Electronic Supplementary Information

Synthesis, characterisation and antibacterialactivity of [(p-cym)RuX(L)]^{+/2+}

(X= Cl, H₂O; L = bpmo, bpms) complexes

Suman Kumar Tripathy,^a Ashoka Charry Taviti,^b Niranjan Dehury,^a Anupam Sahoo,^a Satyanaryan Pal^c Tushar Kant Beuria,^{*b} and Srikanta Patra^{*a}

^aSchool of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha-751007, India.

^bInstitute of Life Science, Bhubaneswar, Odisha-751007, India.

^cDepartment of Chemistry, Ravenshaw University, Cuttack 753 003, Odisha, India.

Fig. S1 UV-Vis spectra of complexes $[1](ClO_4) - [4](PF_6)_2$ recorded in CH₃CN at room temperature.

Fig. S2 Cyclic voltammograms of [1]ClO₄ and [2]PF₆ recorded in CH₃CN/0.1mol dm⁻³

Et₄NClO₄ versus Hg/Hg₂Cl₂ (scan rate 50 mV s⁻¹).

Fig. S3 Emission spectra of the ethidium bromide (EB) bound CT DNA in aqueous buffer

solution in the absence and presence of increasing amount of complexes. λ_{ex} 520 nm, [EB] = 0.33 μ M, [DNA] = 10 μ M, [complexes] (μ M) 0 – 120 for [1](ClO₄), 0 – 100 for [2](PF₆), 0 – 80 for [3](ClO₄)₂, and 0- 60 for [4](PF₆)₂. T = 298 K. Inset : Stern-Volmer plot.

Fig. S4 (a) Effect of increasing amount of complexes on the relative viscosities of CT DNA at 300 K in tris-HCl buffer solution (pH 7.4) Conditions: CT DNA 200 μ M, [complexes]

 $(\mu M) 0 - 60$ for [1](ClO₄), 0 - 80 for [2](PF₆), 0 - 70 for [3](ClO₄)₂, and 0- 60 for [4](PF₆)₂.

Fig. S5 (a) DIC and light microscopic images (stained with FM-4-64 and DAPI dye) and (b) changes in cellular morphology of control and $[3](ClO_4)_2$ and $[4](PF_6)_2$ treated *B. subtilis*

strains.

