCTPR-9	10	D3h	Spherical tricapped trigonal prism
JTDIC-9	11	C3v	Tridiminished icosahedron J63
HH-9	12	C2v	Hula-hoop
MFF-9	13	Cs	Muffin

Complex 1:

Structure [M JCCU-9	L9] CCU-9	EP-9 JCSAPR-9	OPY-9 CSAPR-9	НВРҮ-9	JTC-9
Dyl 6.857,	, 5.768,	31.797, 3.367,	24.550, 2.901,	15.960,	15.741,
JTCTPR-9	TCTPR-9	JTDIC-9	HH-9	MFF-9	
2.510,	2.522,	12.500,	7.051	, 2.347	
Complex 2:					
Structure [M: JCCU-9	L9] CCU-9	EP-9 JCSAPR-9	OPY-9 CSAPR-9	НВРҮ-9	JTC-9
Dyl 8.820,	, 7.467,	34.684, 5.341,	26.194, 4.823,	16.889,	16.816,
JTCTPR-9	TCTPR-9	JTDIC-9	НН-9	MFF-9	
4.464,	4.656,	14.108,	8.806	<i>4.320</i>	

Table S3. H-bond	parameters	found	in compl	ex 1.

D– H···A	D-H(Å)	H···A(Å)	D…A (Å)	<d-h-a(°)< th=""><th>Symmetry[#]</th></d-h-a(°)<>	Symmetry [#]
O2—H2A…O7	0.938	2.431	2.836	105.91	0
O2—H2A…N2	0.938	2.965	2.987	82.23	0
O2—H2B…N4	0.938	2.876	2.990	87.72	0
O2—H2B…O6	0.938	2.678	3.022	102.43	0
O2—H2B…O15	0.938	2.365	2.677	98.97	0
N3—H3…O5	1.030	1.788	2.563	128.86	0
01—H1A…011	0.938	2.397	2.819	107.06	0
O1—H1A…N10	0.938	2.669	3.346	129.56	0
01—H1A…019	0.938	2.269	3.052	140.50	0
O1—H1B…O3	0.938	2.740	2.923	91.74	0
O1—H1B…O6	0.938	2.597	2.704	86.29	0
O3—H3A…N4	0.938	2.389	2.782	104.94	0
O3—H3A…N5	0.938	2.800	3.429	125.38	0
O3—H3B…O1	0.938	2.553	2.923	103.84	0
O3—H3B…O11	0.938	2.641	2.661	81.02	0

N5 H504	1.030	1 8/1	2 611	128.67	0
C1 H1O9	1.050	2 030	2.011	115.61	0
C1 = H1 = 0	1.080	2.930	2 5 9 1	155.06	0
$C_{1} = 111.000$	1.080	2.575	2 544	116.84	0
$C_2 = H_2 \cdots O_9$	1.000	2.923	2.810	110.04	0
$C/-H/B\cdots NS$	1.080	2.747	2.819	82.39	0
$C/-H/B\cdots O20$	1.080	2.793	3.602	131.07	0
C23—H23…O/	1.080	2.440	2.783	96.82	0
C12—H12…O6	1.080	2.427	2.768	96.68	0
C9—H9A…N5	1.080	2.632	2.792	86.98	0
$O2-H2A\cdots O8$	0.938	1.999	2.914	164.37	0
O2— $H2A$ ···N6	0.938	2.682	3.456	140.19	1
O2—H2A…O9	0.938	2.689	3.213	115.98	1
O15—H15A…O17	0.938	2.211	2.951	135.14	1
O1—H1A…O10	0.938	2.840	3.322	113.11	2
O3—H3A…O13	0.938	2.034	2.737	130.47	2
O3—H3B…O9	0.938	2.507	3.154	126.19	2
O3—H3B…O10	0.938	1.978	2.835	150.95	2
C9—H9A…O13	1.080	2.816	3.417	115.08	2
C9—H9C…O18	1.080	2.938	3.362	103.68	2
O3—H3B…N6	0.938	2.606	3.427	146.36	2
C13—H13…O8	1.080	2,790	3.800	155.71	3
C13—H13…N6	1 080	2.663	3 634	149 39	3
O1—H1B····N9	0.938	2.896	3 464	120.18	3
$01 - H1B \cdots 018$	0.938	2.475	3 2 5 2	140.17	3
$01 - H1B \cdots 017$	0.938	2 566	2 861	98.58	3
C13_H1309	1.080	2.800	3 793	149.06	3
$C^2 - H^2 \cdots O^{15}$	1.080	2.020	3 828	163.88	4
$C_2 = H_2 = 015$	1.080	2.770	3 360	123 72	4
$C_2 = H_2 + O_2$	1.080	2.030	3.462	146.33	
C_{1}^{-11}	1.080	2.511	3 2 2 2	168.02	5
$05 \ \mu 5 \Lambda \ 013$	0.028	2.107	2.622	126.02	5
05_H5A_017	0.938	2 721	2.025	105 74	6
$O_5 U_5 A N_0$	0.936	2.721	2 194	105.74	0
C7 H7P O17	0.938	2.009	3.104	120.00	0
$C/=\Pi/D\cdots OI/$	1.060	2.013	2,400	115.00	0
C_{24} H24011	1.080	2.544	3.499	140.88	6
C_{24} —H ₂₄ …O ₂₀	1.080	2.869	3.074	131.42	6
C21—H21····O9	1.080	2.851	3.031	129.17	6
04—H4…010	0.938	1.780	2.708	169.64	/
04—H4…08	0.938	2.763	3.455	131.30	7
C15—H15…O10	1.080	2.875	3.549	120.67	7
O4—H4…N6	0.938	2.608	3.485	155.88	7
C22—H22···O18	1.080	2.508	3.330	132.10	8
015—H15A…O5	0.938	2.724	3.459	135.86	9
С9—Н9В…О20	1.080	2.239	3.241	153.45	9
015—H15B…020	0.938	1.943	2.867	167.94	9
U (O) (1) 1	1/0 1 (0)	1 1/0		1/0 1 /0	

 $\frac{1}{\# (0) x, y, z; (1) - x + 1, +y - 1/2, -z + 1; (2) - x + 1, +y - 1/2, -z; (3) x, +y - 1, +z (4) - x + 1, +y + 1/2, -z + 1; (5) - x + 2, +y + 1/2, -z + 1 (6) - x + 2, +y - 1/2, -z + 1; (7) - x, +y - 1/2, -z; (8) x + 1, +y - 1, +z + 1; (9) x - 1, +y, +z - 1/2; (10) y + 1/2, -x + 1, +z.$

 Table S4. H-bond parameters found in complex 2.

D- H····A	D-H(Å)	H···A(Å)	D…A (Å)	<d-h-a< b="">(°)</d-h-a<>	Symmetry [#]
O4—H1…N5	0.938	1.963	2.646	127.95	0
O5—H2…N3	0.938	1.716	2.546	145.65	0
N5—H4…O4	1.030	1.870	2.646	129.29	0
O2—H2B…O6	0.938	2.678	3.022	102.43	0
C8—H8C…O4	1.080	2.793	3.843	164.12	0
C8—H8C····N5	1.080	2.284	2.745	103.48	0
C9—H9C…N3	1.080	2.684	2.780	83.67	0
O1—H1A…N10	0.938	2.669	3.346	129.56	0
C12—H12…O6	1.080	2.490	2.795	94.75	0
C19—H19…O7	1.080	2.508	2.855	97.37	0
O4—H1…O9	0.938	2.718	2.825	86.81	1
C8—H8A…O12	1.080	2.305	3.351	162.54	1
C8—H8C…O9	1.080	2.427	3.226	129.73	1

C1—H1A…O9	1.080	2.188	3.263	173.20	2	
C1—H1A…N16	1.080	2.769	3.804	160.61	2	
C5—H5…O12	1.080	2.470	3.257	128.75	2	
C1—H1A…O10	1.080	2.615	3.443	132.99	2	
C8—H8B…O12	1.080	2.698	3.479	128.86	2	
C8—H8B…N6	1.080	2.786	3.770	151.43	2	
C13—H13…O12	1.080	2.785	3.419	117.41	3	
C14—H14…O12	1.080	2.564	3.306	125.12	3	
C13—H13…O3	1.080	2.784	3.662	138.36	3	
C15—H15…O11	1.080	2.320	3.184	135.72	4	
C21—H21…O3	1.080	2.552	3.274	123.47	5	

Fig. S3. PXRD patterns of 1; (a) simulated, (b) as-synthesized.

Fig. S4. PXRD patterns of 2; (a) simulated, (b) as-synthesized.

Fig. S5. χ_M ' vs T for complex **1** at 0 Oe.

Fig. S6. χ_M " vs T for complex **1** at 0 Oe.

Fig. S7. χ_M ' vs T for complex **2** at 0 Oe.

Fig. S8. χ_M " vs T for complex **2** at 0 Oe.

Fig. S9. Intermolecular Dy…Dy distances in complexes 1 (left) and 2 (right).

Experimental information for dilution studies:

Synthesis of [Y(H₄daps)(NO₃)₂(MeOH)]·(NO₃)·(MeOH) (3)

H₄daps (43 mg, 0.1 mmol) was dissolved in MeOH (5 ml) and the solution was warmed to 40° C. Y(NO₃)₃·6H₂O (39 mg, 0.1 mmol) dissolved in MeOH (5 ml) was added dropwise to the above ligand solution while stirring. The resulting solution forms an intense yellow mixture that was stirred further for 1 hour. The solution was then filtered off and the filtrate was left at open atmosphere for slow evaporation which gave large X-ray quality yellow needle like crystals of [Y(H₄daps)(NO₃)₂(MeOH)]·(NO₃)·(MeOH) (**3**) after 2 days. The crystals were separated, washed with cold water and Et₂O and air-dried. Yield (70 %). Anal. Calcd for C₂₅H₂₈YN₈O₁₅: C, 39.02; H, 3.66; N, 14.56 %. Found: C, 39.13; H, 3.83; N, 14.61 %.

	3
Formula	$C_{25}H_{28}YN_8O_{15}$
$M_w(g \text{ mol}^{-1})$	769.46
Crystal size (mm)	0.32×0.26×0.23
Crystal system	Orthorhombic
Space group	$P2_{1}2_{1}2_{1}$
T (K)	107(2)
a (Å)	8.6524(6)
b (Å)	18.8655(11)
c (Å)	19.2015(14)
α (°)	90
β(°)	90
γ (°)	90
$\dot{V}(\dot{A}^3)$	3134.3(4)
Z	4
$\rho_{\text{calcd}} (\text{g cm}^{-3})$	1.631
$\mu(MoK\alpha) (mm^{-1})$	1.946
F(000)	1572.0
T_{max}, T_{min}	0.639, 0.550
h, k, l range	$-11 \le h \le 11, -25 \le k \le 25, -26 \le l \le 26$
Collected reflections	8462
Independent reflections	4723
Goodness-of-fit (GOF) on F ²	0.965
R1, wR2 (I > 2σ I)	0.0604, 0.1443
R1, wR2 (all data)	0.0926, 0.1617
CCDC Number	1044379

Table S5. X-ray Crystallographic Data and Refinement Parameters for 3.

 $R1 = \Sigma ||Fo| - |Fc|| / \Sigma ||Fo| \text{ and } wR2 = |\Sigma w (|Fo|^2 - |Fc|^2)| / \Sigma ||w(Fo)^2|^{1/2}$

Fig. S10. Out-of-phase (χ_{M}'') AC magnetic susceptibility plot for a diluted (1:10) sample at 2000 Oe dc field.

Fig. S11. The emission spectrum of the ligand (H₄daps) in solid state at room temperature with λ_{ex} = 350 nm.